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Abstract
The purpose of this paper is to measure the short- and long-run effect of

the price of water on residential water use. Unit root tests reveal that water
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ever, a long-run co-integrating relationship is found in the demand model,
which makes possible to obtain a partial correction term and to estimate an
error correction model. The empirical application uses monthly time-series
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are robust to the use of different specifications.
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Introduction

While it is generally agreed that there might be substantial differences

between short-run and long-run reactions of residential water users to price

changes, long-run water demand elasticities in European cities have been

rarely estimated. The main purpose of this paper is to estimate short-run

and long-run price elasticities of residential water demand using data from

Seville (Spain). Monthly time-series data on price and aggregate residen-

tial consumption over a ten-year period are matched with climatic data,

data on non-price demand policies, and average income. The availability of

monthly data allows not only for the use of much more accurate measures

of consumption but also to test for seasonal effects in consumption and the

peculiarities of dynamic effects that cannot be captured when using yearly

data. The analysis is based on the techniques of co-integration (see Engle

and Granger, 1987; Johansen, 1988, among others) and error correction

(Hendry, Pagan, and Sargan, 1984). To the author’s knowledge, no previ-

ous published work has applied this econometric methodology to the study

of water demand, while it has proved very useful to estimate the demand for

other types of transformed natural resources, such as gasoline and electri-

city. The analysis presented in this paper is similar to these previous studies

in that it focuses on a resource whose price could induce adaptations in the

purchase patterns of the capital stock (water-consuming durable goods and

equipment) and whose consumption might respond partly to habit.

The econometric estimation proceeds in two steps. First, unit root tests
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are conducted to determine the degree of integration of the main variables.

Then, a long-run equilibrium relationship between price and consumption is

estimated. The stationarity of the different time-series involved is investig-

ated using seasonal unit root tests. The long-run equilibrium relationship is

then used as an error correction term in an Error Correction Model (ECM

henceforth). These techniques provide measures of the short- and long-run

elasticities as well as the speed of adjustment towards long-run values. The

elasticities estimated suggest, as it has been found in the literature, that

household water demand is inelastic with respect to its own price but not

perfectly so. The results show remarkable consistency between the different

techniques used to analyze the dynamics of the relationships.

This paper is organized as follows. Section 1, lists some of the existing

studies dealing with the estimation of residential water demand and some

applied works that use the techniques of co-integration and error correction.

The general characteristics of water demand in Seville are described in Sec-

tion 2 and the data set is described in Section 3. The econometric methods

and the results are presented in Sections 4 and 5 respectively. Section 6

concludes.

1 Background

Residential water demand has been extensively analyzed during the last

decades. Most applied studies focus on areas of the USA (e.g. Schefter

and David, 1985; Chicoine and Ramamurthy, 1986; Nieswiadomy and Mo-
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lina, 1989; Renwick and Green, 2000). Some exceptions that use European

data are Hansen (1996), Höglund (1999), Nauges and Thomas (2000), and

Martínez-Espiñeira (2002). The main objective of this research is to estim-

ate price elasticities of water demand from water demand functions where

either individual or aggregate residential water use is made dependent on

water price and other variables such as income, climatic conditions and type

of residence. Water demand appears as inelastic but not perfectly inelastic.

Arbués et al. (2003) and Dalhuisen et al. (2003) provide detailed reviews of

the literature.

A number of previous studies have analyzed short-run versus long-run

water demand elasticities, finding that short-run elasticities are smaller than

their long-run counterparts. This suggests that consumers might need time

to adjust their water-using capital stock (durable goods and equipment)

and to learn about the effects of their use on their bills (Carver and Bo-

land, 1980). These studies use some type of flow-adjustment model, where

lagged consumption is included as one of the explanatory variables. The

latter assumes that the actual adjustment to consumption is a fixed ratio of

the total desired or equilibrium adjustment. The short-run elasticity is then

given by a choice of utilization rate of the water-using capital stock while the

long-run is defined as the choice of both the size of this capital stock and the

intensity of its use. Past consumption is introduced in the model with lags of

different length and shape. Carver and Boland (1980), Agthe et al. (1986),

Moncur (1987), Lyman (1992), Dandy et al. (1997) are examples of this
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type of approach. More sophisticated econometric techniques have recently

been applied to the dynamic analysis of water demand, including the use of

dynamic panel data methods (Nauges and Thomas, 2001) . Normally, lack

of data on water-using capital stock prevents the use of stock-adjustment

models, although in some cases (e.g. Agthe et al., 1986) a time variable has

been used as a crude proxy for the evolution of the capital stock. Renwick

and Archibald (1998), using individual-household data, have available in-

formation on water related technology and introduce them in a model that

explicitly analyzes endogenous technical change. All these studies find that,

in agreement with economic theory, short-run responses to price changes

are weaker than long-run ones. However, some surprisingly high values for

short-run effects have been found. Agthe and Billings (1980), using a linear

flow adjustment model, find that the short-run elasticity value (-2.226) is

much higher than the long-run value (-0.672). They obtain more reasonable

results with other methods (such as linear and logarithmic Koyck distrib-

uted lag models) but suggest that, with monthly data, there could be an

overreaction to price changes (a shock effect in the short run) and also that

other techniques of time series analysis are needed to solve the inconsistency.

