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1 INTRODUCTION 

This paper performs an econometric analysis of the value of public transport travel time savings 

using various nonparametric and semiparametric techniques permitting the identification of effects 

that are otherwise hard to discern. A particular strength of the techniques is that they allow one to 

visually inspect various distributions and relationships. These techniques are applied in parallel 

analyses of binary stated choice data relating to four different public transport modes.  

The paper finds first that the conventional formulation of the binary logit model in terms of constant 

marginal utilities of time and cost is misspecified with the current data for all four modes. Instead a 

simple formulation in terms of willingness-to-pay (WTP) is proposed, which fits the data. Second, it 

is found that a model whereby the WTP depends on the log of the size of the time saving offered 

and also on travel time gives a good representation of the data. These findings are robust as they 

emerge within a semiparametric model with weak assumptions on the stochastic terms of the model 

and under various specifications of the systematic variation in WTP.  

The formulation in terms of random WTP lends itself naturally to an interpretation of random 

variability as preference variation. Specification of models in WTP space and interpretation of 

random variation as preference variation is the norm in environmental economics (Hanemann & 

Kanninen, 1998), whereas the tradition in the transport economics literature has been to interpret 

random variation as noise (Gunn, 2000). The issue of whether to specify a discrete choice model in 

preference space or in WTP space is discussed by Train & Weeks (2004), who find with their data 

that mixed logit models that use convenient (normal, lognormal) distributions for the coefficients in 

preference space fit the data better than similar models in WTP space, but that the models in 

preference space give less reasonable distributions for the WTP. They call for alternative 

distributional assumptions that either fit the data better in WTP space or imply more reasonable 
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distributions of WTP when applied in preference space. This paper achieves this aim by applying 

nonparametric distributions of random variability. 

The layout of the paper is as follows. Section 2 sets out some models and the econometric 

methodology, section 3 presents the data, the econometric analysis is carried out in section 4 while 

section 5 concludes by discussing the findings made. 

 

2 METHODOLOGY 

Much research has been devoted to the WTP for travel time savings as they usually constitute the 

main benefit of transport infrastructure investment (Hensher, 2001, Mackie et al., 2001). The micro-

economic formulation of the theory of the value of travel time savings was fundamentally 

formulated by Becker (1965), Johnson (1966), Oort (1969) and DeSerpa (1971). Jara-Diaz (2000) 

provides a review. The estimation of the WTP for travel time savings is reviewed in Hensher (2001) 

and Gunn (2000). Here we shall employ a different perspective on the problem. 

2.1 Some different models  

We will be concerned with models for binary choices where the alternatives are characterized by 

time and monetary cost only. Denote the time difference by ∆t and the cost difference by ∆c. 

Alternatives are rearranged such that ∆c < 0 < ∆t. The time and cost variables are observed together 

with the choice y, which is 1 if the cheap and slow alternative is chosen.  

Assuming random utility maximization we have y=1{∆U>0}. The data provide information about 

P(y=1|∆c, ∆t). There are different ways in which a model may be specified, Table 1 shows some 

polar cases. They are distinguished first by the interpretation of random variability. At one extreme 

individuals are seen as identical and all variability is due to optimization errors. At the other 
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extreme all variability is interpreted as variation in preferences. The second distinction is between 

formulating the model in utility space in terms of marginal utilities of time and cost and formulating 

the model in WTP space in terms of a willingness to pay for time. The models are identical when no 

assumptions are made concerning the distribution of the error terms. They become different when 

assumptions about independence are made. 

The first model (a.) specifies marginal utilities of time and cost, α, β, and an additive error. This is 

the binary logit model when ε is logistic and independent of (∆t,∆c). When also α, β are stochastic 

it is the mixed binary logit model. With fixed parameters and independent error, a quantile in this 

model is given by P(y=1)=q iff ∆c =  -Fε
-1(1-q)/β - (α/β)∆t, assuming β≠0. Thus, quantiles are 

parallel in (∆t, ∆c)-space. The spacing between quantiles depends on the distribution of ε. 

Models (a.) and (b.) are equivalent when β≠0 and fixed. Models (c.) and (d.) are similarly 

equivalent with w=-α/β. 

