Colgate University Libraries Digital Commons @ Colgate

Faculty Scholarship Working Papers Series

Economics

6-1-2011

Quotas and Quality: The Effect of H-1B Visa Restrictions on the Pool of Prospective Undergraduate Students from Abroad

Takao Kato *Colgate University,* tkato@colgate.edu

Chad Sparber Colgate University, csparber@colgate.edu

Recommended Citation

Kato, Takao and Sparber, Chad, "Quotas and Quality: The Effect of H-1B Visa Restrictions on the Pool of Prospective Undergraduate Students from Abroad" (2011). *Faculty Scholarship Working Papers Series*. Paper 18. http://commons.colgate.edu/econ_facschol/18

This Working Paper is brought to you for free and open access by the Economics at Digital Commons @ Colgate. It has been accepted for inclusion in Faculty Scholarship Working Papers Series by an authorized administrator of Digital Commons @ Colgate. For more information, please contact skeen@colgate.edu.

Forthcoming in *The Review of Economics and Statistics*

Quotas and Quality: The Effect of H-1B Visa Restrictions on the Pool of Prospective Undergraduate Students from Abroad^{*}

Takao Kato[†] Chad Sparber[‡]

June 2011

Abstract

In deciding upon whether to pursue an undergraduate education in the United States, a foreign student considers the expected probability of securing US employment after graduation. The H-1B visa provides a primary means of legal employment for college-educated foreign-nationals. In October 2003, the government drastically reduced the number of available H-1B visas, hence lowering a college-educated foreign-born worker's probability of finding US employment, and possibly discouraging highly qualified international students from attending US colleges and universities. However, citizens from five countries are *de facto* exempt from the 2003 H-1B visa restrictions. Using students from these five exempt nations as the control group and other international students as the treatment, we study the effects of the 2003 H-1B policy change on the pool of international applicants to US schools. We use two datasets: (i) College Board SAT score data on prospective international applicants; and (ii) SAT and high-school GPA data on international applicants to a single highly-selective university. Our difference-in-difference estimates show that restrictive immigration policy has had an adverse impact on the quality of prospective international applicants, reducing their SAT scores by about 1.5%. This effect is driven mostly by a decline in the number of SAT score reports sent by international students at the top-quintile of the SAT score distribution, suggesting that the restrictive immigration policy disproportionately discourages high-ability international students from pursuing US education. Our results are robust to alternative specifications, including the use of high-school GPA as a measure of applicant ability.

Key Words: Skilled Immigration, Immigrant Selection, H-1B Visa, College Education, SAT Scores

JEL Classification Codes: F22, I20, O15, I28, J61

^{*}Jessica Mawhirt, Kelly Motta, and Hejia Wang supplied valuable research assistance. We thank David Card, Eric Larsen, Todd Sorensen, Melanie Guldi, Barbara Roback, and seminar participants at the University of Connecticut, Mount Holyoke University, the 2010 EALE/SOLE conference, and the 2010 IZA Annual Migration Meeting for helpful comments and suggestions. Sparber thanks the University of Puget Sound for providing summer research support.

[†]Kato is W.S. Schupf Professor of Economics and Far Eastern Studies, Colgate University (tkato@colgate.edu; 13 Oak Drive, Hamilton, NY 13346; 315-228-7562); Research Fellow, IZA Bonn; and Research Associate, Center on Japanese Economy and Business (Columbia Business School), Tokyo Center for Economic Research (University of Tokyo), and Center for Corporate Performance (Aarhus School of Business).

[‡]Sparber is Assistant Professor of Economics, Colgate University (csparber@colgate.edu; 13 Oak Drive, Hamilton, NY 13346; 315-228-7967); and External Research Fellow, Centre for Research and Analysis of Migration (CReAM), University College London.

1 Introduction

Foreign students often study in the United States hoping that an American undergraduate education will serve as a gateway to longer-term US employment. Rosenzweig (2006) provides strong empirical support for this phenomenon. Borjas (2002) notes that the probability of ultimately receiving a green card (permanent residency) was 26 times higher for foreign students than for those applying through the random green card lottery. Bhagwati and Rao (1999) and Chiswick (1999) are among other authors to claim that student visas are often used in hopes of securing permanent employment. It follows that a foreign student considering higher education in the US will be affected by any significant exogenous change in the probability of securing US employment upon graduation. Such a change did occur in October 2003 when Congressionally-imposed limits on new H-1B visa issuances per annum dramatically reduced from 195,000 to 65,000 for fiscal year 2004 and beyond.

The H-1B visa offers many foreign-nationals with a college degree a legal, though temporary, permit to work in the United States. It is granted for a three-year period, renewable for a total of six years, and is only available to individuals in professional occupations requiring "the theoretical and practical application of a body of highly specialized knowledge requiring completion of a specific course of higher education."¹ As noted, the drastic cut in the H-1B quota beginning in fiscal year 2004 represented a marked exogenous change in US job market prospects for college-educated foreign citizens. The H-1B visa cap was never binding in the years immediately preceding the policy change. Thus, foreign citizens with undergraduate degrees faced no legal impediment to working in the US so long as they had received a job offer from an employer upon graduation. Legal employment became more difficult to secure after the H-1B visa cap became binding. The US government began denying H-1B petitions, which generated an incentive for employers to withdraw (or decide against) job offers to foreign candidates and avoid the uncertainty of the visa process. That visa quotas in general reduce US immigrant flows is an already well-established phenomena in the literature. This paper instead assesses how restrictive H-1B policy has affected the average academic quality (or ability) of prospective international students who face reduced US employment opportunity after graduation.

Section 2 begins with a discussion of past literature and motivation. Section 3 turns to our empirical strategy, providing a discussion to motivate the empirical analysis, a brief history of H-1B policy and legislation, a description of data measurement, and our main regression specification. Importantly, college-educated citizens of five key control countries – Australia, Canada, Chile, Mexico, and Singapore – can acquire work permits that are close substitutes for the H-1B visa. Thus, workers from

¹See the US State Department website, http://travel.state.gov/visa/temp/types_1271.html

those countries are less bound by H-1B restrictions. This allows us to employ difference-in-difference estimation to identify the effect of current policy on the selection of foreign-students interested in US education.

Section 4 presents the empirical results. We begin with a College Board dataset measuring the SAT scores of international test takers. We find that visa restrictions have reduced SAT scores of prospective students by 10-20 points. Log-regressions suggest a loss of 0.6-1.5%. These effects are robust to controls for macroeconomic conditions and the inclusion/exclusion of particular countries in the analysis. Importantly, College Board data also demonstrates that reduced SAT scores are driven by a marked decline in the number of score reports sent from students at the top quintile of the ability distribution as opposed to an increased number of applications from lower-ability students.

The College Board dataset presents a few limitations, however. First, SAT scores are not the only relevant gauge of academic quality used by US college admission offices, and some researchers argue that high school grade point average (GPA) is a superior measure (Geiser and Santelices 2005, Rask and Tiefenthaler 2009). Though we believe that the use of SAT scores may be more justifiable for international applicants, it is of significant value to test the robustness of our key results to the use of an alternative quality measure. Second, although the College Board provides data on prospective international students, we cannot be sure that all of them become actual college applicants. Finally, the dataset is complicated by timing issues. We cannot precisely identify dates in which students sent SAT score reports, which may be a problem for individuals taking the exam near policy change dates.

We address these issues by turning to an alternative case-study dataset of applicants to a highlyselective university. This dataset provides a measure of standardized high school GPA, includes international applicants only, and is less encumbered by timing issues. Our case-study analysis uncovers ability losses comparable in magnitude to those found using College Board data, pointing to the robustness of our findings.

2 Literature and Motivation

Current political and economic debate necessitate better understanding of how policy affects immigration among highly-educated workers. Politically, Americans maintain more favorable attitudes toward highly-educated immigrants compared to less-educated ones. A 2007 *CBS News / New York Times* poll (Preston and Connelly 2007) revealed that 51% of respondents believe US immigration policy should favor people based upon education and job skills – results echoed in a recent paper by Hainmueller and Hiscox (2010). In March 2010, Senators Lindsey Graham and Charles Schumer launched a bipartisan call for comprehensive immigration reform that included a preference for foreign labor with advanced degrees in science, mathematics, engineering, and technology. That effort resurfaced in February 2011.² Nonetheless, immigration among highly-educated workers remains controversial. US legislation favoring skill-based immigration has yet to find majority support in Congress, while the H-1B visa restrictions introduced in 2003 continue to be in effect.

Economists have highlighted the potential for both positive and negative effects from highlyeducated immigration. Those who focus on the costs of skilled immigration emphasize distributional concerns. Hira (2007), Miano (2007), Stephan and Levin (2007), Borjas (2006), and Borjas (1999) all warn that highly-educated immigrants could reduce employment and wage opportunities for similarly-educated natives. This includes, for example, the proliferation of low-paying postdoc positions expected of new science Ph.D. graduates before finding permanent employment. Similarly, Borjas (2007) and Borjas (2002) worry that immigrants alter the educational plans of natives and crowd them out of science and engineering programs within universities.³

Even if immigrants are not explicitly crowding-out natives, it is clear that foreign-workers are becoming more prominent in US maths and sciences. Stephan and Levin (2007) quote an American Mathematical Society statistic that 40% of US mathematics jobs in 1995 were awarded to immigrants. Levin et. al. (2004, p. 359) note that while the number of citizen science and engineering doctoral recipients living in the US rose three-fold between 1973-97, the number of non-citizen recipients had grown eight-fold. By 1997, 20% of US scientists were non-citizens at the time of doctoral degree receipt.⁴

More sanguine views of highly-educated immigration focus on the far-reaching macroeconomic effects. Hunt (2009) demonstrates that immigrants are particularly innovative and entrepreneurial. Compared to natives, immigrants are more adept at patenting, licensing their patents, and publishing. This advantage of immigrants over natives is largely explained by educational differences between the two groups (degree and field of study). However, immigrants are more likely to start new companies than natives are, even after controlling for education. Kerr and Lincoln (2010) provide concurring evidence for the innovative gains of highly-educated immigration by focusing specifically on the H-1B program. They argue that H-1B admissions increase Indian, Chinese, and total patenting in cities

²See Graham and Schumer (2010), Preston (2010), and Budoff Brown (2011).

³Peri and Sparber (Forthcoming), in contrast, suggest that comparative advantages among highly-educated native and foreign-born workers should protect natives from competition and mitigate potential wage losses. Similarly, results in Kerr and Lincoln (2010) suggest that highly-educated workers on H-1B visas do not crowd out natives.

⁴Other authors are concerned about brain-drain: origin countries might suffer when skilled workers leave. However, recent empirical evidence in Rosenzweig (2006) and simulation results in Mayr and Peri (2009) suggest that origin countries actually benefit from emigration, since emigrants often return home with improved skill sets.

and firms that are dependent upon highly-educated foreign-born workers. Further evidence for the technology and productivity enhancing effects of highly-educated immigration can be found in Hunt and Gauthier-Loiselle (2010), Stephan and Levin (2007), Chellaraj, Maskus, and Mattoo (2005), and Borjas (1999).