None of these studies has used co-integration and/or error correction

techniques to estimate the short-run and long-run price effects. These meth-

ods have been used in numerous applied studies since the seminal paper of

Engle and Granger in 1987. Electricity demand forecasting is among the

earliest applications of co-integration (Engle et al., 1989 ). More recently,
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co-integration and error correction have been applied to the estimation of

energy and gasoline demand. For example, Bentzen (1994), Eltony and

Al-Mutairi (1995), and Ramanathan (1999) study the behavior of gasoline

consumption in Denmark, Kuwait, and India respectively. Fouquet (1995)

investigates the impact of VAT introduction on residential fuel (coal, petrol,

gas, and electricity) demand in the United Kingdom, while Beenstock et

al. (1999) addresses the issue of seasonality in electricity consumption.

The use of co-integration analysis when estimating demand functions

avoids problems of spurious relationships that bias the results and provides

a convenient and rigorous way to discern between short-run and long-run

effects of pricing policies. One important drawback of this methodology is

the lack of power of the unit root tests needed to construct the co-integrating

regressions.

2 Water demand in Seville

Residential water use represents about 74% of the demand for drinking wa-

ter in the Seville and its metropolitan area. The proportion of domestic

water use relative to commercial-industrial and institutional use has re-

mained fairly constant during the nineties, with the exception of 1992-

93, when the Universal Exposition increased the share of institutional use

(EMASESA, 2000, pp. 2-3).

The total number of families living in Seville city in 1998 was 226,692 and

the water supplier, EMASESA, had a total of 190,759 domestic customers at
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the end of 1998. The number of customers has increased significantly since

1997. This is because the water supplier implemented a campaign (Plan

Cinco) of replacement of collective meters by individual meters, causing an

increase in the average yearly growth of the number of domestic customers

from 7% to %10-11 (EMASESA, 2000 , p. 4).

According to company’s estimates, Sevillan households use 53% of the

water in the toilet, in the kitchen, and for washing clothes. These compon-

ents could be significantly affected by the efficiency of water-using equipment

and the frequency of its renewal. An extra 39% is used in showers, which

could be determined by both habits and the characteristics of water-use

equipment. Outdoor use is minimal (EMASESA, 2000, p. 7).

Seville suffered a serious draught during the years 1992-1995, during

which important savings were achieved through several measures, such as

media campaigns, municipal edicts and the ban of certain uses, water restric-

tions, and consumption control inspections. At the height of the drought,

savings of around 25% with respect to previous years were achieved.

In mid-1992, imbalances between supply and demand started to arise.

Media campaigns were launched to ask for voluntary water conservation.

Then this was made compulsory, since from September water supply was

reduced to 20 hours daily, inducing savings of 15%. Daily water supply was

reduced to 16 hours and at the end of 1992 consumption began to reflect

a 25% reduction. At the beginning of 1993 the company had to resort to

the emergency intakes as the only source of supply. During the first half
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of 1995, a 28% reduction with respect to the consumption previous to the

drought was achieved. Restrictions increased to 10 hours a day. Eventually,

the rain came at the end of 1995 and the drought was overcome thanks to

the savings achieved in that period. The awareness campaign continued (in

spite of the reservoirs having enough water) to maintain the population’s

saving habits (EMASESA, 2000, pp. 6-7). A more detailed description of

the measures implemented to reduce demand can be found in the Appendix.

See also García-Valiñas (2002).

3 Dataset description

The main data used for the estimations were provided by EMASESA, the

private company in charge of supplying water and sewage collection services

in Seville. They include information for the period 1991-1999 on tariffs,

number of domestic accounts, and total domestic use.

The tariff consists of a fixed quota and an increasing three-block rate.

