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Abstract

We study the indeterminacy of equilibrium in the Fujita-Krugman (1995)

model of city formation under monopolistic competition and increasing returns.

Both the number and the locations of cities are endogenously determined. As-

suming smooth transportation costs, we examine equilibria in city-economies

where a �nite number of cities form endogenously. For any positive integer K,

the set of equilibria with K distinct cities has a smooth manifold of dimension
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K � 1 as its interior for almost all parameter values in a regular parameteriza-
tion. The disjoint union of these sets over all positive integers K constitutes

the entire equilibrium set.

Keywords: city formation, smooth economies, increasing returns, indetermi-

nacy of city systems.

JEL classi�cations: D51, F12, O18, R12, R14.

1. INTRODUCTION

�Why do cities emerge?�This has been one of the central questions in urban eco-

nomics. Tracing back to the nineteenth century, von Thünen describes a central

township on an agricultural plain as the following. The town is where all manufac-

tured goods are produced; it supplies its production to and imports agricultural goods

from the surrounding rural area (Wartenberg 1966). This points to the concentration

of manufacturing �rms in cities.

The phenomenon of production concentration cannot be explained in the classical

general equilibrium framework. Starrett�s (1978) Spatial Impossibility Theorem says

that if the space is homogeneous, transport is costly, preferences and production tech-

nologies are independent of location, and there is a competitive market for each good

in every location, then there is no equilibrium involving transportation in a closed

economy (see also Fujita and Thisse 2002). That is, in a competitive equilibrium, pro-

duction activities spread out over space. Cities cannot be equilibrium outcomes unless

one or more of these classical assumptions are dropped. Many authors explain why

�rms concentrate at a location with imperfect competition.1 Cities emerge because

the production of �rms exhibits increasing returns to scale and, hence, they engage in

monopolistic competition. Abdel-Rahman (1988), Abdel-Rahman and Fujita (1990),

and Krugman (1991, 1993a,b) introduce the Dixit-Stiglitz (1977) model of monop-

olistic competition and increasing returns into spatial economics. This approach is

known as the �New Economic Geography.�Fujita and Krugman (1995) use it to study

the emergence of a monocentric city on a line. They �nd the parameter range within

which a monocentric equilibrium exists and examine the comparative statics. Fujita

and Mori (1997) investigate how a monocentric city evolves into multicity systems as

population increases.

1Another prominent factor is technological externalities, which is another source of market im-

perfection (for example, Henderson 1974).
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This framework successfully provides the necessary ingredients to explain the for-

mation of cities. There are two types of pecuniary externalities that generate the

agglomerative forces sustaining a city, resulting in positive feedback that comes from

�rms locating near each other. First, manufacturing production will concentrate

where there is a large market, and the market is large where there are many workers

that consume manufactured goods. Second, workers will move to where production

concentrates because the manufactured goods are cheaper there. In spite of success

in providing insights into the agglomerative mechanisms of monopolistic competition

and increasing returns, the model is far from fully explored. Although only equilibria

with cities, where a positive measure of �rms locate2, have been examined, there may

exist equilibria where densities of �rms distribute over pieces of land. For example,

equilibria may involve no cities (�rms spread out as density distributions) or a mixture

of both cities and density distributions of �rms. These equilibria are di¢ cult to de�ne

and analyze. In line with previous work, we focus attention on equilibria with cities

only. The problem of multiple equilibria, however, remains. The model lacks deter-

minacy and it is di¢ cult to characterize the equilibrium set. Consequently, previous

work resorts to studying special cases of equilibrium. Examples of a monocentric city,

systems of duocentric and tricentric cities, the symmetric formation of odd numbers

of cities, and even a one-dimensional continuum of equilibria are found in the liter-

ature. They are derived under the assumptions of a �xed number of cities or �xed

locations of cities or both. These illustrative examples are insightful and suggestive;

nevertheless, a broader picture of the equilibrium set is still absent. What kind of

object is it? How many dimensions does it have? The determination of dimension

is important since it reveals the degree of indeterminacy in the model, the number

of free variables for computational work, and the validity of comparative statics. Of

particular importance is the question of local uniqueness of equilibrium, a necessary

condition for (di¤erential) comparative statics. This paper attempts to answer these

questions in a general framework where both the number and locations of cities are

endogenously determined.

We adopt the di¤erentiable approach introduced into economics by Debreu (1970,

1976) and Smale (1973, 1974), and summarized by Dierker (1974) and Mas-Colell

(1985). In this approach, the equilibria of an economy are de�ned as solutions to a

system of smooth (Cr, r > 0) equations. The system is regularly parameterized3 in a

2More precisely, a city is an atom in the distribution of �rms.
3A parameter space is �regular� if the system�s Jacobian matrix with respect to endogenous
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�nite dimensional Euclidean space. The generic dimension of the solution manifold

is then determined by the numbers of equations and endogenous variables. We can

then conclude that for almost all economies, the equilibrium set is a smooth manifold4

of known dimension. Berliant and Zenou (2002) is a recent application in urban

economics. It studies the generic dimension of the equilibrium set in a city formation

model with labor di¤erentiation.

Our technique di¤ers from the established smooth economy literature in that our

equilibrium is de�ned by a system of equations and inequalities. The presence of

inequalities causes di¢ culties. Consequently, we construct an �extended regular pa-

rameterization�and obtain a weaker result. Our main theorem is the following. For

any positive integer K, the set of equilibria with K distinct cities has a smooth

(boundariless) manifold of dimension K � 1 as its interior for almost all parameter
values. This result shows a great deal of indeterminacy in the model;5 the equilib-

rium set with a given number of cities is generically a continuum of high dimension.

Moreover, the equilibrium set of a typical economy is the disjoint union of equilib-

rium sets with any number of cities. This problem of indeterminacy results from the

lack of equilibrium conditions: there are not enough equations to pin down every

variable. In this general equilibrium framework where all agents choose locations si-

multaneously, the market does not provide equilibrium conditions that determine the

linkage among city locations. There is a growing literature on indeterminacy discov-

ered in economic models recently: for example, �nancial markets, endogenous growth

models, and games. Our work adds to this literature by showing real indeterminacy

variables and parameters has full rank at every equilibrium for all parameter values (Mas-Colell

1985).
4A smooth manifold is a set of which every element has a neighborhood that can be mapped to

a piece of a Euclidean space by a smooth bijection with a smooth inverse. Thus, the set behaves

�locally� like a Euclidean space. Formally, M is an n-dimensional Cr-manifold if there is an open
cover fUigi2� of M such that for each i 2 �, there is a Cr-di¤eomorphism 'i : Ui ! <n which maps
Ui to an open subset of <n.

5Krugman (1993a) addresses the indeterminacy of the equilibrium location of a single city due

to the neutrality of agents with respect to spatial shifts. His model, however, does not show the

seriousness of this problem. If we replace the unit interval used in his model with a circle of land,

then all equilibria become identical and the indeterminacy is trivial. Even with multiple cities, this

type of indeterminacy is a simple parallel spatial shift of the locations of all agents in all cities. It is

eliminated in Fujita and Krugman (1995) by introducing the use of land and normalizing a location

to the origin. The indeterminacy presented in our paper is not trivial, since one equilibrium cannot

be derived from another through a spatial shift. Moreover, the degree of indeterminacy rises with

the number of cities.
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can also be found in spatial models. Another type of indeterminacy, discovered by

Ellison and Fudenberg (2003), comes from the market impact a �rm generates when

it moves into a region or market. This e¤ect is commonly ignored or assumed to be

zero. Although it renders comparative statics di¢ cult, indeterminacy in itself does

not invalidate a model, as illustrated in the modern literature on general equilibrium

with incomplete asset markets. Our view is that there is a great deal of diversity in

the world, and models with indeterminacies could help explain it.

The paper is organized as follows. Section 2 presents a generalization of the

standard model of the new economic geography (à la Fujita and Krugman 1995,

Fujita and Mori 1997, Fujita, Krugman, and Venables 1999, and Fujita and Thisse

2002) with a richer set of parameters. We study equilibria when the number and

locations of cities are endogenously determined. There is a countable number of

cities, each with a positive measure of �rms. Cities import the agricultural good from

a connected piece of land and locate within this land segment. Section 3 presents the

main theorem. Section 4 concludes and contains our conjecture about the source of

indeterminacy in this model as well as a detailed discussion of equilibrium selection

in relation to the work of Fujita, Krugman and Venables (1999).

2. THE MODEL

We begin by introducing the benchmark model, which is quite standard in the

literature. We need more parameters to provide a regular parameterization. To fa-

cilitate comparison, these parameters will be added later. The economy has a space

of locations Z = <. Each location r in Z is endowed with one unit density of ho-

mogeneous land. Land is used for agricultural production only. The utilized land is

denoted by B � Z. There are two types of commodities: a homogeneous agricultural
A-good and di¤erentiated manufactured goods. There is a continuum of manufac-

tured goods of size n 2 <+, which is determined endogenously. Each manufactured
good is denoted by j 2 [0; n]. A-good is produced by farms that employ labor and rent
land, while j-goods are produced by �rms that employ labor only. Firms do not use

or occupy land. Let C � Z denote the set of �rm locations. The delivered prices of

A-good and j-good at location r 2 Z are denoted by pA (r) and pM (j; r) respectively
where pA : Z ! <++ and pM : [0; n]� Z ! <++ are measurable functions.
Consumers
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There is a continuum of identical mobile workers of Lebesgue measure N 2 <++
who receive wages for their labor. Each worker is endowed with one unit of labor.

They can work for the agricultural or the manufacturing sector. Each worker supplies

labor and consumes goods at a chosen location. There is a continuum of immobile

landlords distributed uniformly over Z with density one. Each landlord owns one

unit density of land where she lives. Landlords receive rent if their land is utilized.

Consumers are denoted by i 2 fW;Lg; workers are denoted by W and landlords by

L. The wage and land rent at location r are denoted by w (r) and R (r) respectively,

where w : Z ! < and R : Z ! < are measurable functions.
Let Ai and mi (j) be, respectively, the quantities of A-good and j-good consumed

by consumer i where Ai 2 <+ and mi : [0; n] ! <+ is measurable. All workers and
landlords have the same utility function

u
�
mi; Ai

�
=
�
M i
�� �

Ai
�1��

;

where M i =
�R n
0
mi (j)� dj

� 1
� , 0 < �; � < 1. They enjoy no utility from leisure. Given

prices pA and pM , a consumer who lives at location r with income Y (wage or rent)

solves the following problem.

Max
Ai;mi(j)2<+

u (mi; Ai) ;

s:t: pA (r)Ai +
R n
0
pM (j; r)mi (j) dj = Y:

(1)

This optimization problem yields the following demand functions.

Âi (r) = (1� �)Y=pA (r) ;
m̂i (j; r) = �Y G (r)

�
1�� =pM (j; r)

1
1�� ;

where G (r) =
hR n
0
pM (j; r)

�
��1 dj

i ��1
�
is the manufacturing price index.

Substituting Y with w (r) and R (r) respectively in these functions, we get the

worker�s demand, ÂW (r) and m̂W (j; r), and the landlord�s demand, ÂL (r) and

m̂L (j; r). A worker�s indirect utility at r is

v (r) = �� (1� �)1��w (r)G (r)�� pA (r)��1 :

Workers are freely mobile. They choose locations that o¤er the highest utility level.