Freeman (2009) argues that the US's comparative advantage in science and technology is severely threatened by educational trends in the US and abroad. He reports that 29% of the world's college students were enrolled in US schools in 1970, but that figure declined to just 12% in 2006. In the mid 1980s, 37.8% of the world's students studying abroad chose to matriculate in US universities. That number declined to 20% in 2006-07. These reductions will hit science and engineering fields particularly hard. Foreigners represented 15% of science and engineering workers with a bachelors degree and a third of those with a doctorate. Most of those foreign-born workers were educated in the US.⁵ Freeman predicts that these trends together imply that wages of skilled US workers will decline, as will the price of US high-tech exports.

Freeman's analysis suggests that it is not just the consequences of immigration that matters, but also the causes. Research on the determinants of migration flows began with Sjaastad (1962) and gained popularity after Borjas (1987). Most studies employ a cross-section or panel of countries to assess the macroeconomic determinants of aggregate migration flows. Mayda (2009), for example, employs a panel of 14 OECD destination countries and shows that pull factors (e.g., high GDP in destination countries) are more important than push factors (low GDP in origin countries) in driving migration decisions. As immigration policy in host countries becomes less restrictive, both push and pull factors become more important. Clark, Hatton, and Williamson (2007) provide a more direct test of the consequences of US immigration policy over 1971-1998. Using a panel of 81 source countries over 28 years, they report (p. 365), "The effects of immigration policy are discernible and have the expected effects... An increase in 10% in the family quota raises immigration from a country by 0.3%. The same proportionate increase in employment visas raise it by 1.4%. A 10% increase in the refugee allowance raises immigration by 0.5%, while the effect of the diversity quota is minimal."

Less work has been done on policy's effect on the quality (as opposed to quantity) of immigrants. For research on skilled immigrants, however, quality issues may be even more important than quantity. Rosenzweig (2006) focuses on the determinants of foreign student flows – an interesting case for analysis because student flows are considerably larger than other skill-based flows, while there is no countryspecific or total ceiling on student visas. He proposes that students are likely to be particularly motivated by economics – other immigrant groups are often driven by family ties, or in the case of

⁵See Freeman (2009) Exhibits 1, 7, and 10.

refugees, by political forces. His empirical results support this view, finding that students immigrate not due to a lack of educational opportunity at home, but rather due to the lure of greater economic prosperity in the US. He concludes by arguing that foreign students go to the US in hopes of permanent employment, even though only a fraction actually remains after graduation.

Chiswick (2000) surveys the empirical literature and offers a theoretical model of migrant selectivity. He argues that migrants are favorably self-selected. If the direct costs of migration rise, or if ability is negatively correlated with the costs of migration, this favorable self-selectivity grows stronger. Chen (2005) provides a short case-study of the quality of masters degree students in a Chinese university and their interest in migrating to the US for continued education. He finds that potential emigrants were negatively self-selected during a less-restrictive policy regime, but positively selected during a more-restrictive regime. However, the paper is vague about which policies were in question, and it is not clear that they would have targeted and/or restricted highly-educated workers.

In short, there is little if any disagreement among researchers about whether immigration quotas affect the quantity of immigration flows. On the other hand, researchers are less certain about effects on the quality of immigrants. For highly-educated immigration, the skills of those who decide to migrate is at least as important as how many workers choose to do so. Sanguine views of immigration are discounted if the quality of the immigrant pool declines, while US higher education might also suffer. We aim to fill this important gap in the literature by providing rigorous evidence on the effects of restrictive foreign-born labor policy (reductions in H1-B quotas) on the quality of undergraduate applications received by US colleges and universities.

3 Empirical Strategy

3.1 Discussion on Immigration Policy and Student Migration Decisions

Simple thought experiments demonstrate that restrictive foreign-born labor policy can affect the average quality of potential foreign applicants to US higher education. The direction of the effect, however, is ambiguous and depends upon which tail of the applicant ability distribution is more strongly affected.⁶

If high-ability students are particularly sensitive to labor policy changes, immigration restrictions could reduce the average quality of international applicants to US higher education. This might arise, for example, if high-ability foreign-nationals are simply more aware of US legislation. More interestingly, suppose that prospective undergraduate students think about future US employment opportu-

⁶Kato and Sparber (2010) provide a more formal model.

nities when considering US education. Further assume that low-ability immigrants are unlikely to find desirable US employment even in the absence of visa restrictions (thus making employment quotas largely irrelevant to them), whereas high-ability immigrants confront US employment difficulty only when immigration barriers exist. Immigrant labor restrictions would then have little effect on students at the left-tail of the ability distribution, but right-tail students would experience a decline in both the *ex ante* probability of securing US employment and the expected net benefit of attending US undergraduate institutions. In both cases, restrictive immigration policy disproportionately discourages high-ability international students from applying to US schools, thereby reducing the average ability of the foreign applicant pool.

The opposite prediction is also theoretically possible. Suppose that restrictive policy induces US employers to seek scarce employment visas only for high-quality foreign-workers. High-ability students might then expect a reasonable number of employment opportunities upon graduation, whereas low-ability students sense that few firms will work at securing employment visas for them. In this scenario, it is the low-ability students who are most sensitive to foreign-born labor restrictions – employment barriers disproportionately deter the left-tail of the ability distribution from US education, thus increasing the average quality of international applicants.

Altogether, it is clear that foreign-born labor restrictions can alter the average quality of international applicants to US undergraduate institutions, but the direction of the effect is theoretically ambiguous. As such, rigorous empirical analysis is needed to better understand the direction and size of policy consequences.

3.2 History of H-1B Policy

The Immigration Act of 1990 (implemented in 1992) created the H-1B visa for professional foreign nationals seeking temporary employment in the United States. Kapur and McHale (2005) report that 98% of H-1B approvals go to individuals with a bachelors degree or more education. Though government statistics do not record the location of an H-1B recipient's undergraduate degree, Figure 1 offers descriptive cross-country evidence that a 1% rise in undergraduate enrollment is associated with an equivalent rise in H-1B visas issued four years later, controlling for country population size.⁷

⁷A simple log-regression of H-1B issuances (in fiscal year 2006) on undergraduate enrollment (in academic year 2001/02) and Population (2002) reveals an elasticity estimate of 1.10 that is significantly different from zero but not from one. More formal results are available upon request. H-1B data is from "Non-immigrant visa issuances by visa class and by nationality" at the US Department of State, http://www.travel.state.gov/visa/frvi/statistics/statistics_4396.html. Enrollment data is from the Institute of International Education Data, "All Places of Origin and By Place of Origin and Academic Level," http://opendoors.iienetwork.org/?p=28633. The World Bank's "World Development Indicators" provides population data.

Given that foreign students study in the US hoping to secure longer-term employment (as evidenced by Rosenzweig (2006), Borjas (2002), Bhagwati and Rao (1999), Chiswick (1999), and others), prospective students should be sensitive to H-1B policy changes.

At the time of its creation, 65,000 H-1B visas became available for new applicants each year. The cap was not reached until fiscal year 1997 and again in 1998. In October of 1998, Congress enacted the American Competitiveness and Workforce Improvement Act (ACWIA), which temporarily raised the cap to 115,000 for fiscal years 1999 and 2000, and to 107,000 for 2001. The 1999 limit was accidentally exceeded by 22,000, an oversight for which the Immigration and Naturalization Service (INS) was ultimately forgiven.⁸ The 2000 limit was reached six months prior to the end of the fiscal year. Congress responded to the increase in demand for H-1B visas with the American Competitiveness in the 21st Century Act (AC21) – signed by then-President Clinton in October 2000. The act had two relevant effects. First, it reduced the number of H-1B visas that counted toward the quota by exempting employees of universities, nonprofit research organizations, and governmental research organizations. Second, it raised the cap to 195,000 for each of 2001, 2002, and 2003. Those limits were never reached; only about 78,000 visas counted toward the cap in 2003. AC21 clearly stipulated that without further legislation, the H-1B cap would revert to 65,000 for fiscal year 2004 and beyond. Despite a trend for progressively less restrictive labor laws, Congress did not enact wide-ranging legislation to maintain the high quota. As a result, the H-1B cap has been binding every year in our sample since 2004.⁹

We assume that even though high caps were temporary, there was a reasonable expectation of permanence – the trend had been for a rising cap, and the Immigration and Naturalization Service was forgiven for exceeding the cap in 1999. By Fall 2003, however, it was clear that there would be no renewal. Most international students considering matriculation after that date (i.e., beginning in Fall 2004) would expect limited access to the US labor market. In our research design, potential foreign applicants to US colleges can be seen as having received a "treatment" in Fall of 2003 (that is, an exogenous decline in the expected probability of securing employment in the US upon graduation).

Potential foreign applicants from five key countries were unaffected by this treatment and the H-1B visa cap reduction, however. Free trade agreements have created close H-1B substitutes for citizens from Canada, Mexico, Chile, Singapore, and Australia. First, the North American Free Trade

⁸That is, the US did not revoke visas awarded to individuals in 1999, nor did the 22,000 additional visas count toward the 2000 limit. See US Department of Justice (2000).

⁹As we explained above, all we need for our difference-in-difference analysis is the fact that the H-1B cap was not binding prior to 2004 and became binding after 2004. However, it would be of additional interest to gauge the magnitude of excess demand for H-1B visas. Unfortunately it is not possible to measure the quantity of visas demanded after 2004 – the US Citizenship and Immigration Service (USCIS) simply returns applications received after the date on which it has obtained enough petitions to meet the cap.

Agreement created the TN visa for professionals from Canada and Mexico.¹⁰ Although the approved list of occupations¹¹ is more restrictive than the H-1B, each occupation is associated with collegedegree holders. There is no limit to the number of TN visas that can be issued. Second, two free trade agreements signed by then-President Bush on September 3, 2003 created the H-1B1 program by setting aside up to 5,400 of the annual H-1B visas for citizens of Singapore, and up to 1,400 for Chileans. Another bill signed on May 11, 2005 established 10,500 annual E-3 visas for Australian professionals. The caps on E-3 and H-1B1 visas have never been reached (H-1B1 visas set aside for citizens of Singapore and Chile are subtracted from the overall H-1B visa quota. However, unused H-1B1 visas are made available as H-1B visas to citizens of other countries). Figure 2 demonstrates that workers from these countries indeed choose alternative routes of entry. TN, H-1B1, and E-3 visas have become more popular throughout the period of binding H-1B limits. Moreover, the percentage of H-1B visas issued to citizens of these countries peaked at 4.7% in fiscal year 2003 and has steadily declined to 2.8% in 2008.¹²

Since workers from Canada, Mexico, Chile, Singapore, and Australia have viable alternatives to the H-1B visa and face fewer constraints in entering the US labor force, college-educated workers from those five control countries seeking US employment should be largely unaffected by H-1B policy changes. In terms of research design, foreign applicants from these five countries form a control group, while all other foreign applicants comprise the treatment group.