The quantiles in model (d.) are given by P(y=1)=q iff ∆c = -∆t Fw
-1(q), assuming w is independent 

of ∆t, ∆c. Thus quantiles in this model fan out from the origin in (∆t, ∆c)-space. Define v = -∆c/∆t 

such that y = 1{w<v}. Then quantiles depend only on v if w is independent of ∆t and ∆c.  

 

Table 1. Some different models 

 Model  Assumptions 

a. Pure optimization error, utility space y = 1{α ∆t + β∆c + ε > 0} α, β fixed 

b. Pure optimization error, WTP space y = 1{w∆t + ∆c + ε < 0} w fixed 

c. Pure preference variation, utility space y = 1{α ∆t + β∆c > 0} α, β stochastic 

d. Pure preference variation, WTP space y=1{w∆t + ∆c < 0} w stochastic 
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2.2 Econometric technique 

Härdle (1990), Horowitz (1998), Pagan & Ullah (1999) and Yatchew (2003) are general references 

to nonparametric and semiparametric modeling. Here we shall make extensive use of the local logit 

model using locally weighted maximum quasi-likelihood as discussed in Fan, Heckman & Wand 

(1995). At each point x, a logit model is estimated by maximizing the quasi-loglikelihood function 

given in (1) with local weights , where K( xxK ih − ) h is a multidimensional kernel with bandwidth 

h, xi are the observations in the sample and P() is the logistic distribution. Then P(αx) is an estimate 

of P(y|x). We use the triangular product kernel with the same bandwidth in all directions. The 

computation of confidence intervals is given in Fan, Heckman & Wand (1995). 

( ) ( )( ) ( ) ( )( )( )[ ]∑ −+−−+−+−=
i

ixxiixxiihx xxPyxxPyxxKL βαβα 1log1log  (1) 

The use of a local logit model may reduce bias compared to local constant regression, and hence 

allows for use of a larger bandwidth since the logit model conforms with the binary response data: 

the estimate is always a probability. When the bandwidth becomes large the model approaches the 

conventional logit model. Thus the optimal bandwidth will tend to be high when the logit model is a 

good approximation to the data. This means that the optimal bandwidth can be fairly high in 

comparison to a local constant regression. 

We shall also estimate parameters δ in the model E(y|v,x)=F(log(v)-δx), where F is an unknown 

distribution. This is accomplished by means of the Klein & Spady (1993) estimator. It is 

implemented with a normal density kernel and no trimming is applied. 

The Zheng (1996) test is used to test restrictions of the form E(y|v,x) = E(y|g(v,x)), where g is a 

known function. The Zheng test is a test of functional form against a general nonparametric 
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alternative, the Zheng test statistic is distributed as standard normal under the null hypothesis and 

diverges to infinity under the alternative.  

The Klein-Spady estimator and the Zheng test are both based on local constant regression, whereas 

the local logit regression fits a local curve. The bias is larger in the local constant regression, 

wherefore the bandwidth is reduced relative to the bandwidth chosen for the local logit model. The 

normal density kernel is also rescaled such that it is comparable to the triangular kernel (Härdle, 

1990). 

Estimation is carried out in Ox (Doornik, 2002). 

 

3 DATA 

The data origin from the Danish value of time study conducted for the Danish Ministry of Transport 

and Energy. The questionnaire design is discussed in Burge et al. (2004). For this paper we use 

binary stated choice data from a simple within-mode experiment, where respondents chose between 

alternatives varying only by within mode travel time and cost. 

Some summary statistics for the data are given in Table 2. We use data for four different modes. 

Bus, Metro, S-train and train. The Metro is a new facility mainly going through central 

Copenhagen, while the S-train is a regional rail service in the Greater Copenhagen area. The bus 

and train modes cover the whole country. Trips by Metro and S-train are generally brief with an 

average main mode journey time (jtime) of 16 minutes and 22 minutes respectively. Trips by bus 

are longer with an average duration of 33 minutes while trips by train are longest with an average 

duration of 80 minutes. Travel time and cost are varied in the experiment around a current trip with 
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a minimum time difference of 3 minutes and an implicit price of time ranging between 2 and 200 

DKK/hour.2

Table 2 Descriptive statistics 

 Bus Metro S-train Train 

 min max mean min max mean min max mean min max mean

∆c, min.   -50 -0.5 -6.27   -50 -0.5 -4.33 -50 -0.5 -5.03 -200  -0.5 -12.3

∆t, DKK 3 60 7.11 3 15 4.77 3 20 5.55 3 60 12.7

v = -∆c/∆t, 
DKK/min. 