Landlords at locations with negative rent will not rent out their land. To simplify

the analysis, we assume they will rent it out when the rent is zero. Thus,

r 2 B if and only if R (r) � 0: (2)
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All landlords in ZnB receive zero income; they do not consume anything.
Firms

Firms produce di¤erentiated products. Labor is the only input required. All �rms

have the same inverse production function

LM = FM + cMqM :

LM units of labor are required for qM units of output, where FM 2 <++ and cM 2
<++ are the �xed and the marginal input requirements respectively. The production
technology exhibits increasing returns to scale due to the �xed cost. There is free

entry into the market. Because of increasing returns to scale, each j-good is produced

by and is the only product of an operating �rm. Operating �rms choose locations

and engage in Chamberlinian monopolistic competition. Each �rm chooses a location

and charges a uniform free on board (f.o.b.) price for its product. Firms make

decisions simultaneously. Suppose a �rm locates at r, charges price pM , and sells

output qM
�
pM ; r

�
, where qM : <+ � Z ! < is the consumers�demand and is known

to the �rm. Then, its pro�t is

�M
�
PM ; r

�
= pMqM

�
pM ; r

�
� w (r)

�
FM + cMqM

�
pM ; r

��
:

Given a �xed location r, a �rm solves the following problem.

Max
pM2<++

�M
�
r; pM

�
: (3)

Because of the assumed constant elasticity utility function and the iceberg trans-

portation cost, which will be introduced later, the elasticity of demand facing a �rm

is independent of the locations of its consumers. (This is widely known; see Fujita

and Krugman 1995, and Fujita, Krugman and Venables 1999.) A monopolistically

competitive �rm charges a price marked up from the marginal cost. The optimal

f.o.b. price for a �rm at r is p̂M (r) = cMw (r) =�. Its maximized pro�t is

�̂M (r) =
(1� �)
�

cMw (r)

�
qM � FM�

(1� �) cM

�
:

Note that the total number of operating �rms, which is the same as the total variety

of products, is determined endogenously.

Farms

The agricultural good is produced by perfectly competitive farms with a constant

input-output ratio. There is free entry into the market. One unit of A-good requires
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one unit of land and cA 2 <++ units of labor. Each of a unit density of operating
farms has the capacity to produce one unit density of A-good. Each farm at location

r pays wage w (r) to the workers and rent R (r) to the landlord. Its pro�t is

�A (r) = pA (r)� cAw (r)�R (r) :

Transportation

Transportation costs take the Samuelson iceberg form. If one unit of A-good

(respectively j-good) is shipped from location s to location r, then tA (s; r)�1 (respec-

tively tM (s; r)�1) units arrive. The function t� , � 2 fA;Mg, satis�es the following
assumptions for all s; r 2 Z: (i) t� is C1.6 (ii) t� (s; r) � 1, t� (s; s) = 1, and

limjs�rj!1 t
� (s; r) = 1, and (iii) (s� r) @

@s
t� (s; r) > 0, (s� r) @

@r
t� (s; r) < 0. As-

sumption (ii) says that there is a positive cost when a good is transported to another

location and no cost if it is transported to the same location, and the transport cost

approaches in�nity if the distance between locations approaches in�nity. Assumption

(iii) requires the transportation cost to increase as the distance between locations

increases.

The city economy

We restrict attention to economies with a countable number of distinct cities. A

city is de�ned to be where a positive measure of �rms locate7. The number and

locations of cities are endogenous. Suppose there are K (a positive integer) cities.

The set of city locations is denoted by C = fckgKk=1 where ck 2 Z for all k 2 f1; :::Kg
and c1 < ::: < cK . The list fNkgKk=1, 0 < Nk < N for all k 2 f1; :::Kg, denotes
the worker populations in cities. The real number NA, 0 < NA < N , denotes the

worker population on agricultural land. Since in equilibrium a worker will supply all

of her labor endowment, we set local population equal to labor supply for simplic-

ity. Note that a city accommodates a worker population of a positive measure, while

each rural location hosts one unit density of landlords and cA units density of farm

workers. The list fnkgKk=1, where nk 2 <++ for all k 2 f1; :::Kg, denotes the number
6Note that the widely used exponential function t (s; r) = e� js�rj is not di¤erentiable at r = s

since limr!s+
t(s;r)
r�s = 1 and limr!s�

t(s;r)
r�s = �1.

7The most general setting is to characterize the distribution of workers and �rms with a measure

possessing atoms. Although this generalized setting allows both a countable number of cities and

a continuum of �rms spread out over pieces of land of positive measure, the equilibria cannot be

reduced to the solutions to a system of a �nite number of equations with a �nite number of unknowns.
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of �rms locating in cities. Thus the total number of �rms (and the total variety of

manufactured goods) is n =
PK

k=1 nk. Since consumers (respectively �rms) are iden-

tical and their equilibrium behavior di¤ers only with location, we relabel them with

their locations. Firms and manufactured goods are labeled by their cities. Thus, we

replace pM (j; r) with pM (ck; r) and mi (j) with mi (ck) for all j-goods manufactured

in city ck. The utility functions are changed to u
�
fmi (ck)gKk=1 ; Ai

�
= (M i)

�
(Ai)

1��

where M i =
�PK

k=1 nkm
i (ck)

�
�1=�

, and the manufacturing price index is changed to

G (r) =
�PK

k=1 nkp
M (ck; r)

�
��1

� ��1
�
. Let Ai (r), where i 2 fW;Lg and Ai : Z ! <+

is a measurable function, denote the consumption of A-good of a consumer at r. Let

mi (ck; r), where i 2 fW;Lg and mi : C � Z ! <+ is a measurable function, denote
the consumption of goods manufactured in city ck of a consumer at r. The number

qMk 2 <++ denotes the output of �rms in city ck.
To simplify the analysis, we prohibit A-good resale. Note that in equilibrium,

each rural location (in BnC) has a surplus of A-good: the total local consumption
is (1� �) cAw (r) =pA (r) + (1� �) cA

�
pA (r)� cAw (r)

�
=pA (r) = (1� �) while the

total local production is 1. Thus, every rural location exports A-good to cities and

only cities import A-good. We further restrict allocations to satisfy the following

conditions. (i) The utilized land B is a closed, connected interval. Then,
R
B
cAdr � N

implies B has a �nite length. We normalize the utilized land B = [0; �]. (ii) Cities

locate inside the utilized land. (iii) Moreover, each city imports A-good from an

interval of agricultural land8 exclusive of other cities. These conditions are formally

speci�ed as follows.

Condition �.

(i) B = [0; �].

(ii) C � (0; �).
(iii) There are K disjoint intervals Ik = [bk�1; bk) for k 2 f1; :::; K � 1g and IK =
[bK�1; bK ], where b0 = 0, bK = � and bk�1 < bk, such that city ck imports A-good

from and only from Ik.

These restrictions are needed, for otherwise the equilibrium pattern of land use

is indeterminate. In theory, B can be a collection of isolated pieces of land, and

each city may import A-good from disconnected land pieces. With the exponential

8This assumption is in accord with Fujita and Mori (1997), Appendix A.
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transportation cost function t (s; r) = ejs�rj, (i) and (iii) can actually be derived

in equilibrium from transportation cost minimization and a �no cheaper A-supply�

condition, which means a city cannot �nd a location that can supply A-good cheaper

than from where it imports. To study the equilibrium patterns of land use in general,

however, involves a great number of endogenous variables describing the lengths and

locations of all agricultural areas. This seems to be intractable.

The extended model

We add the following parameters to the benchmark model. These parameters

constitute a regular parameter space so that the dimension of the equilibrium set can

be examined. There are di¤erent ways to extend the benchmark model to a regular

parameterization and these parameters are just an example. In the extended model,

the urban wage at ck may di¤er from agricultural wage w (ck) at the same location.

This is because cities do not occupy land, and the density of land at ck is employed

for agricultural production. Let wk denote urban wages at ck; w (r) is reserved for

agricultural wage.

(i) City-speci�c �xed input, � 2 <K++. There are di¤erences among cities that
a¤ect a �rm�s production function. They can be city speci�c transaction costs or the

costs to use cities�infrastructure. For each �rm in city ck, the �xed labor input is

FM + �k. This creates di¤erences among �rms in di¤erent cities. Hence, there is a

separate pro�t function for �rms in each city. With output qM , the pro�t of a �rm

in city ck is

�̂Mk (ck) =
(1� �)
�

cMwk

"
qM �

�
FM + �k

�
�

(1� �) cM

#
:

(ii) Immobile worker population, l 2 <K�1++ . There are two types of labor: immo-

bile workers of size
PK�1

k=1 lk and mobile workers of size N �
PK�1

k=1 lk. lk denotes the

population of immobile workers in city ck for k 2 f1; :::; K � 1g. The total worker
population of city ck is Nk + lk for k 2 f1; :::; K � 1g. (For convenience, we de�ne
lK = 0 in summations of city populations. We could add the parameter lK to the

model, but it is not needed to generate a regular parameterization.)

(iii) Urban amenity factor, 
 2 <K++. Workers have preferences over either the
natural advantages of a location (e.g. weather) or over some �xed man-made amenities

(e.g. the symphony). If a worker lives in the rural area, her utility function is the

same as the benchmark case. If she lives in city ck, her utility level is factored up

by 1=
k. The new utility function of city workers is
1

k
u
��
mW (ck)

	K
k=1
; AW

�
. Note

that 
 does not a¤ect consumers�demand; it plays a role in their location choices

10



only. The indirect utility of an urban worker in city ck is

vMk (ck) =
1


k
�� (1� �)1��wkG (ck)�� pA (ck)��1 :

For simplicity, we assume the workers employed by a type ck �rm face the same urban

amenity factor 
k at a rural location (this prevents a �rm from locating slightly away

from the city and pro�ting from a discontinuous wage drop).

(iv) Land development cost, �1; �2 2 <++. It takes a development cost to utilize
the boundary and the idle land (e.g. putting up fences). Landlords in (�1; 0] pay a
�xed cost �1 to utilize their land, and landlords in [�;1) pay a �xed cost �2 to utilize
theirs. The development cost is deducted from landlords�rent income. So, the net

income of a landlord at r is R (r)� �1 for r 2 (�1; 0] and R (r)� �2 for r 2 [�;1).
(v) Moving cost, e 2 <K++. If a �rm is to move from city ck to r 2 Zn [Kh=1 fchg,

then ek units of labor at the new location is required for relocation. Note that e does

not a¤ect �rms�production decisions; it plays a role only when a �rm is considering

relocation. In addition, we assume that the production function of a relocating �rm

does not change. With output qM , the potential pro�t of a �rm in city ck relocating

to r 2 Zn [Kh=1 fchg is

�̂Mk (r) =
(1� �)
�

cMw (r)

"
qM �

�
FM + �k + ek

�
�

(1� �) cM

#
:

(vi) Farm tax, � 2 <++ and �1; �2 � �. A uniform tax � is levied on all operating
farms in (0; �). The tax revenue is then transferred to the landlords at the correspond-

ing locations. So, the after-tax farm pro�t is �̂A (r) = pA (r) � cAw (r) � � � R (r),
while the landlord receives rent �R (r) = R (r)� � plus the transfer.
Notice that if parameters of this extended model are chosen appropriately, the

benchmark model is a special case. Let � � <4K+2++ be a bounded, open parameter

space with elements � = (�; l; 
; �1; �2; e; �). Thus, the 9-tuple
�
N;�; �; FM ; cM ; cA; tA; tM ; �

�
represents a K-city economy. The benchmark model is parameterized at �k = 0,

lk = 0, 
k = 1, �1 = 0, �2 = 0, ek = 0, and � = 0. An allocation in a K-city economy

is a 9-tuple�
fckgKk=1 ; fNkg

K
k=1 ; fbkg

K�1
k=1 ; �;NA;

�
Ai (r)

	
i=W;L

;
�
mi (ck; r)

	
i=W;L

;
�
qMk
	K
k=1

; fnkgKk=1
�
:

A feasible allocation satis�es the following constraints.