Evidence that restrictive H-1B policy reduced the quantity of foreign undergraduates interested in US education can be seen in summary data available from the Institute of International Education (IIE). They report that undergraduate enrollment of students from the five control countries remained constant (at around 25,000) between academic years 2001/02 and 2006/07. Conversely, US undergraduate enrollment from treatment countries declined by 14% (from 243,815 to 208,581) over the same period. Note also that markedly differential trends do not exist for graduate enrollment – the number of conrol-country graduate students rose 1%, while the number of treatment-country graduate students declined 2%. This regularity is especially informative given that individuals with advanced graduate degrees (such as a Ph.D.) who find eventual employment at US academic institutions are exempt from H-1B quotas, while some professors and researchers can qualify for H-1B alternatives such as the EB-1 visa. The descriptive evidence therefore suggests that restrictive H-1B policy did

¹⁰Canadians do not have to apply for TN or H-1B visas, but must instead simply meet the criteria to qualify as a TN or H-1B type of worker. Hence, only a nominal number of professional visas are issued to Canadians, despite their significant presence in the US labor force.

¹¹See NAFTA appendix 1603.D.1, available at http://www.consular.canada.usembassy.gov/nafta_professions.asp.

¹²Data is from "Non-immigrant visa issuances by visa class and by nationality" at the US Department of State, http://www.travel.state.gov/visa/frvi/statistics/statistics_4396.html.

reduce immigrant flows into US undergraduate programs. We hope to augment this evidence with causal difference-in-difference estimation of the policy's effect on the average ability of foreign students interested in undergraduate US education.

3.3 Student Ability Data

We use SAT scores as a measure of applicant ability despite the controversy in doing so. Many university admissions offices stress the importance of alternative criteria to standardized test scores. Rask and Tiefenthaler (2009, p. 1) note that "The chief complaint against the SAT is that it is not the best predictor of college success but is highly correlated with parental education and income." For example, high income students might achieve high scores not through ability, but rather by enrolling in private test preparation classes or through repeated exam attempts. Though Rask and Tiefenthaler find that SAT scores are better able to predict college performance for some demographic groups, the magnitude of the effects is not meaningful.

Geiser and Santelices (2007), like Rask and Tiefenthaler (2009), advocate GPA as a preferred measure of ability. They use University of California data to perform a multivariate regression of cumulative four-year college GPA on high school GPA, verbal SAT score, and math SAT score. They find that a one standard deviation increase in high school GPA correlates with a 0.36 standard deviation increase in college GPA. A one standard deviation increase in verbal SAT scores correlates with a 0.23 standard deviation increase in college GPA. Math scores were insignificant. Bound, Hershbein, and Long (2009), Rothstein (2004), and Vigdor and Clotfelter (2003) provide additional SAT critiques.

Nonetheless, most SAT critiques focus on its ability to predict domestic student success (or they choose not to distinguish between domestic and international students in the analysis). The SAT for international students is offered less frequently and in more geographically dispersed areas, which should deter strategic test-taking and multiple testing attempts. Many schools that choose not to require the SAT for domestic applicants still require them for international students, pointing to college admission offices' continued faith in the exam as a primary tool for assessing and comparing the ability of applicants from diverse countries and grading systems. Thus, we argue that the use of the SAT as a measure of applicant quality is probably more justifiable for international students.

Our primary data source is the College Board, which owns the SAT. This dataset provides a sample of foreign-national high-school seniors who took the SAT outside the United States between November 2000 and March 2008, dropping those who have dual US citizenship or are permanent US residents. A student may take the SAT multiple times, but the data only records the math and verbal scores from the last exam that the student has completed. It also includes demographic information about the student that he/she supplied to the College Board. Each available observation represents a unique SAT score report sent to a US college or university. Students might ultimately decide against applying to these schools officially, hence score reports provide a measure of the quality of *prospective students* as opposed to actual applicants.¹³ We do not know the date in which a student requested the exam scores be sent to particular universities, and we assume that they did so at the latest exam date.¹⁴ Since individual students are likely to send multiple reports from a single exam, the dataset records several observations per student.

We are interested in whether the academic qualifications (SAT scores) of foreign-nationals interested in US education have changed in response to more restrictive H-1B policy. The appropriate methodology is to compare the average scores of reports received by US schools before and after the policy change. Unfortunately, information identifying specific schools is not available since the College Board wishes to preserve institutional privacy. Instead, they attached user-defined school characteristics to the dataset. We know four characteristics: The region of the country in which the school is located as defined by the Bureau of Economic Analysis (BEA); the school's funding source (public or private); school type (e.g., research, liberal arts, etc.); and school tier (or quality). We then define "pseudo-schools" by their type, tier, funding, and region. We aggregate individual score-report information accordingly.

School type and tier characteristics are determined by the 2009 US News and World Report Guide to America's Best Colleges (USNWR). USNWR provides a single rank of US colleges and universities that is determined by several criteria including enrollee SAT scores, student/faculty ratio, and academic reputation among peer institutions. It is widely-used by prospective students when choosing a school to attend.¹⁵ The guide ranks institutions within four types: national research universities, national liberal arts colleges, masters-granting universities, and four-year baccalaureate schools. The ranking structure varies by school type in that the guide ranks masters-granting universities and baccalaureate schools within four geographic regions, whereas research universities and liberal arts colleges are compared nationally. The College Board supplied us with the type and general ranking of schools receiving SAT score reports. For research and liberal arts schools, we know whether a recipient school was ranked in the top 25, between numbers 26-50, between 51-100, other tier 1, tier 3, or tier 4 (there

 $^{^{13}}$ Thomas (2004b, p. 1375) argues that by "Identifying the set of institutions where college-bound students sent their SAT scores remains the most accurate form of revealed preference at the initial stage of the college-decision path."

¹⁴99% of score reports come from October, November, December, and January exams. The remaining few come from March and April exams that are only available only in select countries.

¹⁵See Griffith and Rask (2007), Webster (2001), and Monks and Ehrenberg (1999) for studies using USNWR and further details about the guide.

is no explicit tier 2). For the other institutions, we know if they were among the top 10, 11-25, other tier 1, tier 3, or tier 4 within their region. We use this to create a harmonized tier structure. We label research and liberal arts schools in the top 50 as "Top Tier," 51-100 and other tier 1 as "Middle Tier," while tier 3 and 4 schools are "Bottom Tier." For masters and baccalaureate schools, we place the 40 top 10 schools in the Top Tier, the 11-25 and other tier 1 institutions in the Middle Tier, and the remaining schools in the Bottom Tier.¹⁶

Summary statistics for individual SAT score reports by type and tier of school are provided in Table 1. Table 2 gives aggregate statistics. Average math, verbal, and total SAT scores were 638, 552, and 1190. Higher quality schools receive better SAT score reports, with the best scores generally going to liberal arts colleges.

For reasons discussed in the Introduction, we supplement our analysis of College Board data with a case study of a highly selective college. Specifically, we were given full access to detailed information on each international applicant to this school, including SAT scores, high school GPA, and other personal characteristics. The data are available from 2001 through 2008. As discussed before, the key advantages of this dataset are the use of standardized high school GPAs as an alternative to SAT scores and the focus on actual applicants as opposed to potential applicants.

3.4 Main Regression Specification

Data limitations do not allow direct empirical estimation of H-1B policy effects on individual decisionmaking behavior. The natural experiment methodology would require observation of an individual's interest in US colleges and universities both before and after the policy change – information that is clearly unavailable. Instead, we can learn about the collective outcomes of individual decisions by measuring the characteristics of the pool of individuals interested in US education before and after the policy. That is, the natural experiment methodology requires aggregate-level regressions, given the available data.

To identify the effects of H-1B policy on the abilities of prospective applicants from abroad, we estimate the simple difference-in-difference model in Equation (1).

$$Score_{s,c,t} = \alpha + \beta \cdot H1B_Restriction_{s,c,t} + \delta_s + \delta_c + \delta_t + \varepsilon_{s,c,t}$$
(1)

The variable *Score* is our primary measure of the academic quality of international applicants,

¹⁶Students can and do elect to send reports to non-ranked institutions, such as community colleges and proprietary schools. We choose to focus upon the four school categories ranked in the annual US News and World Report survey of colleges.

measured by the average math, verbal, or combined SAT score of reports received by pseudo-school s from students who last took the exam in country c at date t. The model is specified from the viewpoint relevant to university admissions committees. That is, it represents the average ability of students from country c who have expressed an interest in pseudo-school s at date t. Given that students express interest in multiple schools, it is not possible to allocate individual people into unique cells. Individuals who send score reports to multiple schools form part of the average score for multiple observations.¹⁷

The main coefficient of interest, β , measures the effect of the restrictive H-1B visa policy on the quality of score reports received by schools from foreign students interested in US education, which we interpret as a change in applicant quality. In our baseline regressions, we assume that students taking the SAT in the month following a policy change are aware of that change, and hence take the immigration policy change into consideration when deciding whether to take the SAT and send their scores to a US school. The variable $H1B_Restriction$ equals zero for individuals taking the exam on or before October 2003, those from Canada, Chile, Mexico, and Singapore in any year, and those from Australia at all dates except November 2003 through May 2005. The variable equals one for all other observations. This implies that β will be negative if current visa policy has caused US undergraduate institutions to see a decline in the academic qualifications of their prospective foreign students.

The vector δ_s controls for time-invariant fixed effects and idiosyncratic features specific to particular schools while δ_c does the same for countries. Also, δ_t represents year effects for the most recent year in which the student took the exam. This controls for global macroeconomic conditions, time-variant fluctuations in the costs and benefits of enrolling in a US college, common trends in test-taking behavior, and possible changes in College Board testing procedures or score-release policy. The error term is represented by $\varepsilon_{s,c,t}$, and regressions weight cells by their inferred number of population score reports.¹⁸

There are two common threats to the validity of our difference-in-difference methodology. The first concerns the exogeneity of our policy (or treatment) variable. If the ability of foreign students from our five control countries somehow motivated their preferential visa consideration, or if some omitted variable is correlated with the variation of both policy and scores across these two groups, the estimated β cannot be interpreted as causal. These scenarios seem unlikely. First, the return to

¹⁷Concerns about this issue are addressed in robustness checks in Section 4.5. For the case study analysis in Section 4.6, individual applicants do not appear in multiple observations.