0.05 3.35 0.79 0.05 3.35 0.83 0.05 3.35 0.82 0.05 3.35 0.82

jtime, min. 5 240 33.3 5 45 15.9 5 60 22.0 10 460 79.9

No of obs. 9308 3442 3428 7222

 

4 ECONOMETRIC ANALYSIS 

4.1 Local logit in preference space  

We begin the econometric analysis by estimating a local logit model using a conventional 

formulation in preference space where responses are explained by the difference in cost and the 

difference in travel time and local parameters may be interpreted as marginal utilities of time and 

cost. No assumptions are imposed except for those required by the nonparametric local logit 

regression. The results for the four modes are shown in Figure 1. The range on the axes in the 

figures is the same as the range of data. Several findings emerge, common to all modes. 

First, the estimated densities show that the data are concentrated around small values of ∆t and ∆c. 

Second, from the estimated regression surfaces we note that the quantiles generally have a positive 

slope, which corresponds to a positive value of time: Starting from a point in  (∆t,∆c)-space, when 

                                                 

2 The currency is Danish kroner, 1 EUR = 7.45 DKK. 
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the time difference increases also the cost difference must increase in order to maintain a constant 

probability. This is reassuring, but of course not so surprising. Third, there seems to be a tendency 

for the slopes to increase as the time savings gets larger. Thus the WTP distribution may not be 

independent of the size of the time saving.  

Finally, the quantiles are clearly not parallel, as they would be in model (a.) with independent errors 

and constant marginal utilities, or specifically as they would be in the binary logit model.3 It rather 

seems as if the quantiles fan out from the origin as they would in model (d.) with independent 

errors. It thus seems that preference variation dominates optimization errors and that this is 

consistent across modes.  

 

4.2 Local logit in WTP space 

These observations motivate some transformation of the space of independent variables. First, 

define v = -∆c/∆t as the cost per minute in the presented trade-off. This corresponds to model (d.). 

Second, transform the variables v and ∆t to logs in order to obtain a more even coverage of space. 

Then a local logit regression is performed on (log(∆t), log(v)). The bandwidths shown in Table 3 are 

selected by cross-validation (Härdle, 1990).  

Table 3 Bandwidths 

 Bus Metro S-train Train 

λ 0.48 0.52 0.52 0.36 

 

                                                 

3 Fosgerau (2005b) also rejected the logit model using a similar model on data for car drivers. 
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The results from this local logit regression are shown in figure 2. As intended, the densities of 

(log(∆t), log(v)) now show a much more uniform coverage of space. Second, the quantiles seem to 

be roughly parallel. They do however seem to depend on log(∆t), so we do not have independence 

between w and ∆t in model (d.): The WTP per minute depends on the size of the time saving. 

This observation leads us to elaborate the specification of model (d.) by the following model, 

whereby  

y=1{log(w) <log(v)} and log(w) = γ log(∆t) + u,  (2) 

and u is independent of (v,∆t) with unknown distribution. Thus the distribution of u is taken as fixed 

and the location of log(w) is shifted linearly by log(∆t). We expect to find a positive parameter for 

log(∆t) corresponding to a positive slope of quantiles in figure 2. The parameters γ are estimated 

using Klein-Spady. The Zheng test statistic is applied to test the restriction of model (2) against the 

general model P(y=1|log(v),log(∆t)). Results are shown in Table 4. 

Table 4. Estimation results 

 Bus Metro S-train Train 

γ, log(∆t) 0.30842 (10.19) 0.17231 (2.29) 0.27651 (4.67) 0.49295 (19.47)

Zheng statistic -0.01 0.02 -1.37 1.69

t-statistics in parentheses 

The Zheng test accepts the linear restriction in all cases. The estimated slopes are all positive and 

significant. It thus seems that model (d.) is the more adequate model for the data after allowing for 

dependence of w on ∆t.  