KX
k=1

Nk +

K�1X
k=1

lk +NA = N: (4)
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PK
k=1m

W (ch; ck) t
M (ch; ck) (Nk + lk)

+
R �
0

�
mW (ch; r) c

A +mL (ch; r)
�
tM (ch; r) dr � qMh = 0 for h 2 f1; :::; Kg :

(5)

R bk
bk�1

�
1� cAAW (r)� AL (r)

�
tA (r; ck)

�1 dr = AW (ck)Nk,

for all k 2 f1; :::; Kg where b0 = 0, bK = �:
(6)

Equation (4) balances the total demand for workers and total worker population.

Equation (5) balances the demand for each manufactured good and its supply. Equa-

tion (6) balances A-good exports and surplus at each rural location and balances each

city�s A-good demand and imports.

Equilibrium

Facing prices
�
pM (ck; r)

	K
k=1
, pA (r), w (r), fwkgKk=1, and R (r), the following con-

ditions are satis�ed in equilibrium:

Workers are freely mobile and identical, so their utility levels are the same wherever

they locate.

v (r) = v (0) for all r 2 [0; �] ;
vMk (ck) = v (0) for k 2 f1; :::; Kg :

(7)

Because of free entry, if there are positive pro�ts, new �rms enter the market until

the pro�ts are brought down to zero. Thus, operating �rms earn zero pro�ts.

�̂Mk (ck) = 0 for all k 2 f1; :::; Kg : (8)

The location choices of �rms constitute a Nash equilibrium. Together with free

entry, it means the potential pro�t a �rm can earn at any location outside cities is

nonpositive.

�̂Mk (r) � 0 for all r 2 ZnC: (9)

Free entry will drive farms�pro�ts to zero at any operating location.

�̂A (r) = 0 for all r 2 [0; �] : (10)

There is no arbitrage in the transportation sector. The transportation costs fully

account for the price di¤erences of a good at di¤erent locations. The transportation

of a manufactured good is always from the producing �rm�s location (this is the only

12



location that can export) to a buyer�s location. The following condition determines

the price of manufactured goods at di¤erent locations.

pM (ck; r) = p̂
M (ck) t

M (ck; r) for all k 2 f1; :::; Kg ; r 2 Z: (11)

The transportation of agricultural good is determined by a list of city locations and

A-supply intervals. Then, the price of the agricultural good at every location is

determined by the no arbitrage condition. This is discussed in detail in Appendix A.

An equilibrium is a list of prices and a feasible allocation such that conditions (1),

(2), (3), and (7) to (11) are satis�ed.

The next lemma shows that in equilibrium, landlord income is zero at the two

edges of the utilized land, and that the potential landlord income is negative on idle

land.

Lemma 1. In equilibrium,

R (0)� �1 = R (�)� �2 = 0; (12)

and R (r)� �1 < 0 for r 2 (�1; 0), R (r)� �2 < 0 for r 2 (�;1).

Proof : See Appendix C.

Thus, we replace the landlords�optimization condition (2) with (12) plus

R (r)� � � 0 for all r 2 (0; �) : (13)

We examine equilibria withK distinct cities. The equilibrium set of a general city-

economy is the disjoint union of K-equilibrium sets for all positive integers K. Before

proceeding to the formal de�nition, we need to make some modi�cations. First, the

prices belong to an in�nite dimensional space. In order to determine the dimension

of the equilibrium set, we �t the system into a �nite dimensional Euclidean space by

eliminating variables. Second, the price of A-good is not smooth. We approximate it

with a smooth function in Appendix B.

Definition 1. AK-equilibrium is a list
�
fckgKk=1 ; fNkg

K
k=1 ; fbkg

K�1
k=1 ; fwkg

K
k=0

�
2

<4K++ that satis�es the following system of equations and inequality constraints. (Note
that � = N�

PK
k=1Nk�

PK
k=1 lk

cA
, �qMk =

(FM+�k)�
cM (1��) ; G

�
ck; fwkgKk=1

�
and �Q (r) are de�ned

in Appendix B.)
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PK
k=1m

W (ch; ck) t
M (ch; ck) (Nk + lk) +

R �
0

�
mW (ch; r) c

A +mL (ch; r)
�
tM (ch; r) dr

��qMk = 0 for all h 2 f1; :::; Kg :
(14)

R bk
bk�1

�
1� cAAW (r)� AL (r)

�
tA (r; ck)

�1 dr � AW (ck) (Nk + lk) = 0,
for all k 2 f1; :::; Kg where b0 = 0, bK = �:

(15)

wk

k
�
w0G

�
ck; fwkgKk=1

��
pA (ck)

1��

G
�
0; fwkgKk=1

�� = 0 for k 2 f1; :::; Kg : (16)

1� cAw0 � �1 = 0: (17)

pA (�)� cAw0G (�)
� pA (�)1��

G (0)�
� �2 = 0: (18)

c1 < ::: < cK < �; N �
KX
k=1

Nk > 0; b1 < ::: < bK�1 < �: (19)

�Qk (r) � 0 for all r 2 (��z; �z) n [Kh=1 fchg for all k 2 f1; :::; Kg : (20)

�R (r) � 0 for all r 2 (0; �) : (21)

Equations in (14) and (15) are linearly dependent because of Walras�law as pre-

sented in the next lemma. Label the lefthand side functions in (14) f1; :::; fK and

those in (15) fK+1; :::; f2K .

Lemma 2. In any economy, for any integer K,

KX
k=1

nkp
M (ck) fk �

KX
k=1

pA (ck) fk+K = 0:

Proof. See Appendix C.

3. THE GENERIC DIMENSION OF THE EQUILIBRIUM SET
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To determine the dimension of the equilibrium set de�ned by smooth equations,

we need a regular parameterization where the system�s Jacobian matrix with respect

to endogenous variables and parameters has full rank at every equilibrium for all

parameter values. Then, by the Transversality Theorem, the Jacobian matrix with

respect to endogenous variables has full rank at every equilibrium for almost all

parameter values. When it has full rank, the Implicit Function Theorem implies

that the equilibrium set is a smooth manifold of dimension equal to the number of

endogenous variables minus the number of equations. There are complications when

applying these results to urban models. First, it is di¢ cult to check regularity in the

benchmark model. This is the reason why we add more parameters. Second, our

system contains inequality constraints. Strict inequalities do not cause a problem.

The presence of weak inequalities, however, changes the topological properties of

the equilibrium set. To resolve this, we include weak inequalities as equalities and

parameterize the augmented system of equations. We deal with �, a bounded open

subset of the parameters. The results hold for the whole parameter space, that

contains vectors of parameters of the form
�
N;�; �; FM ; cM ; cA; tA; tM ; �

�
, and any

other regular parameterizations.

Theorem 1. For a regular parameterization �, the set of K-equilibria for an

economy has a C1-manifold of dimension K�1 as its interior for almost all � 2 �.9

Proof. See Appendix C.

This raises the issue of indeterminacy: for a given number of cities, the equilibrium

set is generically a continuum of rather high dimension. The equilibrium set of a

general city economy is the disjoint union of K-equilibrium sets for all integers K.

Existence of city equilibria is demonstrated in the literature for a wide range of

parameters by solving out for them explicitly. Our result shows that there are many

equilibria. To understand how far the equilibrium set extends beyond the manifold,

we further investigate it in Appendix D and show that for almost all � 2 �, the

set of K-equilibria for an economy is approximately10 contained in the closure of its

9We use the following phrases interchangeably: �for almost all � 2 �,�and �except for � in a set
of Lebesgue measure zero in �.�
10We use the following notion of approximation. Let fi : X ! <n and f̂i :

X ! <n be families of continuous maps, where i 2 I1 [ I2 [ I3 and I1; I2; I3 are

�nite. If sets A = fxj fi (x) = 0;8i 2 I1; fi (x) > 0;8i 2 I2; fi (x) � 0;8i 2 I3g and B =
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interior.

The formation of symmetric cities draws much attention in the literature. By

symmetry, we mean that there is a geographic center at �=2 and any parameters and

endogenous variables on one side of the center has a mirror image on the other side.

Symmetry reduces the di¤erence between the numbers of endogenous variables and

equations; this renders equilibrium sets of lower dimension.

Corollary 1. When K is even (respectively odd), the set of symmetric K-

equilibria has a C1-manifold of dimension K=2 (respectively (K � 1) =2) as its inte-
rior for almost all parameter values in a regular parameterization.

Proof. See Appendix C.

WhenK = 2 or 3, the set of symmetricK-equilibria is generically one-dimensional.

This is con�rmed in Fujita and Mori (1997, Appendix F), where one-dimensional

continua of equilibria are computed in cases of symmetric equilibrium with two and

three cities. When K = 1, the equilibrium set is of dimension zero, which is the union

of isolated points. Fujita and Krugman (1995) study symmetric equilibria with one

city in the benchmark model and �nd a unique equilibrium, consistent with Corollary

1. We show, in the following example, that there is no asymmetric equilibrium with

one city in the benchmark model. Therefore, the symmetric monocentric equilibrium

is the unique equilibrium in this case, consistent with Theorem 1.

Example. Consider a city in the middle of linear agricultural land. The land

stretches on both sides of the city. The transportation costs have the following form:

t� (s; r) = �t� (js� rj). The functions �t� are determined by distance only, not by

location.

Let [0; �] denote the utilized agricultural land. Suppose there is an asymmetric

equilibrium with the city at location c, 0 < c < �, c 6= �=2. Without loss of

generality, suppose the city is closer to � and the mirror image of � to c is � (=

2c � �). Then pA (0) < pA (�) = pA (�), pM (c; 0) > pM (c; �) = pM (c; �), and

G (0) > G (�) = G (�). Note that �t� (jc� �j) = �t� (jc� �j). By R (0) = 0 = R (�),n
xj f̂i (x) = 0;8i 2 I1; f̂i (x) > 0;8i 2 I2; f̂i (x) � 0;8i 2 I3

o
, then B approximates A if f̂i approxi-

mates fi in the C0-Whitney topology for all i 2 I1 [ I2 [ I3.
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we have w (0) = pA (0) =cA, w (�) = pA (�) =cA. Thus,

v (0) =
�� (1� �)1�� pA (0)�

cAG (0)�
<
�� (1� �)1�� pA (�)�

cAG (�)�
= v (�) :

which violates (7).