¹⁸The College Board data is an unweighted sample within academic year, but is weighted across years. Each report in the sample corresponds to between 1.4 and 5.3 reports in the population, depending upon the academic year of observation.

a restrictive H-1B visa regime was likely motivated by macroeconomic forces that apply to interested immigrants from all countries. The US experienced a recession between March and November 2001. The unemployment rate of native workers with a bachelor degree rose over 75% from 1.8% in 2000 to 3.2% in 2003 – the minimum and maximum values between 1994 and 2008.¹⁹ Section 4.3 more fully addresses the consequences of macroeconomic fluctuations, but most macroeconomic concerns should be accounted for by each regression's time dummies. Second, variation in policy across countries is unrelated to macroeconomic conditions. Alternative visas set aside for the five control countries were a result of pre-existing or concurrently-negotiated free trade agreements. It is unlikely that removal of these special visas would have been politically feasible. Moreover, we see no plausible story to suggest that free trade agreements and the ability of foreign high school students are related.

The second threat to identification would arise if our treatment and five control countries had experienced differential trends in SAT performance prior to the change in H-1B policy. This would cause our regression to erroneously identify a policy effect that was instead due to differences in prepolicy trend behavior. Fortunately, this limitation does not appear to afflict our model. Between academic years 2000/01 and 2002/03 average SAT scores rose 4% (from 1122 to 1167) for treatment countries that would later face H-1B restrictions. Scores rose a qualitatively equal 3.9% (from 1181 to 1226) for our five control countries. Pre-policy regressions (available upon request) reveal no relationship between the trend in scores received by pseudo-schools and whether scores are coming from treatment or control countries. Altogether, we believe our difference-in-difference strategy remains valid.

4 Results

4.1 Main Results from College Board Data

Baseline results are in Table 3. Results for math scores are in columns (1)-(3), verbal scores are in (4)-(6), and total scores are in (7)-(9). Each regression uses year fixed effects. The first specification for each dependent variable includes origin country plus receiving school fixed effects. Standard errors are clustered by country. The second and third instead use school*country fixed effects with standard errors clustered by this unique identifier.

The estimated coefficients on $H1B_Restriction_{s,c,t}$ when applicant characteristics are not controlled for are negative and statistically significant at least at the 5% level except when the average SAT verbal score is used as the dependent variable. The size of the estimated coefficients suggests

¹⁹Figures are based upon our own calculations from the Current Population Survey, available at King et. al. (2010).

that recent H-1B visa restrictions have reduced the average math SAT score of foreign prospective students by about 8.5 points, verbal scores by about 10 points, and combined scores by 18.5 points.

To see if the results change when we account for applicant characteristics that might be correlated with their academic quality, we add a variety of applicant characteristics as controls. The results are shown in Columns (3), (6), and (9). Added controls include a school's share of applicants who are sure to apply for financial aid, intend to play intercollegiate sports, and who plan to eventually earn an advanced degree. We also include demographic controls for gender, race, and parental education.²⁰ Reassuringly, the sign and size of the estimated coefficients on $H1B_Restriction_{s,c,t}$ change little and they continue to be statistically significant (in fact, even more significant than without these controls). The only meaningful change in the size of the coefficients concerns the average verbal score, which rises a bit when the additional controls are used.

Webster (1999) argues that SAT scores of enrolled students were the most important determinant of research universities' USNWR rankings in 1999. From his published results, we can infer that a one-point increase in SAT score corresponded to a 0.20 improvement in the rankings. Using the 2009 USNWR rankings of national research and liberal arts universities, we find that a one-point rise in SAT scores is associated with a 0.29 improvement in the ranking.²¹ If the average score among enrollees were to drop by the same amount as the decline among international prospective students (roughly 20 points), it would be associated with a 4 to 6 place loss in USNWR ranking.

Table 4 presents the OLS estimates of Equation (1) but with log-scores as the dependent variables. The results are robust to this alternative specification, suggesting that restrictive H-1B policy caused prospective student scores to drop by a significant 1.4-1.5%.

4.2 Timing Issues in Identifying Average Score Effects

The baseline results of Tables 3 and 4 suggest that US colleges are receiving lower average quality score reports from foreign students as a result of restrictive H-1B visa policy. However, those effects could be subject to a number of timing issues that we consider in this section.

First, we explore potential seasonality in the data. Seasonality could occur, for example, if repeated test attempts result in higher averages than first attempts and are disproportionately represented in

²⁰See Thomas (2004a) and (2004b) for variables that predict SAT scores for domestic test-takers.

²¹Webster (1999) uses a sample of 114 research universities. He reports a standard deviation of average SAT scores among enrolled students equal to 129.55. The correlation between scores and school rank is -0.78. If schools are ranked from 1 to 114, the standard deviation of rank would be 33, and the slope coefficient would be -0.20. Our estimate comes from a simple bivariate regression of research university and liberal arts college rank on the average of first and third quartile SAT scores of enrolled students among institutions reporting SAT scores to USNWR. Our regression produces a coefficient of -0.293, standard error of 0.013, and R^2 of 0.74. See Figure 3 for a scatterplot of the data.

particular months. Since our dataset does not identify the number of times an individual has taken the exam, we cannot control for repeated attempts, but we can account for seasonality by controlling for the month and year in which an exam was taken.

The first row of results in columns (1)-(3) of Table 5 repeat the regressions in columns (2), (5), and (8) of Table 3, but replace year indicators with year-by-month exam date fixed effects. The second row of results does this for the natural log regressions of Table 4. One limitation of this approach is that the SAT is not offered to all countries on all potential exam dates. This approach will also reduce variation in the data and decrease the efficiency of estimates. Nonetheless, this robustness check could be important if visa policy changes were correlated with SAT seasonality.

The results for math SAT scores are strikingly similar to those of baseline regressions. Without seasonality controls (Table 3, Column 2), binding visa policy reduced math scores by 8.5 points. With seasonality controls, the estimate increases to a 9.9 point loss. Both methodologies suggest a 1.2-1.4% decline in math scores when measuring the dependent variable in logs. The effect of policy on verbal scores, by contrast, disappears. This mitigates the total SAT score effect so that restrictive policy reduces scores by 9.8 points (or 0.6%). The robustness of the results for math scores is especially encouraging. One might argue that math scores are a better measure of foreign student ability, while English verbal scores are likely to be a noisier measure of general intellectual ability. For example, those who happen to grow up in an English speaking environment will probably score high.

Another potential timing issue involves difficulty in identifying the date at which foreign students respond to policy. Baseline results assume that test-takers respond in the *month following* the policy change. Column (4) of Table 5 instead assumes that test-takers respond in the *month of* the policy change, whereas column (5) assumes that people respond *two months after* the policy change. The results do not change much across assumptions, pointing to the robustness of our key result.

Finally, the College Board dataset unfortunately does not measure the date in which a student elects to send a score report to a given school. This is a problem for our results if students who had taken the exam before the policy change then respond to it by selecting a new group of schools to receive reports. Column (6) addresses this issue by assuming that people apply to matriculate to universities in the fall of the year following their SAT date. For example, consider individuals taking the SAT in the 2002-03 academic year. Those taking the exam between September and December of 2002 will be applying for Fall 2003 matriculation, while those taking it from January to June 2003 will be applying for Fall 2004. Policy changes will affect those who have not yet matriculated. Thus, a policy change in October 2003 will affect those who took the exam anytime in 2003, as students who tested in the early part of the year can still respond by sending their score reports to alternative

schools. Column (6) indicates that the SAT quality response to H-1B policy is again robust to this timing assumption. The combined score drops by more than 13 points.

4.3 Macroeconomic Conditions and Country Exclusions

Estimation of (1) could be biased if US policy dates are correlated with country-specific macroeconomic events or trends. We first explore these potential biases in Table 6 by excluding countries that pose particular concern. The empirical specification is comparable to Column 3 of Table 5 – regressions are weighted, cluster-robust, and include exam date fixed effects.

Column 1 considers countries bound by H-1B constraints that experienced unique changes during our period of analysis. First, China and India are undergoing rapid economic development. Second, Bulgaria and Romania signed the Treaty of Accession to the European Union in April 2005 and formally joined the EU in January 2007. These developments could possibly deter students from considering US education. For China and India, domestic schooling and employment options may be becoming more attractive. For Bulgaria and Romania, the EU now provides less expensive schooling and greater labor market access. Eliminating these four countries from regressions, however, does not affect qualitative results – coefficient estimates are nearly identical to those of Column 3 in Table 5.

Our results are identified by a natural experiment in which the immigration policy change affects all but five key countries. Roughly two-thirds of score reports among control countries come from Canadians, and another quarter come from Singaporeans. Columns 2 and 3 omit score reports sent from citizens of these respective countries. Though this affects magnitudes of the estimated coefficients, the qualitative conclusions remain intact.

South Korea and Australia are among countries that have actively tried to increase recruitment of foreign undergraduate students.²² Time fixed effects control for increases in competitiveness of world education, and there is little reason to expect that changes in competitiveness should attract students from our control group countries more or less than students from treatment countries. Nonetheless, the regression in Column 4 explores the possibility by omitting Asian and Oceanic countries – that is, countries near South Korea and Australia that could serve as the primary source of their foreign student body. The regressions continue to confirm that restrictive H-1B policy reduced the quality of potential applicants to US universities.

Country exclusions alone do not fully account for two further macroeconomic concerns. First, prospective students from less-developed countries might be especially likely to think about studying

²²See Palmer and Cho (In Press) and Kremmer (2010a and 2010b). Foreign enrollment in Australia has been relatively constant over this period.

in the US as a pathway to permanent migration and therefore be more sensitive to H-1B policy changes. We test for differential effects across developed and less-developed countries by interacting our policy variable with a dichotomous indicator for whether the source country is in the OECD.

Second, though year fixed effects already account for macroeconomic conditions, those conditions might have a heterogeneous effect if economic fluctuations and country-specific immigrant representation both vary across industries. For example, if prospective Indian undergraduate students are more likely than prospective Mexican undergraduates to find eventual employment with US Information Technology (IT) firms, they will be more interested in the economic conditions of the American IT sector. In that case, an economic slump in American IT would reduce the quality of prospective undergraduates from India, but the quality of prospective Mexican students would remain fairly constant. Differences in country-specific immigrant representation in US industries could therefore generate a heterogeneous effect of US macroeconomic fluctuations across origin-countries, subjecting our estimates to omitted variable bias.²³

To control for this potential heterogeneity, we first record BEA data on US industrial output (GDP) produced in each of 19 aggregated sectors²⁴ in each year of our dataset ($GDP_{i,t}$, where i =industry and t =year). Second, we use Census data from King et. al. (2010) to calculate the fraction of an origincountry's highly-educated US migrant workforce employed in each industry in 2000 ($L_{c,i,2000}/L_{c,2000}$, where $L_{c,2000}$ represents the total number of highly-educated US immigrant workers from country c in 2000). Third, we use these proportions to compute the weighted-average of industry-level US GDP relevant to a highly-educated potential US immigrant worker from country c in year t:

Weighted Industry
$$GDP_{c,t} = \sum_{i=1}^{19} GDP_{i,t} \cdot \left(\frac{L_{c,i,2000}}{L_{c,2000}}\right)$$
 (2)

This weighted average accounts for differences in the industrial distribution of highly-educated

²³A political economy argument could suggest a related problem of endogenous correlation between restrictive H-1B policy and the heterogeneous effect of US macroeconomic fluctuations across source countries. In our example of Indian and Mexican immigration to the US, deteriorating conditions in the IT sector could lead to a reduction in available H-1B visas since the industry would be less able to lobby against barriers to migration. Thus, sectoral economic shocks could be correlated with visa policy. Nonetheless, we believe such bias is less serious in our natural experimental framework since our policy effect is identified by selective country exemptions from restrictive immigration policy due to free trade agreements – even if visa restrictions were endogenously determined by reduced lobbying for freer immigration, it is difficult to develop a sensible theory in which reduced lobbying determined both the visa restrictions and the selective exemption of our five control nations. In other words, we are fairly confident that political economy theories of endogenous visa policy will not be a major threat to our analysis, given our natural experiment framework.