4.3 Introducing journey time  

Looking at the magnitudes of the slopes estimated in Table 4, it seems some systematic variation 

might still be present. The slope is largest for train, which also has the longest journey times; bus 
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has both the second largest journey time and slope parameter. It is also the case that the size of the 

time saving presented is the choice situation is partly determined by the journey time, since the 

design sets time savings by relative variations around the actual journey and journey times cannot 

be negative.  

Therefore we expand the model by including the variable jtime for travel time in the main mode. 

We specify the model 

log(w) = γ log(∆t) + ηlog(jtime) + u  (3) 

and estimate the parameters using Klein-Spady and test the restriction with the Zheng test. The 

results are shown in Table 5. 

Table 5 Estimation results 

 Bus Metro S-train Train 

γ, log(∆t) 0.31798 (7.90) 0.31682 (4.10) 0.3643 (5.34) 0.30681 (9.70)

η, log(jtime) -1.93E-02 (-0.54) -0.27277 (-4.87) -0.26835 (-4.09) 0.29537 (9.00)

Zheng statistic 1.85 -0.64 2.31 1.29

t-statistics in parentheses 

The coefficient for log(∆t) is always positive and significant and the estimates are now very similar 

across modes in contrast to the model without jtime.  

The sign of the coefficient for journey time varies significantly between modes. It is significantly 

negative for metro and S-train, which have short trips on average, and significantly positive for 

train, which is a more comfortable mode and has longer trips on average.  

The Zheng test now accepts the semiparametric model except for S-train. The rejection for S-train is 

not strong, but indicates that the relationship is not exactly linear or that independence of u and 

(log(∆t),jtime) does not hold. 
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Local logit regressions of y on (log(jtime), log(v)-γlog(∆t)) are performed with results shown in 

Figure 3. The slopes estimated in Table 5 are also in evidence in the figure. Independence of u and 

the index implies that the quantiles should be parallel in Figure 3, which they seem to be. Thus the 

assumption of independence is a fair approximation to the data.  

 

4.4 Introducing more covariates 

The conclusions of the previous section are checked by adding a number of variables to the model. 

Define the model 

log(w) = δx + u and y = 1{log(w)<log(v)}.  (4) 

Descriptive statistics for the variables are provided in Table 6. The variable Sex is 1 for females and 

0 otherwise; income is after-tax personal annual income; inc1 is a dummy for the lowest income 

group (<100,000 DKK/year); inc NA is a dummy for missing income information; Commute is 1 

when the travel purpose is commuting; Passengers is 1 when there is at least one accompanying 

person on the trip. Note that log(income) and age have been demeaned before input to the 

estimation procedure. 
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Table 6. Descriptive statistics for covariates 

 Bus Metro S-train Train 

log(∆t) 1.722 1.4722 1.5729 2.1758

log(jtime) 3.1995 2.6153 2.9662 4.008

Sex 0.61603 0.53167 0.57176 0.55234

log(income) 11.621 11.774 11.863 11.725

inc1 0.24667 0.19262 0.15169 0.22002

inc NA 0.0896 0.052586 0.044049 0.065633

Commute 0.25301 0.25015 0.27392 0.21711

Passengers 0.2225 0.30767 0.28471 0.28081

Age 38.318 36.503 40.679 38.234

 

The coefficients in Table 7 are estimated using Klein-Spady. The coefficients for log(∆t) and 

log(jtime) are much the same as before. The coefficients to log(jtime) have become somewhat 

smaller in absolute value compared to model (3), indicating that the inclusion of other variables 

accounts for some of this effect. Furthermore, we notice that income has a strong influence on the 

location of the WTP distribution with a significantly positive coefficient in all cases. Women have 

lower WTP than men with similar values of the coefficients for all modes, the coefficients are 

however only significant for bus and train. The travel purpose dummy for commuters is only 

significant for Metro. The presence of accompanying persons has no detectable influence on WTP. 
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Table 7. Parameter estimates 