4. CONCLUSION

This paper takes a step further towards characterizing the equilibrium set with

cities: its generic dimension is determined. The result reveals a great deal of in-

determinacy in the model. The equilibrium set is generically the disjoint union of

sets of arbitrarily high dimension. This restricts the model�s predictive power, and

di¤erential comparative statics analysis is not valid.

There are at least three causes of indeterminacy in economic models. The �rst

type is discussed in footnote 5 and is rather trivial; it involves parallel spatial shifts

of variables and can be eliminated by normalization of the location of one city. The

second type involves models whose parameterizations are not regular. Such examples

can be found in game theory. Finally, there is indeterminacy even when one has

a regular parameterization, caused by more unknowns than equations. This is the

third type and where our work lies. In standard models with complete markets, the

numbers of endogenous variables and equations are equal. In our model, as in models

with incomplete asset markets, this is not true. There are not enough equations

to pin down every variable. More precisely, there are four endogenous variables for

each city (k = 1; :::; K): location, population, wage, and A-good supply interval, but

only three equations: market clearance of city exports (manufactured goods), equal

utility of workers, and market clearance of city imports (agricultural good). The use

of agricultural land brings one extra condition independent of the number of cities

and this is why the equilibrium set does not contain a K-dimensional continuum, but

rather a K � 1 dimensional manifold. As we will discuss below, this can be viewed
as an indeterminacy in the locations of K� 1 cities relative to the location of a given
city whose location has been normalized.

It is natural to think of �remedies� for indeterminacy11 that add more markets

into the model; for example, we can add land markets in cities if �rms employ land as

11We wish to remind the reader that as argued in the introduction, we do not think that indeter-

minacy in a model is necessarily undesirable.
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an input. Such modi�cations, however, will not reduce indeterminacy since they add

the same number of equations (market clearing conditions) and endogenous variables

(prices).12 Indeterminacy is persistent in competitive spatial economies as in other

areas of economics. In many cases, we know that the most basic and commonly used

model su¤ers from indeterminacy. The question of how model speci�cation a¤ects

indeterminacy warrants further research: What general features of a model generate

indeterminacy? How does the way in which �rms compete, whether perfectly or not,

a¤ect it? How do other agglomerative factors, such as natural advantages, public

goods, and production externalities, a¤ect it?

Where does our indeterminacy come from? In games where an agent�s strategy

impacts their utility, the optimization conditions of an agent usually pin down their

choice of strategy (given that we have a smooth system with a regular parameteri-

zation), so the number of endogenous variables is equal to the number of �rst order

conditions. This is not true in the New Economic Geography. One agent�s choice

of strategy will have a negligible impact on the aggregates in a competitive econ-

omy. If there are not enough markets to pin down these aggregate variables, there is

indeterminacy.

In our context, the New Economic Geography, these variables are the relative

distances between the locations of cities. Due to the trivial indeterminacy caused by

parallel spatial shifts, we can normalize the location of one city. This leaves K � 1
variables, the locations of all the other cities, indeterminate, and not choice variables

of any agent.

Determinacy might be obtained by sacri�cing competitiveness. We need to al-

low some agents to choose the variables in question, but without adding any new

endogenous variables to the system. One way to proceed is to make the number of

�rms �nite. Then when one �rm moves away from a location to another, its impact

is non-negligible and it knows this. However, there will be problems with existence

of equilibrium. Firm reaction correspondences might not be convex valued, as they

could take on values at several locations. Land developers and governments can play

roles similar to large �rms.

The number of equilibria can be reduced if we restrict attention to equilibria that

are stable with respect to a dynamic adjustment process that describes how equi-

librium is reached. Adjustment dynamics de�ne a system of equations that yields

12Masahisa Fujita points out that a few models with land in the cities still have a continuum of

equilibria.
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steady states coinciding with the static equilibria. A common example of adjust-

ment dynamics used in urban economics can be found in Fujita and Mori (1997);

Fujita, Krugman and Mori (1999); and Fujita, Krugman and Venables (1999), where

population changes are proportional to the di¤erences between local utility levels and

the average utility level. We conjecture that except for a set of measure zero, our

equilibria are all stable under this stability criterion. The exceptional set consists of

parameters generating equilibria where �rms�potential pro�t is exactly zero at some

location outside of cities in equilibrium.

The morphogenesis approach developed by Alan Turing is another possible treat-

ment for indeterminacy. The growth of an economy from a near �at distribution of

�rms is simulated in Krugman (1996) and Fujita, Krugman and Venables (1999). It

generates surprising regularities and seems to be a very natural approach to resolving

indeterminacy. There are evenly spaced clusters of �rms, and the number of clus-

ters is a divisor of the number of total sites. Since the distribution is decomposed

into Fourier series and only one dominating frequency survives, the outcome will be

evenly spaced clusters. In a circular land model with a continuum of locations, only

integer frequencies can survive. This restricts cities to be at equally spaced locations

on the circle. In a circular land model with a �nite number of potential sites, the

surviving frequency has to divide total number of sites. This means only frequencies

that are factors of the total number of sites can be equilibrium outcomes. There is

a need for less restrictive and less mechanical dynamics that can help us understand

the evolution of cities and how one equilibrium is realized from the continuum of

possibilities.13

Another interesting method for selecting equilibria is proposed by Fujita and Mori

(1997) and Fujita, Krugman and Mori (1999). They simulate the evolution of a city

system as population grows using an approach that emphasizes inertia and continu-

ity. It has the following features: at any time, the system is stable with respect to

migration; new cities appear near the frontier of agricultural land; old cities do not

change locations unless the current locations cannot sustain any �rms. The Fujita

and Mori (1997) paper uses the same model as ours, and it is useful to contrast their

results with ours.
13It is conceptually interesting to envision using Turing dynamics to examine stability of an

equilibrium. However, it is apparent that an equilibrium with cities, or spikes in the density of

agents, will remain stable under the kinds of perturbations to which the �at distribution is subjected

in the cited literature.
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Consider all equilibrium sets along the dimension of the population parameter.

Our result characterizes a slice at a particular population value to be the union

of, roughly speaking, manifolds (their precise structure is found in our Theorems

1 and 2). Manifolds of equilibria with the same number of cities are connected

along the population dimension. The economic model itself yields no clear conclusion

on which equilibrium will materialize for a given parameter value. Starting with a

small population, Fujita and Mori (1997) select the symmetric monocentric city; it is

always an equilibrium when the population is small. There are also other equilibria

with di¤erent numbers of cities and di¤erent spatial patterns. As we move to larger

population values, the monocentric city equilibrium is selected for every parameter

until it becomes unstable in the sense that a small measure of �rms can pro�t by

moving to either of two frontier critical locations. At this parameter value, Fujita

and Mori (1997) select an equilibrium where there are three stable cities, one each

at the original and the two critical locations. There are other equilibria as well; for

example, new cities can be at a positive distance from the critical locations, the central

city can be at a di¤erent location, and there can be more than three cities at a stable

equilibrium. This process traces a path inside the connected manifold of equilibria

with one city and then jumps to a path inside the manifold of equilibria with three

cities. The selection continues with cities �xed at original locations until old locations

cannot sustain them as cities. Then two more new cities appear at critical locations.

The traced equilibrium path passes through manifolds of one, three, �ve, and seven

cities, and so on.

A more elaborate model is presented by Fujita, Krugman and Mori (1999), where

there are three industries with di¤erent critical distances (the distance between the

central city and the critical locations). Thus, when some �rms of an industry move

to frontier critical locations, there are still industries with all �rms staying at central

locations. When a frontier city emerges, it can change its location gradually to

maintain stability. This new model generates an urban hierarchy where �rms of

an industry with the smallest critical distance appear in all cities, and �rms of an

industry with a larger critical distance appear in fewer and bigger cities. Bigger cities

are also farther apart from each other.

Our results are general enough to apply to this hierarchy model as well (our

theorems still work with more industries). The hierarchy generating process is also,

as described above, a selection inside manifolds of equilibria with odd numbers of

cities. At the same time, there are many possible stable equilibria. For example, the
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central industry can split into two cities.

This evolutionary approach displays a very interesting process of birth and death

of cities. The urban hierarchy model captures important aspects of the historical

development of US cities. It is, however, only one of many possible selection processes.

Although the evolutionary approach is very insightful, there is still a need for an

equilibrium selection method that might also satisfy Zipf�s law.

APPENDIX A. Determination of the Agricultural Price

The direction of A-good transportation is determined by a list of city locations

and A-supply intervals,
�
fckgKk=1 ; fbkg

K�1
k=1 ; �

�
. The agricultural price pA (r) is then

determined as follows: pA (r) has peaks at cities and troughs at the end points of

A-supply intervals. When a city ck is inside its A-good supply interval, A-good is

transported to ck from both sides: pA (ck) is at a peak. When a left (respectively

right) end point of an A-supply interval bk is between its city and the next city to the

left (respectively right), A-good is transported away from bk on both sides: pA (bk)

is at the bottom of a trough. Also, b0 and bK are troughs since A-good will not be

transported from outside [0; �]. To sum up,

ck is a peak if and only if bk�1 < ck < bk;

bk is a trough if and only if ck < bk < ck+1 or k 2 f0; Kg :

Note that not every city is a peak, and not every end point of an A-supply interval

is a trough. Let fblgLl=0 be the set of troughs. Between each pair of adjacent troughs
bl�1 and bl, there is a peak city cl. The price of A-good at any location between

bl�1 and bl is determined relative to the peak city price pA (cl) since all A-good is

transported towards cl. More precisely, by no arbitrage,

pA (r) = pA (cl) t
A (r; cl)

�1 for r 2 [bl�1; bl) for l = f1; :::; Lg ;
pA (�) = pA (cL) t

A (�; cL)
�1 :

Note that pA has domain Z; yet, the formulae above determine pA (r) only for r 2 B.
To complete the determination of pA over Z, we have to specify the �potential prices�

on the idle land ZnB. There are two potential prices at each location: one for the
farms and one for the �rms. First, a potential farm may rent at an idle location in

(�1; 0) and compete with farms at r = 0 by selling to c1, or rent at an idle location
in (�;1) and compete with farms at r = � by selling to cK . The potential supply
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price determined by no arbitrage is

pA (r) = pA (c1) t
A (r; c1)

�1 for r 2 (�1; 0) ;
pA (r) = pA (cK) t

A (r; cK)
�1 for r 2 (�;1) :

Second, a �rm may choose to locate on the idle land, and the workers�A-good con-

sumption has to come from one of the edges of B. The potential demand price is

pA;M (r) = pA (0) tA (0; r) for r 2 (�1; 0) ;
pA;M (r) = pA (�) tA (�; r) for r 2 (�;1) :

This price will be used to determine the potential wage at r 2 ZnB.