²⁴Agriculture, forestry, fishing, and hunting; Mining; Utilities; Construction; Manufacturing; Wholesale trade; Retail trade; Transportation and warehousing, excluding Postal Service; Information; Finance and insurance; Real estate and rental and leasing; Professional and technical services; Management of companies and enterprises; Administrative and waste services; Educational services; Health care and social assistance; Arts, entertainment, and recreation; Accommodation and food services; Other services, except government.

US immigrants across source countries, capturing the US macroeconomic conditions in year t that are specific to highly-educated potential US migrants from country c. In other words, it reflects the relevant health of the US economy anticipated by potential immigrant workers if they expect to enter the same industries as their fellow countrymen but are aware of industry-specific macro shocks. Country-specific industrial share values vary substantially across origin-countries. For example, 25% of Indian-born college-educated US employees worked in the Professional and Technical Services industry (a sector that includes computer systems design and related services), whereas only 8% of Mexicanborn college-educated workers were in this sector. It is therefore reasonable to expect economic shocks to Technical Services to have a differential effect on treatment versus control countries in our sample.

Column (5) displays the results for regressions with our added controls. Note that regressions use fixed effects so that the coefficients are identified by changes within a country (the model cannot identify a coefficient on an OECD indicator alone). Most importantly, the controls do little to alter the coefficients on the policy variable – results are quite similar to those of comparable specifications in Column (3) of Table 5.²⁵ As such, our key finding of restrictive H-1B policy's adverse effect on the quality of international applications to US schools is robust to these additional macroeconomic concerns.

Column (5) does reveal a few noteworthy findings, however. First, the estimated coefficient on the OECD interaction term is positive and significant when SAT scores are measured in levels, and it is nearly significant when measured in logs. SAT scores from developed countries are indeed less affected by restrictive immigration policy than low income countries are. (The policy effect for OECD source countries equals the sum of the coefficients on the policy variable and the interaction term, and is insignificant.) In other words, potential applicants from low income countries are more sensitive to diminished labor market opportunities. Second, results for effects from industry GDP are more mixed. When SAT scores are measured in levels, results suggest that fluctuations in anticipated US macroeconomic conditions may have some positive effect on the academic qualifications of prospective foreign student applications – a one percent increase in weighted industry GDP is associated with a 5.8-point drop in SAT scores. However, the coefficient is far from significant in the log-SAT regression. In sum, even if sectoral economic conditions affect residents of some countries more than others, such fluctuations have no bearing on the relationship between restrictive immigration policy and the quality of potential undergraduate students.

²⁵Note that some observations are lost by insufficient Census immigration data.

4.4 Compositional and Demographic Effects

The College Board dataset is rich enough that we can explore a number of additional issues surrounding the effects of the restrictive H-1B policy. First, Table 7 assesses whether the effects differ across type and quality of institution. Policy seems to have been least harmful for research schools, which saw an SAT point drop of just 7.5 points. Liberal Arts and Masters Granting schools saw declines about double that effect. Baccalaureate losses were even larger, though we caution that only 1.6% of score reports are sent to Baccalaureate institutions. Not surprisingly, elite schools are less harmed by policy than middle and bottom tier institutions. In the final set of results, we differentiate top research schools from all others. The general effect of restrictive policy was to reduce SAT scores of potential students by 14 points. Top Research schools mitigated this decline by a significant 8.4, but still suffered losses.

Table 8 explores policy's effect on the demographic composition of potential applicants. These results might be particularly relevant for institutions who use international students to alter the diversity of their student body. Column (1) considers gender composition – visa restrictions have had no effect. The next four columns explore racial composition. Restrictive H-1B policy has come at the expense of Asian applicants. The share of score reports from international Asian students has decreased by 7.6 percentage points. Whites, in contrast, saw a 5.9 percentage-point increase in applicant share. In interpreting these coefficients, however, recall that regressions already control for country of origin (by school) fixed effects. Thus, racial composition effects are driven by variation of application rates of students within countries.

Column (6) shows that restrictive H-1B policy has actually increased the proportion of applicants intending to continue their education after obtaining a bachelors degree. This is not at all surprising given that students pursuing graduate work would not want or need an H-1B visa to matriculate at a graduate school. In addition, we have already noted that those with advanced graduate degrees employed at academic institutions are exempt from H-1B quotas.²⁶

Finally, column (7) suggests that the policy change has caused foreign demand for financial aid to increase. Foreign applicants facing a decline in the expected benefit of graduating from US colleges

 $^{^{26}}$ In principle, we could analyze whether H-1B restrictions affect the quality of the international graduate school applicant pool. GRE data would permit the most direct assessment, but the Education Testing Service – owners of the GRE – would not provide the necessary data. We have performed unreported regressions using SAT data to explore differential policy effects between students who intend to pursue advanced degrees and other students, but we find that both groups experience equal declines in SAT scores. It is possible that low-quality international applicants hedge against restrictive H-1B visa policy by changing their post-graduation plans from seeking immediate employment to enrolling in graduate degree programs. Hence, the average quality of the total pool of international graduate applicants can fall even if committed graduate degree seekers (i.e., those whose relevant decision is not about whether to seek graduate degrees, but rather about where to earn their graduate degrees) are unaffected by the H-1B visa policy change.

now find US education relatively more costly. One response has been to demand a price discount in the form of financial aid.

4.5 Quintile Regressions

While baseline results effectively established that universities have seen a decline in average applicant ability in response to H-1B visa restrictions, they are not informative about the parts of the ability distribution most affected. Colleges and policy-makers might have a particular interest in whether the observed drop in average ability comes mostly from reduced interest among high-ability students or a rise in applications from low-ability students. To address this issue, we divide score reports into quintiles of the ability distribution of the pre-binding policy period (exams taken on or before Spring 2003).²⁷ We then calculate the share (r) of a pseudo-school's reports (R) from country c at time t belonging to each quintile q. That is, $r_{s,c,t,q} = \frac{R_{s,c,t,q}}{R_{s,c,t}}$, where $R_{s,c,t} = \sum_{q=1}^{5} R_{s,c,t,q}$.

Panel A of Table 9 summarizes our baseline quintile results. The first row displays the effects of binding H-1B policy found by regressing $r_{s,c,t,q}$ on the policy variable and our usual array of fixed effects at each quintile.²⁸ The effects are particularly strong at the tails of the ability distribution – restrictive immigration policy reduces the number of score reports received by US schools from the weakest and strongest students. The proportion of lowest-ability reports declined 3.3 percentage points due to H-1B visa restrictions, helping to reject the hypothesis that the observed drop in average ability comes from the proliferation of weak applications. In addition, the proportion of highest-ability score reports dropped 1.8 percentage points. The decline in average SAT scores therefore appears to be attributable to reduced interest among high-ability students – a result that is especially worrisome from a policy-maker point of view.

We check the robustness of this result by considering an alternative specification. We replace the denominator of our dependent variable $(r_{s,c,t,q})$ with $\bar{R}_{s,c}$ – the average number of score reports received by school s from country c in a given time period. Since this value is fixed across time, it is robust to any possible effect of restrictive policy on the total number of score reports sent – all estimated effects occur through the number of reports sent at a given quintile. The second row of Panel A reports the results of this alternative specification and confirms that restrictive policy is reducing the number of score reports received from both the lowest and highest-ability foreign students.

Panel B of Table 9 provides further evidence on the source of the score report declines. In principle,

²⁷For simplicity, we drop reports for the 1% of exams taken during March and April.

²⁸Regressions continue to cluster on school*country cells, but are not weighted by the total number of score reports received since this value now appears in the dependent variable.

international students can respond to restrictive policy through two adjustments. We have implicitly assumed that students react through the extensive margin – i.e., that restrictive policy reduces the number of international applicants to US schools. Students might also respond on the intensive margin, however. That is, a student intending to pursue a US undergraduate degree might react to policy by changing the total number of applications he/she sends. The costs of H-1B restrictions are less concerning if policy affects the intensive margin (fewer SAT score reports per applicant) but not the extensive margin (the total number of students interest in US education). Panel B of Table 9 explores this issue and accounts for intensive margin adjustment by controlling for the average number of applications sent by each applicant. Estimated coefficients on our H-1B visa policy variable are insensitive to this control. In other words, the policy-induced decline in top-quintile score reports is driven by a fall in the actual number of international students interested in US undergraduate education.²⁹

4.6 Case Study

The College Board data presents three remaining problems. First, it provides only one measure of ability – SAT scores – which some researchers consider an inferior measure of applicant ability as compared to high school GPA (though these critiques are usually aimed at evaluations of domestic applicants). Second, the College Board data cannot be strictly interpreted as a sample of foreign *applicants*, but is rather a sample of foreign *prospective* applicants. This is because it includes both applicants and those who sent SAT scores to US schools but later declined to submit a formal and complete application. We cannot distinguish between these two groups of individuals in the College Board data. Third, results may be confounded by remaining timing issues including the challenge of precisely identifying the dates in which individual behavior would respond to a policy change.

Our second dataset is assembled to account for these problems. It includes every foreign-national officially applying to matriculate at a particular highly-selective university between Fall 2001 and Fall 2008. As in the case of the College Board data, we drop individuals who have dual US citizenship or are permanent US residents. The use of the applicant data (as opposed to the College Board's prospective student data) reduces ambiguity surrounding the timing of international applicants' awareness of H-1B policy changes since students should be aware of the current policy at the time of application

²⁹Though not reported, the estimated coefficients on the average number of score reports sent are positively correlated with high quintile applications and negatively correlated with low quintile applications. Concerns about intensive versus extensive margin adjustment are less relevant to the rest of our analysis, though we have included this control in our average applicant quality regressions to test the robustness of our results (except for the case study in which we have no data on the number of schools to which an individual foreign applicant applied). Reassuringly, we found little change in our key results.

submission.³⁰ Finally, the dataset also includes a measure of high school GPA. Raw GPAs would be greatly confounded by grading system differences across countries. Fortunately, this university's admissions office – using their long experience with overseas high schools – resolved this issue by converting raw values into an internationally comparable GPA measured on a four point scale. Values therefore represent GPAs that this university uses to evaluate international applicants.