 Bus Metro S-train Train 

log(∆t) 0.343 (8.71) 0.327 (4.00) 0.363 (5.01) 0.288 (8.73)
log(jtime) -0.050 (-1.45) -0.259 (-4.36) -0.212 (-3.02) 0.255 (7.44)
sex -0.090 (-2.09) -0.053 (-0.88) -0.115 (-1.72) -0.124 (-2.72)
inc 0.451 (6.54) 0.514 (5.58) 0.802 (7.80) 0.700 (9.07)
inc1 0.274 (2.69) 0.273 (1.88) 0.774 (4.58) 0.776 (6.97)
inc na -0.076 (-0.94) 0.083 (0.60) 0.197 (1.24) 0.057 (0.64)

commute 0.041 (0.78) 0.388 (4.99) 0.002 (0.02) -0.056 (-0.93)

passengers 0.019 (0.36) 0.088 (1.26) 0.030 (0.39) 0.025 (0.48)

age -0.001 (-0.50) -0.006 (-1.66) -0.014 (-4.58) 0.003 (1.44)

agesq/100 -0.032 (-3.78) -0.016 (-0.99) 0.006 (0.39) -0.078 (-7.14)

t-statistics in parentheses 

This model is tested twice by the Zheng test. First for the hypothesis that E(y|v,δx) = E(y|log(v)-δx) 

with δ taken as the parameter estimates in Table 7. This is accepted for all four modes. This says 

that conditional on the definition of the index δx, we can accept model 4, whereby log WTP is equal 

to the index plus an independent error. Second, the Zheng test is applied for the hypothesis that 

E(y|v,log(∆t),log(jtime),δx) =  E(y|log(v)-δx). In this case the test rejects the hypothesis for all 

modes. This indicates that there is scope for elaborating the model, for example with higher order 

terms and interactions between the independent variables.  That is not required for the purpose of 

this paper. 

Table 8. Zheng test statistics 

 Bus Metro  S-train Train 

E(y|v,δx) = E(y|log(v)-δx) -0.09 1.13 -0.24 -0.43 

E(y|v,log(∆t),log(jtime),δx) =  E(y|log(v)-δx) 6.66 3.70 4.32 4.13 
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5 DISCUSSION 

We shall discuss the findings of the paper, first the findings concerning model specification and 

then the findings related to WTP for travel time savings.  

The analysis has presented some fairly clear findings concerning model specification; all subject to 

the qualification that they apply, strictly, only to the current data. It is of interest to test whether 

they apply also to other datasets. First of all, models with fixed parameters in preference space and 

an independent error fit the data quite badly, this includes specifically the logit model in preference 

space. Formulating a model in WTP space and interpreting random variation as preference variation 

leads to a very simple model enabling the estimation of a number of effects that would otherwise 

have been hard to discern. Transforming the model to WTP space enables us to accept the index 

assumption that log(w) = δx + u where u is an independent random variable. This leaves little 

potential for models including more heterogeneity such as the mixed binomial logit model. 

The semiparametric model is perfectly capable of predicting choices. If desired it is possible to 

replace the nonparametric distribution of the error term with a parametric distribution. Fosgerau 

(2005) presents a methodology for fitting a parametric distribution to the nonparametric distribution 

of u for the purpose of estimating the mean WTP, E(w). 

We have found that preference variation seems to be the main source of variation in the data, but it 

can be expected that optimization errors also play a role. It would be ideal to be able to distinguish 

preference variation and optimization errors in a nonparametric way not relying on strong prior 

assumptions. As noted by Lewbel et al. (2002), it is however also a hard problem. An estimator of 

the two distributions is conceivable using a panel data specification not unlike the mixed binary 

logit model, but with seminonparametric distributions (Pagan & Ulla, 1999) of both errors and 

WTP.  
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It is a firm conclusion that the distribution of WTP is shifted up by increasing the size of the time 

saving. This presents a problem for the use of the estimated WTP for project evaluation, which 

requires a single price of time for consistency. Otherwise splitting a project into smaller projects 

each with smaller time savings could yield different results from treating the project as a whole. So 

some interpretation of the estimation results is required in order to derive values for application in 

practical cost-benefit analysis. The subject of small travel time savings in project evaluation is 

discussed in Welch & Williams (1997) and Mackie et al. (2001).  