APPENDIX B. Reduction and Smoothing of the System

An equilibrium is a 14-tuple 
pM (ck; r) ; p

A (r) ; w (r) ; fwkgKk=1 ; R (r) ; fckg
K
k=1 ; fNkg

K
k=1 ; fbkg

K�1
k=1 ;

�;NA; fAi (r)gi=W;L ; fmi (ck; r)gi=W;L ;
�
qMk
	K
k=1

; fnkgKk=1

!
that sat-

is�es (1) and (3) to (13). We simplify the system by eliminating variables. This is

possible because of the separability generated by the functional forms we use (also see

Helpman and Krugman 1989). Given a list of city locations, populations, A-supply

intervals, and wages,
�
fckgKk=1 ; fNkg

K
k=1 ; fbkg

K�1
k=1 ; w (0) ; fwkg

K
k=1

�
2 <4K++, where

c1 < ::: < cK < �, N�
PK

k=1Nk > 0, b1 < ::: < bK�1 < �, and � =
N�

PK
k=1Nk�

PK
k=1 lk

cA
,

the rest of the endogenous variables can be determined uniquely as follows. First,

by (4), NA = N �
PK

k=1Nk �
PK

k=1 lk, and by (3), p̂
M (ck) = cMwk=� for all

k 2 f1; :::; Kg. Then, by (8), the zero-pro�t output level is �qMk =
(FM+�k)�
cM (1��) and

nk = (Nh + lh) =

�
FM + �k + c

M (F
M+�k)�
cM (1��)

�
= (Nh+lh)(1��)

FM+�k
for all k 2 f1; :::Kg. The

prices of the manufactured goods are determined by (11):

pM (ck; r) = t
M (ck; r) c

Mwk=� for all k 2 f1; :::; Kg ; r 2 Z:

We normalize the A-good price at the origin: pA (0) = 1. Then, pA (r) is determined

by fckgKk=1 and fbkg
K
k=1 as in Appendix A. R (r) can be expressed as a function of

pA (r) and w (r) by (10): R (r) = pA (r)� cAw (r) for r 2 (0; �). Next, fAi (r)gi=W;L
and fmi (ck; r)gi=W;L are determined by (1) as follows.

AW (r) = ÂW (r) ; AL (r) = ÂL (r) ;

mW (ck; r) = m̂W (ck; r) ;m
L (ck; r) = m̂

L (ck; r) :
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The wage function w (r) can be determined by a list of city wages, fwkgKk=1, and the
agricultural wage at r = 0, w (0). To simplify notation, let w (0) = w0. Note that

G (r) is a function of
�
p̂M (ck)

	K
k=1

and hence a function of fwkgKk=1. Expand G (r) to
show all arguments as G

�
r; fwkgKk=1

�
. By (7) a consistent list fwkgKk=0 satis�es the

following K equations.

wk

k
=
w0G

�
ck; fwkgKk=1

��
pA (ck)

1��

G
�
0; fwkgKk=1

�� for k 2 f1; :::; Kg : (22)

Then, w (r) in [0; �] is determined by condition (7) as

w (r) =
w0G

�
r; fwkgKk=1

��
pA (r)1��

G (0)�
for all r 2 [0; �] :

The potential wage for farms at location s outside [0; �] is determined by the same

formula, whereas the potential wage for �rms at location s outside [0; �] is

wM (s) =
w0G

�
s; fwkgKk=1

��
pA;M (s)1��

G (0)�
:

An equilibrium is now reduced to 4K endogenous variables,�
fckgKk=1 ; fnkg

K
k=1 ; fbkg

K�1
k=1 ; fwkg

K
k=0

�
, that satisfy 3K + 2 equations, (5), (6), (12)

and (22), and inequality constraints, c1 < ::: < cK < �, N �
PK

k=1Nk > 0, b1 < ::: <

bK�1 < �, (9) and (13). We replace (12) with the following two equations:

1� cAw0 � �1 = 0;

pA (�)� cAw0G (�)
� pA (�)1��

G (0)�
� �2 = 0:

The following lemma shows that �rms have negative potential pro�ts at locations

far enough away from the utilized land [0; �].

Lemma 3. lims!�1 �̂
M
k (s) < 0.

Proof. Note that the pro�t of a �rm at location s outside [0; �] is

�̂Mk (s) =
(1� �)
�

cMwM (s)

"
Qk (s)�

�
FM + �k + ek

�
�

cM (1� �)

#
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where Qk (s) is the demand for a type ck manufactured good produced at s. Then

�̂Mk (s) � 0, if and only if Qk (s) � �qMk +
ek�

cM (1��) . Without loss of generality, suppose

s > �. Each consumer at location r has demand Qk (s; r) for the �rm�s product.

Qk (s; r) = m̂ (s; r) tM (s; r) = �Y (r)G (r)
�

1�� tM (s; r) =pM (s; r)
1

1��

= �Y (r)G(r)
�

1���
cM

�
w(s)

� 1
1�� tM (s;r)

�
1��

= �Y (r)G(r)
�

1���
cMw0p

A(�)1��
�G(0)�

� 1
1��

G(s)
�
1�� tA(�;s)

1��
1�� tM (s;r)

�
1��

Note that the potential wage wM (s) for s outside [0; �] is determined by the manu-

facturing price index G and the A-good potential demand price pA;M (s).

wM (s) =
w0G (s)

� pA;M (s)1��

G (0)�
=
w0p

A (�)1��

G (0)�
G (s)� tA (�; s)1�� :

Note that lims!1 t
A (�; s) = 1 and lims!1 t

M (s; r) = 1. Also, lims!1G (s) =

lims!1

�PK
k=1 nk

�
cMwkt

M (ck; s) =�
� �
��1
� ��1

�
=1 since lims!1 t

M (ck; s) =1. There-
fore, lims!1Q

k (s; r) = 0 and lims!1Q
k (s) = 0 < �qMk +

ek�
cM (1��) .

The case for s < 0 follows the same argument and lims!�1Q
k (s) = 0 < �qMk +

ek�
cM (1��) .

Consequently, the potential locations for �rms can be bounded in (��z; �z) for a
large �z > 0. Letting �Qk (r) = Qk (r)�

�
�qMk +

ek�
cM (1��)

�
, we replace condition (9) with

�Qk (r) < 0 for all r 2 (��z; �z) n [Kk=1 fckg :

Given city locations and A-supply intervals
�
fckgKk=1 ; fbkg

K�1
k=1

�
, the transporta-

tion cost tA determines a pA function that is not smooth. The following example illus-

trates this problem: Suppose there is a pA trough at location r2 and two peak cities

at r1 and r3 where r1 < r2 < r3. Then pA (r) = pA (r1)
�
tA (r2; r1)

��1
for r 2 [r1; r2),

and pA (r) = pA (r3)
�
tA (r2; r3)

��1
for r 2 [r2; r3). Thus, limr!r+2

d
dr
pA (r) > 0 and

limr!r�2
d
dr
pA (r) < 0; pA is not di¤erentiable at r2.

There are two ways to �x this. We can approximate pA (r) by a C1 function. Let
Cr (M;N) denote the set of Cr maps from manifoldM to manifold N , and CrS (M;N)

denote the strong topology on Cr (M;N) (see Hirsch 1976). The following theorem

shows such an approximation exists.14

14Similar smoothing techniques can be found in, for example, Mas-Colell (1974) and Kehoe (1980).
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(Theorem 2.6, Hirsch 1976, ch.2): Let M and N be Cs manifolds, 1 � s � 1.
Then Cs (M;N) is dense in CrS (M;N), 0 � r < s.

Alternatively, we can de�ne a �structure-dependent�transportation cost function.

More precisely, we do not use a �xed transportation cost function but rather assume

the function depends on the list
�
fckgKk=1 ; fbkg

K�1
k=1

�
. t� (s; r) is determined only when

city locations andA-supply intervals are determined. We write tA
�
s; r; fckgKk=1 ; fbkg

K�1
k=1

�
and assume it to be smooth in

�
s; r; fckgKk=1 ; fbkg

K�1
k=1

�
. Moreover, it needs to result

in a smooth pA
�
r; fckgKk=1 ; fbkg

K�1
k=1

�
. The restriction on tA is that it keeps pA (s; r)

smooth in (s; r) when
�
fckgKk=1 ; fbkg

K�1
k=1

�
changes. At �rst glance, this type of trans-

portation cost is not intuitive. But in the real world, transportation costs depend on

the spatial structure. If a city appears at a location, the transportation costs in the

vicinity are bound to change.

APPENDIX C. Proofs

Proof of Lemma 1. First, we prove R (0) � �1 = R (�) � �2 = 0. The landlord
at 0 has a net income R (0) � �1 � 0 since 0 2 B. Suppose R (0) � �1 = � > 0. For
any small � > 0, the potential supply price is pA (0� �) = pA (0) tA (0;��)�1. By (7),
w (r) = w(0)G(r)�pA(r)1��

G(0)�pA(0)1��
and it is continuous in r since pM (ck; r) is continuous in r for

all ck. So for any � > 0 there is an � > 0 small enough such that
��pA (0� �)� pA (0)�� <

�=2 and cA jw (0� �)� w (0)j < �=2. By free-entry, R (r) = pA (r)� cAw (r). Thus,

R (0� �)� �1 =
�
pA (0� �)� cAw (0� �)

�
�
�
pA (0)� cAw (0)

�
+R (0)� �1

=
�
pA (0� �)� pA (0)

�
� cA [w (0� �)� w (0)] + � > 0

But 0� � =2 B; this is a contradiction. The same argument applies to �.
Next, we show R (r) � �1 < 0 for all r 2 (�1; 0). Note that R (r) = pA (r) �

cAw(0)G(r)�pA(r)1��

G(0)�pA(0)1��
= pA (r)

�
1� cAw(0)G(r)�pA(r)��

G(0)�pA(0)1��

�
. Let O (r) = cAw(0)G(r)�pA(r)��

G(0)�pA(0)1��
;

then, d
dr
O (r) = cAw(0)

G(0)�pA(0)1��

�
d
dr
G (r)� pA (r)�� +G (r)� d

dr
pA (r)��

�
. For r 2 (�1; 0),

d
dr
G (r) = �1��

�
G (r)�

1
� d
dr

PK
k=1 nkp

M (ck; r)
�

��1

= �1��
�
G (r)�

1
�
PK

k=1 nk
��
1��p

M (ck; r)
1

��1 c
Mw(ck)
�

d
dr
tM (ck; r) < 0;

and d
dr
pA (r) = pA (c1)

d
dr
tA (r; c1)

�1 > 0. This follows from d
dr
tM (ck; r) < 0 and

d
dr
tA (r; c1) < 0 since r < ck for all k. So, d

dr
O (r) < 0 for r 2 (�1; 0). Thus,

d
dr
R (r) > 0 and we have R (r)� �1 < 0 for r 2 (�1; 0).
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For r 2 (�;1), d
dr
tM (ck; r) > 0 and d

dr
tA (r; cK) > 0, since r > ck for all k. Thus,

d
dr
G (r) > 0, d

dr
pA (r) < 0, and d

dr
O (r) > 0. Therefore, d

dr
R (r) < 0 and R (r)��2 < 0

for r 2 (�;1).