Our regression methodology is similar to the specification in (1). The dependent variables now reflect the average abilities of applicants to this particular university. Observations vary by country of origin and year of application. The model includes both country and year fixed effects but obviously omits institutional controls. Regressions weight observations by the total number of applicants from country c at year t, and standard errors are clustered by country. For the policy variable, we now assume that students perceived H-1B policy to be non-binding if they applied to enter college before 2004, if they applied from Canada, Chile, Mexico, and Singapore in any year, or if they were from Australia applying to enter college in any year except 2004.

Table 10 provides results for dependent variables measured in both levels and logs. As in the prospective applicant regressions controlling for seasonality, the policy effects are again most prominent for math scores. Column (1) demonstrates that the math SAT scores of applicants from countries subject to binding H-1B constraints have declined by 13 points relative to the scores among applicants from countries who have H-1B alternatives. Measured in logs, this suggests a 2.2% decline in average ability of international applicants. For overall SAT scores, in contrast, the estimate is negative but not statistically different from zero. This may be due to sample size, which is much smaller than with the College Board dataset. It is worth emphasizing that the point estimates of the total score penalty in percentage terms is quite similar in the two samples. For prospective international applicants, H-1B restrictions reduced total scores by about 1.5%. For this university's actual applicants, scores reduced by 1.2%.

Perhaps most importantly, Column (4) presents the results using high school GPA. We again see evidence that restrictive H-1B policy is reducing the quality of international applicants. The average GPA of international applicants at this university declined by 0.09 points, or 2.8% when measured in logs – a magnitude higher than that of any of the SAT regressions. The estimated effects on average GPA of restrictive H-1B policy are statistically significant at the 5% level.

³⁰For example, we assume that all international students applying to matriculate in Fall 2004 did so with awareness of the H-1B policy change in October 2003. Although some applications were received in late summer 2003, the application deadline was in January 2004.

5 Conclusion

To our knowledge, this paper is the first to provide rigorous evidence on the effects of restrictive immigration policy on the quality of international students interested in US tertiary education. The analysis employed two datasets: (i) College Board data on the SAT scores of prospective students; and (ii) SAT and GPA data on a highly-selective university's foreign-applicants. Both cases generate robust evidence that limits on H-1B immigration of educated labor have had an unintended adverse effect on US higher education by reducing the average ability (or quality) of potential foreign applicants.

Unfortunately, a lack of available data prevents us from further investigating to what extent the weakened pool of foreign applicants will translate into lower-quality matriculates and graduates. Nonetheless, the key findings from our quintile regressions, combined with summary statistics from the Institute for International Education, shed light on this issue. IIE data notes that US undergraduate enrollment of students from countries bound by H-1B restrictions declined by 14% between academic years 2001/02 and 2006/07. US policy-makers are unlikely to be concerned if such losses occur at the left-tail of the ability distribution. Our analysis, however, shows that the share of applications from top-quintile students declined by 1.8-3.7 percentage-points. It is unlikely that US undergraduate institutions maintained a high number of top-quality international enrollees in the face of declining applications from top-quality students.

Lower-quality foreign-born students would directly affect the classroom experience for domestic students whose education is often enriched by the presence of well-motivated, well-prepared, and diverse international classmates. Universities and their students therefore suffer an immediate welfare loss due to restrictive immigration policy. Lower-quality graduates would imply even more important macroeconomic consequences, however, since many international students continue to work in the US after graduation. Such individuals have proven to be especially effective in innovative and entrepreneurial activity, boosting aggregate productivity. With lower ability individuals seeking entry into the US, the country may ultimately sacrifice those aggregate gains.

Given recent political developments in public opinion regarding highly-educated immigrants, it is increasingly important to design policy to maximize the benefit of skill-based immigration. By providing evidence on a potentially serious adverse effect of current H-1B immigration restrictions, this paper points to a need for policy reassessment.

References

Bhagwati, Jagdish and Milind Rao (1999) "Foreign Students in Science and Engineering Ph.D. Programs: An Alien Invasion or Brain Gain?" in B. Lindsay Lowell ed., *Foreign Temporary Workers in America: Policies that Benefit the U.S. Economy*, Quorum Books, Westport, CT.

Borjas, George J. (1987) "Self-Selection and the Earnings of Immigrants" *The American Economic Review*, 77(4) 531-553.

Borjas, George J. (1999) Heaven's Door. Princeton University Press, Princeton and Oxford.

Borjas, George J. (2002) "An Evaluation of the Foreign Student Program" John F. Kennedy School of Government, Harvard University, Faculty Research Working Paper RWP02-026.

Borjas, George J. (2006) "Immigration in High-Skill Labor Markets: The Impact of Foreign Students on the Earnings of Doctorates" NBER Working Paper #12085.

Borjas, George J. (2007) "Do Foreign Students Crowd Out Native Students from Graduate Programs?" in Paula E. Stephan and Ronald G. Ehrenberg eds., *Science and the University*, University of Wisconsin Press.

Bound, John, Brad Hershbein, and Bridget Terry Long (2009) "Playing the Admissions Game: Student Reactions to Increasing College Competition" NBER Working Paper 15272.

Budoff Brown, Carrie (2011) "Senators Look for Immigration Deal" Politico, 7 February 2011.

Chellaraj, Gnanaraj, Keith E. Maskus, and Aaditya Mattoo (2005) "The Contribution of Skilled Immigration and International Graduate Students to U.S. Innovation." World Bank Policy Research Working Paper 3588.

Chen, Yiu Por (2005) "Skill-Sorting, Self-Selectivity, and Immigration Policy Regime Change: Two Surveys of Chinese Graduate Students' Intention to Study Abroad" *AEA Papers and Proceedings*, 95 (2), 66-70.

Chiswick, Barry R. (1999) "Policy Analysis of Foreign Student Visas" in B. Lindsay Lowell ed., Foreign Temporary Workers in America: Policies that Benefit the U.S. Economy, Quorum Books, Westport, CT.

Chiswick, Barry R. (2000) "Are Immigrants Favorably Self-Selected? An Economic Analysis" IZA Discussion Paper No. 131.

Clark, Ximena, Timothy J. Hatton, and Jeffrey G. Williamson (2007) "Explaining US Immigration, 1971-1998" The Review of Economics and Statistics, 89(2), 359-373.

College Board. Derived data provided by the College Board. Copyright 2000-2008 The College Board. www.collegeboard.com.

Freeman, Richard B. (2009) "What Does Global Expansion of Higher Education Mean for the US?" NBER Working Paper 14962.

Geiser, Saul and Maria Veronica Santelices (2007) "Validity of High-School Grades in Predicting Student Success Beyond the Freshman Year: High-School Record vs. Standardized Tests as Indicators of Four-Year College Outcomes" Center for Studies in Higher Education, Research & Occasional Paper Series: CSHE.6.07.

Graham, Lindsey O. and Charles E. Schumer (2010) "The Right Way to Mend Immigration" *The Washington Post*, 19 March 2010.

Griffith, Amanda and Kevin Rask (2007) "The Influence of the US News & World Report Collegiate Rankings on the Matriculation Decision of High-Ability Students: 1995-2004" Economics of Education Review, 26, 244-255.

Hira, Ron (2007) "Outsourcing America's Technology and Knowledge Jobs: High-Skill Guest Worker Visas are Currently Hurting Rather than Helping Keep Jobs at Home" Economic Policy Institute Briefing Paper 187.

Hainmueller, Jens and Michael J. Hiscox (2010) "Attitudes toward Highly Skilled and Low-skilled Immigration: Evidence from a Survey Experiment" *American Political Science Review*, 104, 61-84.

Hunt, Jennifer (2009) "Which Immigrants are Most Innovative and Entrepreneurial? Distinctions by Entry Visa" NBER Working Paper 14920.

Hunt, Jennifer and Marjolaine Gauthier-Loiselle, (2010). "How Much Does Immigration Boost Innovation?" American Economic Journal: Macroeconomics, Vol. 2(2), pp. 31-56.

Kapur, Devesh and John McHale (2005) Give Us Your Best and Brightest: The Global Hunt for Talent and Its Impact on the Developing World. Center for Global Development. Washington, DC.

Kato, Takao and Chad Sparber (2010) Quotas and Quality: The Effect of H-1B Visa Restrictions on the Pool of Prospective Undergraduate Students from Abroad, Centre for Research and Analysis of Migration (CReAM) Discussion Paper 10/10. Kerr, William R. and William F. Lincoln (2010) "The Supply Side of Innovation: H-1B Visa Reforms and US Ethnic Invention" *Journal of Labor Economics*, Vol. 28(3), pp. 473-508.

King, Miriam, Steven Ruggles, J. Trent Alexander, Sarah Flood, Katie Genadek, Matthew B. Schroeder, Brandon Trampe, and Rebecca Vick. Integrated Public Use Microdata Series, Current Population Survey: Version 3.0. [Machine-readable database]. Minneapolis: University of Minnesota, 2010.

Kremmer, Janaki (2010) "Australia Seeks to Jettison Its Colleges' Relaxed Image" The Chronicle of Higher Education, July 22, 2010.

Kremmer, Janaki (2010) "Australian Conference Focuses on Drop in Foreign Students" *The Chronicle* of Higher Education, October 13, 2010.

Levin, Sharon G., Grant C. Black, Anne E. Winkler, and Paula E. Stephan (2004) "Differential Employment Patterns for Citizens and Non-Citizens in Science and Engineering in the United States: Minting and Competitive Effects" *Growth and Change*, 35 (4), 456-475.

Mayr, Karin and Giovanni Peri (2009) "Brain Drain and Brain Return: Theory and Application to Eastern-Western Europe" *The B.E. Journal of Economic Analysis & Policy*, 9(1), Article 49.

Mayda, Anna Maria (2009) "International Migration: A Panel Data Analysis of the Determinants of Bilateral Flows" *Journal of Population Economics*, forthcoming.

Miano, John (2007) "Low Salaries for Low Skills: Wages and Skill Levels for H-1B Computer Workers, 2005" Center for Immigration Studies Backgrounder.

Monks, James and Ronald G. Ehrenberg (1999) "The Impact of US News & World Report College Rankings on Admissions Outcomes and Pricing Policies at Selective Private Institutions" NBER Working Paper 7227.

Palmer, J. D., & Cho, Y. H. (in press). "South Korean Higher Education Internationalization Policies: Perceptions and Experiences." In Palmer, J. D., A. Roberts, Y. H. Cho, & G. Ching (Eds.). Globalization's Impact upon Internationalization of East Asian Higher Education. Palgrave MacMillian Press

Peri, Giovanni and Chad Sparber (Forthcoming) "Highly Educated Immigrants and Native Occupational Choice." *Industrial Relations.* Preston, Julia (2010) "Work Force Fueled by Highly Skilled Immigrants" *The New York Times*, April 15.