Using similar data, Hultkrantz & Mortazawi (2001) find also that small travel time savings are 

valued less than large. The effect has also been found in the UK (Bates & Whelan, 2001) and the 

Netherlands. Hultkrantz & Mortazawi argue mainly in favor of an explanation in terms of decision 

costs whereby the effort in deciding whether a given time saving is worth the cost may outweigh the 

potential gain. This effect could be interpreted as a short-term phenomenon, perhaps relating to the 

fixed schedule of respondents in the short term, or even as an artifact of the experimental choice 

situation, neither is relevant for project evaluation. If, on the other hand, the effect is thought to 

persist in real choices, then there should be significant consequences for evaluation of projects 

involving many small time savings. Given that household have many ways of adapting to changed 

travel times in the long term, one may lean toward the first interpretation of the small travel time 

savings effect. Then the value of travel time savings should be corrected for the effect before 

application in cost-benefit analysis. The effect does however not seem to level off at larger time 

savings, which could be a source of some uneasiness. 

The coefficient to log(jtime) varies between modes in a way that seems to be systematic and related 

to the relative comfort of the modes. It is negative for Metro and S-train, insignificant for bus, but 

positive for train. Fosgerau (2005a) estimated a positive coefficient for log(jtime) in a similar model 

for a dataset consisting of car drivers. A common intuition is that the WTP for time savings is lower 

 15 



in a comfortable mode where one can work or enjoy a private space. But it does not seem 

reasonable that this effect should diminish for longer journeys; one would expect the opposite. 

There is however another potential explanation, also related to comfort. According to this 

explanation, people could be self-selecting into modes according to their WTP and the strength of 

the self-selection could increase with the length of trip. Our model controls for observable 

characteristics so consider as an example a population of travelers that are identical except for the 

WTP for travel time, which has a random distribution from our point of view. For short trips they 

may all have similar probabilities of choosing the different modes. But for longer trips it seems 

likely that those with a high WTP tend to choose the more comfortable modes, while those with 

lower WTP choose the cheaper and less comfortable modes. This effect could produce the observed 

relation between coefficients.  
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Figure 1: Bus 
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Fig 1: Metro 
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Figure 1: S-train 
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Figure 1: Train 
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Figure 2: Bus 
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Figure 2: Metro 
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Figure 2: S-train 

1.
1

1.
3

1.
5

1.
7

1.
9

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

-3.0

-2.6

-2.2

-1.7

-1.3

-0.9

-0.5

-0.1

0.4

0.8

1.2

Probability

log(∆T)

log(V)

0.90-1.00
0.80-0.90
0.70-0.80
0.60-0.70
0.50-0.60
0.40-0.50
0.30-0.40
0.20-0.30
0.10-0.20
0.00-0.10

1.
1

1.
4

1.
7

2.
0

2.
2

2.
5

2.
8 -3.0

-1.9

-0.9

0.2

1.2

0.0

0.1
0.2

0.3

0.4
0.5

0.6

0.7

0.8
0.9

1.0

Probability

log(∆T)

log(V)

0.90-1.00
0.80-0.90
0.70-0.80
0.60-0.70
0.50-0.60
0.40-0.50
0.30-0.40
0.20-0.30
0.10-0.20
0.00-0.10

1.
1

1.
4

1.
7

2.
0

2.
2

2.
5

2.
8 -3.0

-1.7

-0.5

0.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Density

log(∆T)

log(V)

1.60-1.80
1.40-1.60
1.20-1.40
1.00-1.20
0.80-1.00
0.60-0.80
0.40-0.60
0.20-0.40
0.00-0.20

1.
1

1.
4

1.
7

2.
0

2.
2

2.
5

2.
8 -3.00

-1.73

-0.47

0.79

0.0

0.1

0.2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Probability Conf 
Hi

log(∆T)

log(V)

0.9-1.0
0.8-0.9
0.7-0.8
0.6-0.7
0.5-0.6
0.4-0.5
0.3-0.4
0.2-0.3
0.1-0.2
0.0-0.1

1.
10

1.
38

1.
67

1.
95

2.
24

2.
52

2.
81

-3.00

-1.73

-0.47

0.79

0.0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0

Probability Conf 
Lo

log(∆T)

log(V)

0.9-1.0
0.8-0.9
0.7-0.8
0.6-0.7
0.5-0.6
0.4-0.5
0.3-0.4
0.2-0.3
0.1-0.2
0.0-0.1

 26 



Figure 2: Train 
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Figure 3: Bus 
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Figure 3: Metro 
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Figure 3: S-train 
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Figure 3: Train  
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