Proof of Lemma 2. Summing up the budget constraint of each consumer over

[0; �] including both rural and urban locations, we havePK
h=1

R bh
bh�1

pA (r)
�
AL (r) + cAAW (r)

�
dr

+
PK

h=1

R bh
bh�1

PK
k=1 nkp

M (ck; r)
�
mW (ck; r) + c

AmL (ck; r)
�
dr

+
PK

h=1 p
A (ch)A

W (ch) (Nh + lh) +
PK

h=1

PK
k=1 nkp

M (ck; ch)m
W (ck; ch) (Nh + lh)

�
PK

h=1

R bh
bh�1

�
cAw (r) +R (r)

�
dr �

PK
h=1wh (Nh + lh) = 0:

The �rst plus the �fth term is

�
PK

h=1

R bh
bh�1

pA (r)
�
1� AL (r)� cAAW (r)

�
dr

= �
PK

h=1 p
A (ch)

R bh
bh�1

tA (r; ch)
�1 �1� AL (r)� cAAW (r)� dr:

This plus the third term is

�
PK

h=1 p
A (ch)

�
AW (ch) (Nh + lh)� tA (r; ch)�1

�
1� AL (r)� cAAW (r)

�
dr
�

= �
PK

h=1 p
A (ch) fh+K :

The second plus the fourth term isPK
k=1 nk

R �
0
pM (ck; r)

�
mW (ck; r) c

A +mL (ck; r)
�
dr

+
PK

k=1

PK
h=1 nkp

M (ck; ch)m
W (ck; ch) (Nh + lh)

=
PK

k=1 nkp
M (ck; ck)

" R �
0
tM (ck; r)

�
mW (ck; r) c

A +mL (ck; r)
�
dr

+
PK

h=1 t
M (ck; ch)m

W (ck; ch) (Nh + lh)

#
:

This plus the sixth term, which is

�
KX
h=1

wh (Nh + lh) =

KX
h=1

pM (ch; ch) �

cM

�
FM + �h

�
nh

1� � = �
KX
h=1

nkp
M (ch; ch) �q

M
h ;

becomes
KX
k=1

nkp
M (ck; ck) fk:

Therefore,
KX
k=1

nkp
M (ck; ck) fk �

KX
h=1

pA (ch) fh+K = 0:
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Proof of Theorem 1. Before proving Theorem 1, we present a few lemmas. Let

M be a boundariless C1-manifold of dimension m, (a; b) be an open interval in <,
and M � < be endowed with the product topology. Let int denote interior taken in
M . We have the following results.

Lemma 4. (Milnor 1965, Section 2, Lemma 3) If g :M ! < is a C1-map with
0 as a regular value, then the set fx 2M jg (x) � 0g is a C1-manifold of dimension
m with g�1 (0) as its boundary.

Lemma 5. Suppose g : M � < ! < is continuous and there is �� > 0 such that
g (x; y) > 0 for all (x; y) 2 [M � (a; a+��)][[M � (b� ��; b)]. Let U = fx 2M jg (x; y) � 0;8y 2 (a; b)g
and V = fx 2M jg (x; y) > 0;8y 2 (a; b)g. Then (i) U is closed and V is open in

M . (ii) If g is C1 with 0 as a regular value, then intU = V .

Proof. (i) Note that U = fx 2M jg (x; y) � 0;8y 2 [a+��=2; b� ��=2]g and

V = fx 2M jg (x; y) > 0;8y 2 [a+��=2; b� ��=2]g. Let h (x) = miny2[a+��=2;b���=2] g (x; y).
h (x) is continuous by the Maximum Theorem since we minimize a continuous func-

tion g (x; y) over y, constrained by a correspondence � (x) = [a+��=2; b� ��=2] that
is compact valued and continuous. Note that U = fx 2M jh (x) � 0g and V =

fx 2M jh (x) > 0g. Thus, U is closed and V is open by the continuity of h.
(ii) Obviously, V � U and V is open, so V � IntU . We show that IntU �

V . Take a point x̂ 2 IntU . There is an open neighborhood Nx̂ � M such that

x 2 U for all x 2 Nx̂. This means for all (x; y) 2 Nx̂ � (a; b), g (x; y) � 0 and

Nx̂ � (a; b) � O = f(x; y) 2M � (a; b) jg (x; y) � 0g. We claim g (x̂; y) > 0 for all

y 2 (a; b). Suppose not; there is �y 2 (a; b) such that g (x̂; �y) = 0. By Lemma

4, O is an m + 1 dimensional Cr-manifold with boundary g�1 (0). And (x̂; �y) 2
g�1 (0). Since (x̂; �y) is on the boundary of O, any open set S �M � (a; b) such that
(x̂; �y) 2 S contains both the inside and the outside of O. So, S \ ~O 6= ; ( ~O is the

complement of O). Since Nx̂� (�y � �; �y + �) is an open set inM � (a; b) that contains
(x̂; �y), [Nx̂ � (�y � �; �y + �)] \ ~O 6= ;. Yet Nx̂ � (�y � �; �y + �) � Nx̂ � (a; b) � O; a

contradiction.

Let x =
�
fckgKk=1 ; fNkg

K
k=1 ; fbkg

K�1
k=1 ; fwkg

K
k=0

�
2 <4K++. Label the left-hand side
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functions in (14) f1; :::; fK . Because of Walras�law, we take the last equation in (15)

as redundant and label the left-hand side of the rest fK+1; :::; f2K�1. Label those

in (16) f2K ; :::; f3K�1, in (17) f3K , and in (18) f3K+1. Let f = (f1; :::; f3K+1); the

equations above constitute the system f (x; �) = 0 where f : <4K++ � � ! <3K+1.
For the analysis, we add an extra dimension < to the domain of f , which does not
a¤ect its values. Let �f (x; r; �) = f (x; �) with the dummy argument r 2 < where
�f : <4K++ � < � � ! <3K+1. Let Fk = �fk for k 2 f1; :::; 3K + 1g, Fk+3K+1 = �Qk

for k 2 f1; :::; Kg, and F4K+2 = �R. We have F =
�
�f; �Q1; :::; �QK ; �R

�
where F :

<4K++ � < � � ! <4K+2. Next, we show that � is a regular parameterization; i.e.,

D�F has full rank at every equilibrium for all r 2 (��z; �z) and all � 2 �. This means�
D�
�fk
	3K+1
k=1

,
�
D�
�Qk
	K
k=1

and D�
�R are always lineally independent at an equilibrium.

Lemma 6. D�F has rank 4K + 2 at every equilibrium x for all r 2 (��z; �z) for
all � 2 �.

Proof. (i) Di¤erentiate F partially with respect to �. @�k causes changes only

in the output levels of �rms in city ck. The other endogenous variables do not

change. So, only (14) and (20) are a¤ected. Thus, @Fk
@�k

= ��
(1��)cM 6= 0 for all

k 2 f1; :::; Kg, @Fh
@�k

= 0 for all h 6= k, k; h 2 f1; :::; Kg, and also @Fh
@�k

= 0 for all

h 2 fK + 1; :::; 3K + 1; 4K + 2g, k 2 f1; :::; Kg. This means D�F(1;:::;K) is always a

K �K diagonal matrix with nonzero elements.

(ii) Di¤erentiate with respect to l. This does not a¤ect prices, soDlF(2K;:::;3K+1;4K+2) =

0. Moreover, DlF(K+1;:::;2K�1) is a (K � 1)�(K � 1) diagonal matrix with nonzero ele-
ments, since @Fh

@lk
= �AW (ck) 6= 0 in equilibrium for all h = k+K, k 2 f1; :::; K � 1g,

and also @Fh
@lk

= 0 for all h 6= k +K, h 2 fK + 1; :::; 2K � 1g, k 2 f1; :::; K � 1g.
(iii) Di¤erentiate with respect to 
. Note that all wk are held �xed, so 
 does

not a¤ect prices. We have @Fh
@
k

= �wk

2k
6= 0 in equilibrium for all h = k + 2K � 1,

k 2 f1; :::; Kg, and also @Fh
@
k

= 0 for all h 6= k + 2K � 1, h 2 f2K; :::; 3K � 1g,
k 2 f1; :::; Kg. Moreover, D
F(1;:::;2K�1;3K;3K+1;4K+2) = 0.

(iv) Di¤erentiate with respect to �1 and �2. �1 a¤ects (17) and �2 a¤ects (18) only:
@F3K
@�1

= �1, @F3K+1
@�2

= �1. None of the other functions changes.
(v) Di¤erentiate with respect to e. Only �Qk are a¤ected. We have @Fh

@ek
= ��

(1��)cM 6=
0 for all h = k + 3K + 1, k 2 f1; :::; Kg, and also @Fh

@�k
= 0 for all h 6= k + 3K + 1,

h 2 f3K + 2; :::; 4K + 1g, k 2 f1; :::; Kg. Moreover, DeF(1;:::;3K+1;4K+2) = 0.

(iv) Di¤erentiate with respect to �. � a¤ects �R only and @F4K+2
@�

= �1. None of
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the other functions change.

Thus, D�F =0BBBBBBBBBBB@

D�F(1;:::;K) A2 0 0 0 0 0

0 DlF(K+1;:::;2K�1) 0 0 0 0 0

0 0 D
F(2K;:::;3K�1) 0 0 0 0

0 0 0 D�1F3K 0 0 0

0 0 0 0 D�2F3K+1 0 0

A1 A3 A4 0 0 DeF(3K+2;:::;4K+1) 0

0 0 0 0 0 0 D�F4K+2

1CCCCCCCCCCCA
:

D�F always has rank 4K + 2 at an equilibrium since A1 to A4 can be eliminated by

elementary operations and what remains is a diagonal matrix with nonzero elements.

Next, we break down the equilibrium conditions into the following sets; the equilib-

rium set is the intersection of these sets. Let E (�) =
�
x 2 <4K++jf (x; �) = 0

	
denote

the solution set to equalities (16), (17), (18), (14), and (15). Let

H1 (�) =

(
x 2 <4K++jc1 < ::: < cK < �; N �

KX
k=1

Nk > 0; b1 < ::: < bK�1 < �

)
;

E 0 (�) = E (�) \H1 (�) ;
H2;k (�) = E 0 (�) \

�
x 2 <4K++j �Qk (x; r; �) � 0;8r 2 (��z; �z) n [Kk=1 fckg

	
;

H3 (�) = E 0 (�) \
�
x 2 <4K++j �R (x; r; �) � 0;8r 2 (0; �)

	
:

Then, E� (�) = \Kk=1H2;k (�) \H3 (�) is the K-equilibrium set for parameter value �.

The proof relies much on the following version of the Transversality Theorem (see

Guillemin and Pollack 1974, p. 68, and Mas-Colell 1985, p. 320). A few de�nitions

are in order. For a Cr map f : M ! N between manifolds, y 2 N is a regular value

if Df (x) has full rank for all x 2 f�1 (y); and y 2 N is a critical value if not.

Transversality Theorem: Suppose that f : X�S ! <m is a Cr map where
X;S are Cr boundariless manifolds with r > max f0; dim (X)�mg; let fs (x) =
f (x; s), fs : X ! <m. If y 2 <m is a regular value for f , then except for s in a set
of measure zero in S, y is a regular value for fs.
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By Lemma 6, D�f has full rank 3K + 1 at every equilibrium for all � 2 �; hence,
D(x;�)f = (Dxf;D�f) has full rank whenever f (x; �) = 0. So, 0 is a regular value of

f (x; �). Obviously, f is C1. The Transversality Theorem says that except for � in

a set of measure zero, f� (x) = f (x; �), where f� : <4K++ ! <3K+1, has 0 as a regular
value. The preimage of a regular value of f� is a C1-manifold of dimension K � 1
(see Guillemin and Pollack 1974, p. 28; see also the Implicit Function Theorem in

Mas-Colell 1985, p. 38). Therefore, E (�) = f�1� (0) is generically a C1-manifold of
dimension K � 1. Moreover, H1 (�) is an open subset of <4K++ and a C1-manifold
of dimension 4K (codimension zero). It is transversal to E (�) in <4K++, which has
codimension 3K + 1 in <4K++. So, E 0 (�) = E (�)\H1 (�) is generically a C1-manifold
of codimension 3K + 1 in <4K++; this means it has dimension K � 1. The next lemma
shows that this manifold is bounded, which will be useful later.