Preston, Julia and Marjorie Connelly (2007) "Immigration Bill Provisions Gain Wide Support in Poll" The New York Times, May 25.

Rask, Kevin and Jill Tiefenthaler (2009) "The SAT as a Predictor of College Success: Evidence from a Selective University" mimeo, Wake Forest University.

Rosenzweig, Mark (2006) "Global Wage Differences and International Student Flows" Brookings Trade Forum.

Sjaastad, Larry A. (1962) "The Costs and Returns of Human Migration" *Journal of Political Economy*, 87(Suppl.) S7-S36.

Stephan, Paula E. and Sharon G. Levin (2007) "Foreign Scholars in U.S. Science: Contributions and Costs" in Paula E. Stephan and Ronald G. Ehrenberg eds., *Science and the University*, University of Wisconsin Press.

Thomas, M. Kathleen (2004a) "Seeking Every Advantage: The Phenomenon of Taking Both the SAT and ACT" *Economics of Education Review*, 23, 203-208.

Thomas, M. Kathleen (2004b) "Where College-Bound Students Send Their SAT Scores: Does Race Matter?" *Social Science Quarterly*, 85(5), 1374-1389.

US Department of Justice (2000) "Questions and Answers: Changes to the H-1B Program." Website: http://www.uscis.gov/files/pressrelease/ChangesH-1BProgram 112100.pdf. November 21, 2000.

US State Department. "Immigrant Visa Statistics." Website: http://travel.state.gov/visa/frvi/statistics/statistics_4

US State Department. "Temporary Workers." Website: http://travel.state.gov/visa/temp/types/types 1271.html.

Vigdor, Jacob L. and Charles T. Clotfelter (2003) "Retaking the SAT" The Journal of Human Resources, 38(1), 1-33.

Webster, Thomas J. (2001) "A Principal component analysis of the US News & World Report Tier Rankings of Colleges and Universities" Economics of Education Review, 20, 235-244.

Harn	nonized Tier		Top Tier			Middle Tier		Botto	m Tier
With	in-Type Tier	Top 10	Top 25	26 to 50	11 to 25	51 to 100	Other Tier 1	Tier 3	Tier 4
Research	Mean		1280	1200		1128	1084	1055	1010
	Std Dev		161	162		163	172	175	176
	Obs		38061	17404		13638	3696	3452	2909
Liberal Arts	Mean		1260	1216		1143	1129	1081	970
	Std Dev		157	157		164	167	172	201
	Obs		7940	3603		2027	628	769	363
Masters	Mean	1099			1054		1034	1002	1012
	Std Dev	160			174		178	182	193
	Obs	2694			1359		3014	1821	1133
Baccalaureate	Mean	1076			1016		966	1017	952
	Std Dev	196			179		194	188	209
	Obs	491			302		338	232	317

Table 1: Average SAT Scores of Potential International Applicants by Type and Tier of School

Note: Summary statistics of individual score reports sent by international SAT test-takers in academic years 2000-01 through 2007-08. Source: College Board sample data.

Variable	Obsservations	Mean	Std. Dev.	Min	Max
SAT Math Score	106191	638	110	200	800
SAT Verbal Score	106191	552	106	200	800
SAT Total Score	106191	1190	189	410	1600
Female	106180	0.466	0.499	0	1
Intends to Play Intercollegiate Sports	106191	0.289	0.453	0	1
Sure to Apply for Aid	96293	0.601	0.490	0	1
Ultimately Wants Advanced Degree	95410	0.735	0.442	0	1
Bound by H-1B Visa Cap	106191	0.526	0.499	0	1
Asian	100924	0.490	0.500	0	1
Black	100924	0.097	0.295	0	1
Hispanic	100924	0.074	0.262	0	1
Other Non-White Race	100924	0.118	0.323	0	1
White	100924	0.221	0.415	0	1
Mother's Edu: Less than High School Degree	91777	0.062	0.241	0	1
Mother's Edu: HS Diploma	91777	0.121	0.326	0	1
Mother's Edu: Business School	91777	0.025	0.158	0	1
Mother's Edu: Some College or Assoc. Degree	91777	0.141	0.348	0	1
Mother's Edu: Bachelor's Degree	91777	0.356	0.479	0	1
Mother's Edu: Graduate Degree	91777	0.295	0.456	0	1
Father's Edu: Less than High School Degree	91652	0.046	0.209	0	1
Father's Edu: HS Diploma	91652	0.065	0.246	0	1
Father's Edu: Business School	91652	0.031	0.173	0	1
Father's Edu: Some College or Assoc. Degree	91652	0.085	0.279	0	1
Father's Edu: Bachelor's Degree	91652	0.318	0.466	0	1
Father's Edu: Graduate Degree	91652	0.455	0.498	0	1
Research University	106191	0.745	0.436	0	1
Liberal Arts College	106191	0.144	0.351	0	1
Masters-Granting University	106191	0.094	0.292	0	1
Baccalaureate School	106191	0.016	0.125	0	1
College Rank: Top Tier (Harmonized)	106191	0.661	0.473	0	1
College Rank: Middle Tier (Harmonized)	106191	0.235	0.424	0	1
College Rank: Bottom Tier (Harmonized)	106191	0.104	0.305	0	1
Private University	106191	0.694	0.461	0	1
College Location: New England	106191	0.223	0.416	0	1
College Location: Middle Atlantic	106191	0.282	0.450	0	1
College Location: Great Lakes	106191	0.127	0.333	0	1
College Location: Plains State	106191	0.035	0.184	0	1
College Location: Southeast	106191	0.132	0.339	0	1
College Location: Southwest	106191	0.038	0.191	0	1
College Location: Rocky Mountain	106191	0.008	0.089	0	1
College Location: Far West	106191	0.155	0.362	0	1

Table 2: Descriptive Statistics, College Board SAT Data

Note: Summary statistics of individual score reports sent by international SAT test-takers in academic years 2000-01 through 2007-08. Source: College Board sample data.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Dependent Variable:	1	Math SAT Sc	ore	1	Verbal SAT Sc	ore	1	otal SAT Sco	re
Bound by H-1B Visa Cap	-8.503	-8.408	-7.617	-10.007	-9.840	-12.325	-18.510	-18.248	-19.942
	(4.229)*	* (2.173)***	* (1.840)***	(7.010)	(2.381)***	(2.244)***	(6.200)***	(3.230)***	(3.109)***
% Sure to Apply for Aid			13.644			14.384			28.029
			(1.570)***			(1.880)***			(2.861)***
% Intent to Play Intercollegiate Sports			0.348			-7.448			-7.100
			(1.662)			(1.733)***			(2.897)**
% Female			-26.337			3.897			-22.439
			(1.539)***			(1.687)**			(2.688)***
% Asian			47.155			-22.539			24.616
			(3.147)***			(3.730)***			(5.575)***
% васк			-19./16			-30.511			-50.227
9/ Hispania			(4.080)			(4.248)			(7.925)
⁷⁶ Hispanic			-23.339			-24.303			-49.722
% Other Non-White Bace			2 078			-26 713			-24 635
			(3.400)			(3.599)***			(6.010)***
% Ultimately Wants Advanced Degree			17.592			17.308			34.900
			(1.680)***			(1.856)***			(3.029)***
Mother's Edu: % HS DIPLOMA			-7.149			13.395			6.246
			(3.616)**			(4.399)***			(6.891)
Mother's Edu: % BUSINESS SCHOOL			-16.993			18.339			1.345
			(5.133)***			(5.810)***			(9.532)
Mother's Edu: % SOME COLLEGE or ASSOC			-3.355			17.518			14.163
			(3.448)			(4.488)***			(6.641)**
Mother's Edu: % BACHELORS DEGREE or SOME GRAD			2.769			27.635			30.404
			(3.246)			(4.118)***			(6.182)***
Mother's Edu: % GRAD DEGREE			2.503			29.630			32.133
Eath and Estimatic LIC DIDLONG			(3.519)			(4.364)***			(6.650)***
Father's Edu: % HS DIPLOMA			1./12			0.725			2.438
Eathor's Edu: % BUSINESS SCHOOL			(4.048)			(4.000)			21 206
			(4 786)			(5 763)***			(8 875)**
Father's Edu: % SOME COLLEGE or ASSOC			10 280			8 470			18 750
			(3.915)***			(4.692)*			(7.376)**
Father's Edu: % BACHELORS DEGREE or SOME GRAD			22.387			21.574			43.961
			(3.598)***			(4.273)***			(6.685)***
Father's Edu: % GRAD DEGREE			25.834			38.254			64.088
			(3.593)***			(4.184)***			(6.597)***
Additional Fixed Effects:	Year	`	rear	Year	Y	ear	Year	Ye	ear
	School	Schoo	I*Country	School	School	*Country	School	School*	Country
	Country	1		Country			Country		
Observations	36218	36218	30797	36218	36218	30797	36218	36218	30797
R-squared	0.58	0.68	0.72	0.4	0.52	0.56	0.54	0.64	0.69
Robust standard errors in parentheses									
* significant at 10%; ** significant at 5%; *** significant a	t 1%								

Table 3: Baseline Results, College Board Data

Note: Unit of observation is pseudo-school*country-of-origin*year. Regressions are weighted by population number of score reports. Standard errors are clustered by pseudo-school*country-of-origin cells.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Dependent Variable:	In	(Math SAT So	core)	In(Verbal SAT S	core)	In(Total SAT Sco	ore)
Bound by H-1B Visa Cap	-0.012	-0.012	-0.011	-0.016	-0.016	-0.021	-0.014	-0.014	-0.015
	(0.007)*	(0.003)***	(0.003)***	(0.014)	(0.004)***	(0.004)***	(0.006)**	(0.003)***	(0.003)***
% Sure to Apply for Aid			0.023			0.027			0.024
			(0.003)***			(0.004)***			(0.003)***
% Intent to Play Intercollegiate Sports			0.001			-0.012			-0.005
			(0.003)			(0.003)***			(0.003)**
% Female			-0.044			0.008			-0.019
			(0.003)***			(0.003)***			(0.002)***
% Asian			0.075			-0.043			0.021
			(0.005)***			(0.007)***			(0.005)***
% Black			-0.039			-0.058			-0.047
% Hispanic			-0.044			-0.044			-0.044
70 mapane			(0.008)***			(0.009)***			(0.007)***
% Other Non-White Race			0.000			-0.051			-0.023
			(0.006)			(0.007)***			(0.005)***
% Ultimately Wants Advanced Degree			0.030			0.033			0.032
, ,			(0.003)***			(0.004)***			(0.003)***
Mother's Edu: % HS DIPLOMA			-0.011			0.028			0.007
			(0.006)*			(0.009)***			(0.006)
Mother's Edu: % BUSINESS SCHOOL			-0.028			0.035			0.000
			(0.009)***			(0.012)***			(0.009)
Mother's Edu: % SOME COLLEGE or ASSOC			-0.004			0.034			0.014
			(0.006)			(0.009)***			(0.006)**
Mother's Edu: % BACHELORS DEGREE or SOME GRAD			0.005			0.054			0.027
			(0.006)			(0.008)***			(0.006)***
Mother's Edu: % GRAD DEGREE			0.005			0.057			0.029
			(0.006)			(0.009)***			(0.006)***
Father's Edu: % HS DIPLOMA			0.005			-0.001			0.004
			(0.008)			(0.010)			(0.007)
Father's Edu: % BUSINESS SCHOOL			0.005			0.037			0.020
Eathor's Edu % SOME COLLEGE or ASSOC			(0.009)			(0.011)			0.008)
Father's Edu. % Solvie College of ASSOC			(0.020			(0.009)			(0.018
Father's Edu: % BACHELORS DEGREE or SOME GRAD			0.043			0.042			0.043
			(0 007)***			(0.008)***			(0.006)***
Father's Edu: % GRAD DEGREE			0.048			0.073			0.060
			(0.007)***			(0.008)***			(0.006)***
Additional Fixed Effects:	Year	۱	'ear	Year	Y	ear	Year	Ye	ear
	School	School	*Country	School	School	*Country	School	School*	Country
	Country			Country			Country		
Observations	36218	36218	30797	36218	36218	30797	36218	36218	30797
R-squared	0.57	0.67	0.72	0.4	0.53	0.57	0.54	0.65	0.69
Robust standard errors in parentheses									
* significant at 10%: ** significant at 5%: *** significant a	at 1%								

Table 4: Baseline Results, Dependent Variables Measured in Logs

Note: Unit of observation is pseudo-school*country-of-origin*year. Regressions are weighted by population number of score reports. Standard errors are clustered by pseudo-school*country-of-origin cells.

	(1)	(2)	(3)	(4)	(5)	(6)			
Dependent Variable:	Math	Verbal	Average SAT	Average SAT	Average SAT	Average SAT			
Bound by H-1B Visa									
Сар	-9.908	0.105	-9.804	-15.932	-9.583	-13.652			
	(2.313)***	(2.675)	(3.638)***	(4.017)***	(3.509)***	(3.950)***			
Observations	36218	36218	36218	36218	36218	36218			
R-Squared	0.69	0.57	0.67	0.67	0.67	0.67			
Dependent Variable:	In(Math)	ln(Verbal)	ln(SAT)	ln(SAT)	In(SAT)	In(SAT)			
Bound by H-1B Visa									
Сар	-0.014	0.003	-0.006	-0.011	-0.006	-0.009			
	(0.004)***	(0.005)	(0.003)**	(0.003)***	(0.003)**	(0.003)***			
Observations	36218	36218	36218	36218	36218	36218			
R-Squared	0.68	0.57	0.67	0.67	0.67	0.67			
Robust standard errors in parentheses									
* significant at 10%; ** significant at 5%; *** significant at 1%									
Fixed Effects: SAT Date,	, School*Coun	try							

Table 5: Timing of Policy and SAT Score Response, Varied Approaches

Note: Unit of observation is pseudo-school*country-of-origin*year. Regressions are weighted by population number of score reports. Standard errors are clustered by pseudo-school*country-of-origin cells. Estimates assume different dates for individual responses to announced policy changes as described in the text.

	(1)	(2)	(3)	(4)	(5)
	Excluding China, India, Bulgaria, & Romania	Excluding Canada	Excluding Singapore	Excluding Asian & Oceanic Countries	Controlling for Other Heterogeneous Macroeconomic Conditions
Dependent Variable:			Average SAT Scor	e	
Bound by H-1B Visa Cap	-9.553	-14.958	-7.735	-11.204	-9.139
	(3.856)**	(4.953)***	(4.229)*	(4.943)**	(3.841)**
Binding*OECD Member					9.004
					(5.011)*
In(Weighted US Industry GDP)					582.002
					(280.383)**
Observations	32331	33844	35341	20789	33305
R-Squared	0.67	0.66	0.65	0.67	0.66
			(
Dependent Variable:		In	(Average SAT Sco	re)	
Bound by H-1B Visa Cap	-0.006	-0.010	-0.005	-0.007	-0.006
	(0.003)*	(0.004)**	(0.004)	(0.004)*	(0.003)*
Binding*OECD Member					0.007
					(0.004)
In(Weighted US Industry GDP)					0.333
					(0.253)
Observations	32331	33844	35341	20789	33305
R-Squared	0.67	0.66	0.66	0.66	0.66

Table 6: Controlling for Macroeconomic Conditions

Note: Unit of observation is pseudo-school*country-of-origin*year. All regressions include SAT Date and school*country fixed effects, and are weighted by population number of score reports. Standard errors are clustered by pseudo-school*country-of-origin cells. Weighted US GDP calculation described in text. * significant at 10%; ** significant at 5%; *** significant at 1%

Table 7: Results by College Type & Tier

Type & Tier Specific Coefficients on Binding H-1B Policy Dependent Variable: Average SAT Score											
School 1	Гуре	School	Tier	School Type & Tier							
Research	-7.537	Тор	-8.466	General Effect	-14.061						
	(3.897)*		(4.047)**		(3.957)***						
Liberal Arts	-16.547	Middle	-13.165	Differential for Top Research Schools	8.411						
	(5.389)***		(4.958)***		(4.205)**						
Masters	-14.371	Bottom	-10.670								
	(7.006)**		(6.539)								
Baccalaureate	-23.813										
	(13.787)*										
Observations	36218	Observations	36218	Observations	36218						
R-Squared	0.67	R-Squared	0.67	R-Squared	0.67						
Robust standard * significant at 1	d errors in parenth LO%; ** significant	eses at 5%; *** significant	t at 1%								

Note: Unit of observation is pseudo-school*country-of-origin*year. Regressions are weighted by population number of score reports. Standard errors are clustered by pseudo-school*country-of-origin cells.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Dependent Variable:	% Female	% Asian	% Black	% Hispanic	% White	% Sure to Pursue	% Sure to Apply
						Advanced Degree	for Aid
Bound by H-1B Visa Cap	0.005	-0.076	-0.001	-0.003	0.059	0.084	0.044
	(0.011)	(0.014)***	(0.004)	(0.003)	(0.014)***	(0.017)***	(0.012)***
Observations	36213	35226	35226	35226	35226	33763	34079
R2	0.31	0.79	0.79	0.82	0.76	0.30	0.44
Robust standard errors in	parenthese	S					
* significant at 10%; ** sig	gnificant at 5	%; *** signifi	cant at 1%				
Fixed Effects: SAT Date, S	chool*Coun	try					

Table 8: Effect of Restrictive H-1B Policy on Demographic Composition of Prospective International Students

Note: Unit of observation is pseudo-school*country-of-origin*year. Regressions are weighted by population number of score reports. Standard errors are clustered by pseudo-school*country-of-origin cells.

Quintile:	Bottom	2nd	Middle	4th	Тор
(SAT Score Range)	(400 - 1000)	(1010 - 1120)	(1130 - 1220)	(1230 - 1320)	(1330-1600)
		Panel A:	Baseline Quinti	<u>e Results</u>	
Dependent Variable:					
Share of SAT Score Reports	-0.032	0.018	-0.008	0.040	-0.018
	(0.013)**	(0.013)	(0.014)	(0.012)***	(0.011)*
Share of Average SAT Score	-0.065	0.016	-0.018	-0.002	-0.038
Reports Received Over Time	(0.015)***	(0.015)	(0.015)	(0.013)	(0.013)***
	Panel B: Co	ontrolling for Ave	erage Number o	f Applications pe	er Applicant
Dependent Variable:					
Share of SAT Score Reports	-0.033	0.018	-0.008	0.041	-0.018
	(0.013)**	(0.013)	(0.014)	(0.012)***	(0.011)*
Share of Average SAT Score	-0.065	0.016	-0.018	-0.002	-0.037
Reports Received Over Time	(0.015)***	(0.015)	(0.015)	(0.013)	(0.013)***

Table 9: Coefficients on Restrictive H-1B Policy by Quintile of the International Student Ability Distribution

Note: Unit of observation is pseudo-school*country-of-origin*year. Each cell represents the coefficient (and standard error) on binding H-1B policy from a unique regression defined by the quintile, dependent variable, and additional controls. Dependent variable "Share of SAT Score Reports" measures the proportion of score reports received by a school *s* from citizens of country *c* at time *t* by each quintile of the international student ability distribution (as determined in the pre-binding policy period). Dependent variable "Share of Average SAT Reports Received Over Time" measures the number of score reports received by a school *s* from citizens of country *c* at time *t* by each quintile of the international student ability distribution, normalized by the average total number of reports received by *s* from *c* across time. All regressions include SAT Date and school*country fixed effects. Standard errors are clustered by pseudo-school*country-of-origin cells. More details are available in the text. * significant at 10%; *** significant at 5%; *** significant at 1%.

	(1)	(2)	(3)	(4)
Dependent Variable:	Math SAT	Verbal SAT	Math +	High School
			Verbal	GPA
	Depe	endent Variable	Measured in	Levels
Bound by H-1B Visa Cap	-13.284	-0.481	-13.765	-0.093
	(4.992)***	(6.396)	(10.454)	(0.038)**
Observations	612	612	612	612
R-squared	0.85	0.65	0.75	0.68
	Dep	endent Variable	e Measured ir	1 Logs
Bound by H-1B Visa Cap	-0.022	0	-0.012	-0.028
	(0.008)***	(0.011)	(0.008)	(0.012)**
Observations	612	612	612	612
R-squared	0.84	0.64	0.73	0.65
Robust standard errors in pa * significant at 10%; ** sign Fixed Effects: Country and A	arentheses ificant at 5%; ** Academic Year	* significant at :	1%	

Table 10: Case Study of Applicants to a Highly-Selective University

Note: Unit of observation is country-of-origin*year. Regressions are weighted by number of applicants. Standard errors are clustered by country of origin.

Figure 1: H-1B Issuances and Undergraduate Enrollment

Note: Graph displays predicted values and residuals of H-1B Issuances (in Fiscal Year 2006) for a cross-country regression on Undergraduate Enrollment (Academic Year 2001/02) and Population (2002), all measured in logs. Regression omits Canada since its citizens only need to meet H-1B (or TN) criteria but do not require an actual visa.

Figure 2: Visa Issuances

Note: Charts describe the number of new visa issuances by type and country since 2000 (Source US State Department). College-educated citizens from Canada, Mexico, Australia, Chile, and Singapore have viable alternatives to the H1B visa. Canadian citizens do not require H-1B or TN visas to work in the United States, but do need to meet H-1B or TN criteria.

Note: Scatterplot records the average of the 1st and 3rd quartile SAT scores of enrolled students and the 2009 US News and World Reports America's Best Colleges rank of 195 national research universities and liberal arts colleges. A bivariate regression would produce a coefficient on Average SAT Score of -0.293 and an R² of 0.74.