Lemma 7. E 0 (�) is bounded in <4K .

Proof. Note that for a given � 2 �, fckgKk=1, fNkg
K
k=1, and fbkg

K�1
k=1 are bounded

by H1 (�). We show that fwkgKk=0 are bounded as well. For all k 2 f1; :::; Kg,

wk
w0
=

kG (ck)

� pA (ck)
1��

G (0)�
=

k

�PK
k=1 nk

cMwk
�
tM (ck; r)

�
��1

� ��1
�
�

pA (ck)
1���PK

k=1 nk
cMwk
�
tM (ck; 0)

�
��1

� ��1
�
�

:

So, limw0!1
wk
w0
> 0, limwk!1

wk
w0
> 0, and these limits are bounded. This implies

if one of fwkgKk=0 is unbounded, then all of them are unbounded. If all wages are

unbounded, then workers�demand Aw (r) = (1� �)w (r) =pA (r) is unbounded. Since
� =

N�
PK
k=1Nk
cA

is bounded, this violates (15). Therefore, E 0 (�) is bounded in <4K .

We de�ne the following functions for a given � by restricting the domains of
�Qk (:; �) and �R (:; �) to be E 0 (�) � <. Let �Q�k� : E 0 (�) � < ! < be such that
�Q�k� (x; r) =

�Qk (x; r; �) for all (x; r; �) 2 E 0 (�)�<��. Let �R�� : E 0 (�)�< ! < be
such that �R�� (x; r) = �R (x; r; �) for all (x; r; �) 2 E 0 (�)�<��. Note that

H2;k (�) =
�
x 2 E 0 (�) j �Q�k� (x; r) � 0;8r 2 (��z; �z) n [Kk=1 fckg

	
;

H3 (�) =
�
x 2 E 0 (�) j �R�� (x; r) � 0;8r 2 (0; �)

	
:
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Next, we present an equivalent condition toD(x;r)
�Q�k� (x; r) (respectivelyD(x;r)

�R�� (x; r))

having full rank, and show that generically 0 is a regular value of �Q�k� (x; r) (respec-

tively �R�� (x; r)).

Lemma 8. Given (x; r; �) such that D(x;r)
�f (x; r; �) has full rank, (i) D(x;r)

�Q�k� (x; r)

has full rank if and only if D(x;r)
�Qk (x; r; �) and

�
D(x;r)

�fk (x; r; �)
	3K+1
k=1

are lin-

early independent; (ii) D(x;r)
�R�� (x; r) has full rank if and only if D(x;r)

�R (x; r; �) and�
D(x;r)

�fk (x; r; �)
	3K+1
k=1

are linearly independent.

Proof. (i) Let Tx (M) denote the tangent space of a manifold M at x 2 M .

D(x;r)
�Q�k� (x; r) maps from T(x;r) (E

0 (�)�<) to <. It has full rank if its range equals
<. Therefore, we need D(x;r)

�Qk not to carry all elements in T(x;r) (E 0 (�)�<) to zero.
That is, there is u 2 T(x;r) (E

0 (�)�<) such that D(x;y)
�Qk (x; r; �)u 6= 0. This is

true if and only if D(x;y)
�Qk (x; r; �) does not belong to the orthogonal complement of

T(x;r) (E
0 (�)�<). Since T(x;r) (E 0 (�)�<) =

�
u 2 <4K++ �<jD(x;r)

�f (x; r; �)u = 0
	
,

its orthogonal complement is the linear space spanned by
�
D(x;r)

�fk (x; r; �)
	3K+1
k=1

.

This means D(x;y)
�Qk (x; r; �) is linearly independent of

�
D(x;r)

�fk (x; r; �)
	3K+1
k=1

. (ii)

The argument for D(x;r)
�R�� (x; r) is exactly the same.

Lemma 9. For almost all � 2 �, �Q�k� (x; r) and �R�� (x; r) have 0 as a regular

value.

Proof. LetGk =
�
�f1; :::; �f3K+1; �Q

k
�
: <4K++�<��! <3K+2. D�G

k always has full

rank 3K+2 at every equilibrium for all r 2 (��z; �z) and all � 2 � by Lemma 6. Hence,
D(x;r;�)G

k =
�
D(x;r)G

k; D�G
k
�
has full rank whenever Gk (x; r; �) = 0, and 0 is a regu-

lar value ofGk (x; r; �). By the Transversality Theorem, Gk� : <4K++�< ! <3K+2, where
Gk� (x; r) = G

k (x; r; �), has 0 as a regular value except for � in a set of measure zero.

This means for almost all � 2 �, for all (x; r) such that Gk� (x; r) = 0, D(x;r)G
k (x; r)

has full rank, and this means D(x;r)
�Qk (x; r; �) and

�
D(x;r)

�fk (x; r; �)
	3K+1
k=1

are linearly

independent. Note that Gk� (x; r) = 0 if and only if x 2 E 0 (�) and �Qk (x; r; �) = 0. So,
by Lemma 8, D(x;r)

�Q�k� (x; r) has full rank whenever �Q
�k
� (x; r) = 0 for almost all �.

Letting GR =
�
�f1; :::; �f3K+1; �R

�
, the argument for �R�� (x; r) follows in the same way.

Next, we proceed to show that the equilibrium set E� (�) has a K�1 dimensional
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manifold as its interior. Let

H0
2;k (�) =

�
x 2 E 0 (�) j �Q�k� (x; r) < 0;8r 2 (��z; �z) n [Kk=1 fckg

	
;

H0
3 (�) =

�
x 2 E 0 (�) j �R�� (x; r) > 0;8r 2 (0; �)

	
:

Lemma 10. For almost all � 2 �, (i) H0
2;k (�) and H

0
3 (�) are open subsets of

E 0 (�); (ii) in E 0 (�), intH2;k (�) = H0
2;k (�) for all k 2 f1; :::; Kg and intH3 (�) =

H0
3 (�).

Proof. We deal with H3 (�) and H0
3 (�) �rst. �R

�
� is C1 and Lemma 9 ensures that

0 is a regular value of �R�� for almost all � 2 �. Take a regular � 2 �. In order to apply
Lemma 5, we need to �nd a suitable �� for each �. Note that for all r 2 [0; �], @

@r
�R�� (x; r)

is bounded for all x 2 E 0 (�), since �R� (x; r; �) is smooth and E 0 (�) is bounded. So,
supx2E0(�)

�� @
@r
�R�� (x; r)

�� is bounded. Condition (17) requires 1 � cAw0 � �1 = 0. This
and the fact that �1 > � imply that �R�� (x; 0) = 1�cAw0�� = �1�� > 0, a constant,
for all x 2 E 0 (�). So, there is an �0 > 0 such that �R�� (x; r) > 0 for all r 2 (0; �0) for all
x 2 E 0 (�). In the same fashion by (18), �R�� (x; �) = pA (�)� cAw (�)�� = �2�� > 0
for all x 2 E 0 (�). So there is an �� > 0 such that �R�� (x; r) > 0 for all r 2 (� � ��; �)
for all x 2 E 0 (�). Take ��R = min f�0; ��g. Lemma 5 applies with R�� as g, E 0 (�) asM ,
and (0; �) as (a; b). Therefore, H0

3 (�) is an open set in E
0 (�), and intH3 (�) = H0

3 (�).

Next, we deal with H2;k (�) and H0
2;k (�). For any k 2 f1; :::Kg, �Q�k� is C1 and

Lemma 9 ensures that 0 is a regular value of �Q�k� for almost all � 2 �. Take a regular
� 2 �. Because �Qk (x; r; �) is smooth and E 0 (�) is bounded, supx2E0(�)

�� @
@r
�Q�k� (x; r)

��
is bounded for all r 2 (��z; �z). We can choose �z such that �Q�k� (x;��z) = �Q�k� (x; �z) =

� < 0 for all x 2 E 0 (�). So there are �0; �00 > 0 such that �Q�k� (x; r) < 0 for all r 2
(��z; �0)[ (�00; �z) for all x 2 E 0 (�). Also, by condition (14), �Q�k� (x; ch) = � �ek

(1��)cM < 0

for all h 2 f1; :::; Kg. So, for all h 2 f1; :::; Kg, there is �h such that �Q�k� (x; ch) < 0 for
all r 2 (ch � �h; ch) [ (ch; ch + �h) for all x 2 E 0 (�). Take ��k = min f�0; �00; �1; :::; �Kg.
Although we work with r 2 (��z; �z) n [Kk=1 fckg instead of one interval, the argument
in Lemma 5 applies with � �Q�k� (x; ch) as g, E 0 (�) as M , and (��z; �z) n [Kk=1 fckg as
(a; b). So, H0

2;k (�) is an open subset of E
0 (�) and intH2;k (�) = H0

2;k (�).

By Lemma 10, H0
2;k (�) and H

0
3 (�) are open subsets of E

0 (�) and hence C1-
manifolds of dimensionK�1 for almost all � 2 �. Each of them has zero codimension
in E 0 (�). Let E0 (�) =

�
\Kk=1H0

2;k (�)
�
\H0

3 (�) denote their intersection. Since these
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manifolds are transversal to each other in E 0 (�), their intersection E0 (�) is a C1

manifold in E 0 (�) of codimension equal to the sum of the codimension of all, which is

zero. So, for almost all � 2 �, E0 (�) is a C1-manifold of dimension K�1. Therefore,
for almost all � 2 �,

E0 (�) =
�
\Kk=1intH2;k (�)

�
\ intH3 (�)

= int
�
\Kk=1H2;k (�) \H3 (�)

�
= intE� (�) :

So, E� (�) has E0 (�), a K � 1 dimensional C1-manifold, as its interior (taken in
E 0 (�)).

Proof of Corollary 1. First, we restrict the model to be symmetric. Some of the

parameters and equations are redundant; they will be eliminated later. Note that the

rent conditions (17) and (18) mean R (0) � �1 = 0 and R (�) � �2 = 0 respectively.
One of them is redundant and is eliminated since �1 = �2 and symmetry implies

R (0) = R (�).

When K is even, symmetry reduces the numbers of free variables ck and Nk to

K=2 respectively, the number of variables bk to (K=2)� 1 (since bK=2 = �=2 is �xed
at the middle), and the number of variables wk (this includes w0) to (K=2) + 1. The

number of equations in each of (16), (14), and (15) is reduced to K=2. Walras�law

renders one equation redundant. Adding one equation for the rent, the total number

of independent equations is 3K=2. 2K variables and 3K=2 equations generate a C1

solution manifold of generic dimensionK=2. Note that inequalities (19), (21), and (20)

do not a¤ect generic dimension (their numbers are reduced accordingly). Eliminate

parameters in � if their associating equalities or inequalities are eliminated. Then,

the remaining parameters constitute a regular parameterization for the symmetric

economy. As argued in the proof of Theorem 1, for almost all parameter values, the

equilibrium set has the solution manifold for (16), (17), (18), (14), and (15) as its

interior.

When K is odd, the numbers of free variables ck and bk are both (K � 1) =2
(note that c(K+1)=2 = �=2) and those of variables Nk and wk are (K + 1) =2 and

((K + 1) =2) + 1 respectively. Each of (16), (14), and (15) has (K + 1) =2 equations,

and Walras�law renders one redundant. Adding one equation for the rent, the total

number of independent equations is 3 (K + 1) =2. 2K + 1 variables and (3K + 1) =2

equations generate a C1 solution manifold of dimension (K � 1) =2. The conclusion
is reached in the same way as above.
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APPENDIX D. Approximating the Equilibrium Set

Sets H2;k and H3 involve minimization, which does not preserve smoothness. We

resort to their approximations in order to further utilize the di¤erentiable approach.

Theorem 2 illustrates how far the equilibrium set extends beyond its interior.

Theorem 2. For almost all � 2 �, the set of K-equilibria of an economy is
approximately contained in the closure of its interior.

Proof. De�ne

hR (x; �) = min
r2[��R=2;����R=2]

�R (x; r; �)

where hR (x; �) : <4K ��! < (��R is de�ned in the proof of Lemma 10). Restricting
its domain to E 0 (�) for a given �, we have

hR� (x) = min
r2[��R=2;����R=2]

�R�� (x; r)

where hR� (x) : E
0 (�)! <. De�ne

hk (x; �) = min
r2[��z+��k=2; �z���k=2]n[Kk=1[ck���k=2;ck+��k=2]

� �Qk (x; r; �)

where hk (x; �) : <4K ��! < (��k is de�ned in the proof of Lemma 10). Restricting
its domain to E 0 (�) for a given �, we have

hk� (x) = min
r2[��z+��k=2; �z���k=2]n[Kk=1[ck���k=2;ck+��k=2]

� �Q�k� (x; r)

where hk� (x) : E
0 (�)! <. Thus,

H2;k (�) =
�
x 2 E 0 (�) jhk� (x) � 0

	
;

H3 (�) =
�
x 2 E 0 (�) jhR� (x) � 0

	
:

Functions hR and hk are continuous by the Maximum Theorem since we minimize

continuous functions over constraint correspondences that are compact-valued and

continuous. They are not, however, necessarily smooth. We analyze their smooth

approximations in order to further study the equilibrium set. We want to use C1

approximations of hR and hk that preserve their �rst order derivatives with respect

to (e; �).
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First, note thatD(e;�)h
R (x; �) = D(e;�)

�R (x; r; �) = (0; :::; 0;�1)T for all (x; �) since
D(e;�)

�R (x; r; �) is constant over r. Let hR
�
x; ��(e;�); 0; :::; 0

�
denote the function ob-

tained from hR (x; �) by holding (e; �) = 0. Approximate hR
�
x; ��(e;�); 0; :::; 0

�
with a

C1 function ĥR
�
x; ��(e;�); 0; :::; 0

�
(Hirsch�s theorem, see Appendix B). Then function

ĥR (x; �) = ĥR
�
x; ��(e;�); 0; :::; 0

�
� � is a C1 approximation of hR (x; �). Next,

approximate hk
�
x; ��(e;�); 0; :::; 0

�
with a C1 function ĥk

�
x; ��(e;�); 0; :::; 0

�
. Note

that for all k, Dekh
k (x; �) = � @

@ek
�Qk (x; r; �) = �

(1��)cM and D(e�k;�)h
k (x; �) =

�D(e�k;�)
�Qk (x; r; �) = 0 (because D(e;�)

�Qk (x; r; �) is constant over r). Thus function

ĥk (x; �) = ĥk
�
x; ��(e;�); 0; :::; 0

�
+ �

(1��)cM ek is a C
1 approximation of hk (x; �). We

have C1 maps ĥR and ĥk such thatD(e;�)ĥ
R (x; �) = D(e;�)h

R (x; �) andD(e;�)ĥ
k (x; �) =

D(e;�)h
k (x; �).

For a given �, de�ne maps ĥR� : E
0 (�) ! < and ĥk� : E 0 (�) ! < by restricting

the domains of ĥR and ĥk to be E 0 (�) respectively. That is, ĥR� (x) = ĥ
R (x; �) and

ĥk� (x) = ĥ
k (x; �) for all (x; �) 2 E 0 (�)��. Let

Ĥ2;k (�) =
n
x 2 E 0 (�) jĥk� (x) � 0;8r 2 (��z; �z) n [Kk=1 fckg

o
;

Ĥ3 (�) =
n
x 2 E 0 (�) jĥR� (x) � 0;8r 2 (0; �)

o
;

Ĥ0
2;k (�) =

n
x 2 E 0 (�) jĥk� (x) > 0;8r 2 (��z; �z) n [Kk=1 fckg

o
;

Ĥ0
3 (�) =

n
x 2 E 0 (�) jĥR� (x) > 0;8r 2 (0; �)

o
:

These sets are the approximations of H2;k (�), H3 (�), H0
2;k (�) and H

0
3 (�) respec-

tively, that we will use. Thus
�
\Kk=1Ĥ2;k (�)

�
\ Ĥ3 (�) approximates E� (�), and�

\Kk=1Ĥ0
2;k (�)

�
\ Ĥ0

3 (�) approximates E
0 (�). Lemmas D1 and D2 imply that E� (�)

is approximately contained in the closure of E0 (�).

We will show
�
\Kk=1Ĥ2;k (�)

�
\ Ĥ3 (�) � cl

��
\Kk=1Ĥ0

2;k (�)
�
\ Ĥ0

3 (�)
�
where cl

denotes closure taken in <4K . Let cl0 denote closure taken in E 0 (�).

Lemma 11. For almost all � 2 �, cl0Ĥ0
2;k (�) = Ĥ2;k (�) for all k 2 f1; ::Kg and

cl0Ĥ0
3 (�) = Ĥ3 (�).

Proof. Take Ĥ0
3 (�) and Ĥ3 (�) for example. cl

0Ĥ0
3 (�) � Ĥ3 (�) is implied by

Lemma 10, we show Ĥ3 (�) � cl0Ĥ0
3 (�) for almost all � 2 �. Take a � 2 � such that

Ĥ3 (�) ncl0Ĥ0
3 (�) 6= ;. Note that x 2 Ĥ3 (�) if and only if ĥR� (x) � 0, and x 2 Ĥ0

3 (�)

if and only if ĥR� (x) > 0. Therefore, for all x 2 Ĥ3 (�) ncl0Ĥ0
3 (�), we have ĥ

R
� (x) = 0
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and there is a neighborhood N � E (�) around x such that ĥR� (x0) � 0 for all x0 2 N .
So, x is a local maximum of ĥR� (x) in E

0 (�) and Dxĥ
R
� (x) = 0. This means 0 is a

critical value of ĥR� .

Next, we show that for almost all � 2 �, 0 is a regular value of Dxĥ
R
� and

hence Ĥ3 (�) ncl0Ĥ0
3 (�) = ;. Note that Dxĥ

R
� maps from Tx (E

0 (�)) to <. There-
fore, it has full rank if Dxĥ

R (x; �) and fDxfk (x; �)g3K+1k=1 are linearly independent

(as argued in Lemma 8). Since D(e;�)ĥ
R (x; �) = D(e;�)

�R (x; r; �), D�ĥ
R (x; �) and

fD�fk (x; �)g3K+1k=1 are always linearly independent (Lemma 6). Therefore, for al-

most all � 2 �, Dxĥ
R (x; �) and fDxfk (x; �)g3K+1k=1 are linearly independent whenever

x 2 E 0 (�) andD(e;�)ĥ
R (x; �) = 0 (by the Transversality Theorem as argued in Lemma

9). This means 0 is a regular value of Dxĥ
R
� for almost all �. Following the same

argument and noting that D(e;�)ĥ
k
� (x) = D(e;�)ĥ

k (x; �) = D(e;�)
�Qk (x; r; �) for all k,

we can show Ĥ2:k (�) � cl0Ĥ0
2;k (�) for almost all �.

Lemma 12.
�
\Kk=1cl0Ĥ0

2;k (�)
�
\ cl0Ĥ0

3 (�) = cl0
��
\Kk=1Ĥ0

2;k (�)
�
\ Ĥ0

3 (�)
�
, for

almost all � 2 �.

Proof. Apparently cl0
��
\Kk=1Ĥ0

2;k (�)
�
\ Ĥ0

3 (�)
�
�
�
\Kk=1cl0Ĥ0

2;k (�)
�
\cl0Ĥ0

3 (�).

We show the converse is also true for almost all �. Let ĤS
� =

�
ĥi�

�
i2S

where

S = f1; :::; K;Rg. First we show that for a given � 2 �, if
n
Dxĥ

i
� (x)

o
i2S

are

linearly independent whenever ĤS
� (x) = 0 then

�
\Kk=1cl0Ĥ0

2;k (�)
�
\ cl0Ĥ0

3 (�) �

cl0
��
\Kk=1Ĥ0

2;k (�)
�
\ Ĥ0

3 (�)
�
. Take any �x 2 \Kk=1cl0Ĥ0

2;k (�) \ cl0Ĥ0
3 (�). If �x be-

longs to the interior of all cl0Ĥ0
2;k and cl

0Ĥ0
3 then it belongs to the closure of the

intersection. Suppose �x belongs to the boundary of some sets and the interior of the

others. That is, there is S 0 � S such that ĥi� (�x) = 0 for i 2 S 0 and ĥi� (�x) > 0 for

i 2 SnS 0. Since
n
Dxĥ

i
� (�x)

o
i2S0

are linearly independent (note that ĤS0
� (�x) = 0),

there exists a vector u 2 Tx (E 0 (�)) such that Dxĥ
i
� (x)u > 0 for all i 2 S 0. (There

exists a solution to DxĤ
S0
� (x)u >> 0 because DxĤ

S0
� (x) has full rank). Let u (�)

denote the projection of �x + �u onto E 0 (�). For su¢ ciently small � > 0 , we have

ĥi� (u (�)) > 0 for all i 2 S 0 and ĥi� (u (�)) > 0 for all i 2 SnS 0 by continuity. This
means �x is a limit point of the intersection, so x 2 cl0

��
\Kk=1Ĥ0

2;k (�)
�
\ Ĥ0

3 (�)
�
.

Let ĤS =
�
ĥi
�
i2S
. D�Ĥ

S (x; �) always has full rank (by Lemma 6 and that

D(e;�)ĥ
k (x; �) = D(e;�)

�Qk (x; r; �) for all k and D(e;�)ĥ
R (x; �) = D(e;�)

�R (x; r; �)).
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Then, fDxfk (x; �)g3K+1k=1 and
n
Dxĥ

i (x; �)
o
i2S

are linearly independent whenever x 2
E 0 (�) and ĤS (x; �) = 0 except for � in a set of measure zero (by the Transversal-

ity Theorem). Thus,
n
Dxĥ

i
� (x)

o
i2S

are linearly independent whenever ĤS
� (x) = 0

except for � in a set of measure zero.
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