Table 1 shows the evolution of the block sizes. The price for the first seven-

unit block applies only to those users who use a total of less than seven cubic

meters. If the consumer exceeds this level of use, the price of the second

block applies also to these first seven cubic meters. This type of step-rate

structure is in this case explicitly aimed at rewarding water conservation

efforts. The rest of the tariff is based on conventional increasing blocks. The

tariff includes a water supply fee, a sewage collection fee, and a treatment

fee, and, from 1994, a waste-water infrastructure fee (canon) was collected
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on behalf of the Andalusian government. Finally, from 1993 to 1997, a

temporary extra fee was charged for the company’s finances to recover from

the impact of the drought. The value of the fixed quota depends on the size

of the meter, but the most common one for domestic users (13 mm) was

adopted. The evolution of the prices in each block between 1991 and 1999,

including all the elements of the water and sewage bill, is detailed in Table 2.

All prices are expressed in constant pesetas (ESP) of 1992, translated into

EURO equivalents (1 EURO = 166.386 ESP).

The original data were manipulated into the following variables (where

the subscript t refers to Month t):

• Qt (m3/capita month) is average per capita domestic water use. The
raw data consist of 108 monthly values for total use. The company

reads meters quarterly and estimates monthly use in the following

manner. The average daily use during the reading period is calcu-

lated, then this average use is allocated to each month according to

the number of days corresponding to that month in that particular

reading period.3 Annual data on the number of accounts were also

collected. However, instead of using this variable to calculate average

water use per account, values of total population in Seville were used

to calculate monthly average use per capita. The reason is that dur-

ing the study period the water company substantially increased the
3For example, if the reading period goes from 28-04-00 to 03-08-00 and the reading is

91 m3, since the length of the period is 97 days, average daily use is 0.93 m3. This average
daily use would be multiplied by 2 to obtain April’s consumption, by 31 for May, by 30
for June, by 31 for July and by 3 for August.
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Figure 1: Evolution of water use per head (cubic metres per month)

number of individual meters. The evolution of the values of both con-

sumption per account and inhabitants per account strikingly show this

effect of the introduction of individual meters described in Section 2.

Figure 1 shows the evolution of the values of Qt, including the effect

of the drought during the first half of the decade. Conservation efforts

persisted after the end of the drought, as described in Section 2 and

water use levels did not fully return to pre-drought levels

• Pt (1992 EURO equivalents/m3) is the marginal price of water. It

corresponds to the Taylor-Nordin specification (Taylor, 1975 (Taylor

1975) ; Nordin, 1976 (Nordin 1976) ) for multipart tariff structures.

It is an instrumental marginal price derived from a linear regression

of the theoretical water bills associated with each and every one of
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the integer values of potential monthly water use per account between

1 m3 and 25 m3 on these integer values (see Billings, 1982(Billings

1982)). This instrumental marginal price is the slope of the estimated

function. This formulation avoids problems of price endogeneity and

also reflects the fact that consumers have only an imperfect knowledge

of the tariff structure and the block they are consuming in at each point

in time. Monetary values are deflated using the official provincial-wise

retail price index. No single available series of the price-index would

be long enough to cover the whole price series, so the published series

with base 1983 was adapted to merge with the series with base 1992.

• V It (1992 EURO equivalents) is virtual income. It is the difference

between the average salaries (Wt) and Dt, the instrument for the

Nordin-difference (Nordin, 1976) variable. It is the intercept of the

estimated linear function used to derive P . The average salaries series

(available from the Instituto Nacional de Estadística) is used as a proxy

for household income. It had originally a quarterly frequency, so it was

linearly interpolated to get monthly values. The values for Pt and Dt

were calculated using the tariff schedules applied in each period.

• RAINt is the current level of precipitation. Unit:mm/month.

• TEMPt is the average of the daily maximum temperatures in Month

t. Unit: ◦C/10.

• RESTt (hours/day) refers to the number of daily hours of supply re-
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strictions applied as part of the emergency control measures during

the worst drought periods. The number of hours of restriction a day

is weighted by the number of days in the month to which that number

applied. This variable has been calculated directly from the relevant

city council drought-emergency decrees EMASESA, 1997(EMASESA

1997).

• BANt is a binary variable with value 1 when temporary outdoor-use
bans were applied during the drought.

• INFORt is a binary variable with value 1 if water conservation in-
formation campaigns were being applied during the drought.

• SUMt is a binary variable with value 1 for the months of May, June,

July, and August

Summary statistics for all variables are provided in Table 3.

4 Econometric methods

The techniques of co-integration (see Engle and Granger, 1987 ) and error

correction (see Hendry et al., 1984, among others) are used to investigate

the dynamics of household water consumption and to measure the short-run

and long-run effects of the price of water on household demand.

Let us consider the simple form of a dynamic model:

yt = µ+ γ1yt−1 + β0xt + β1xt−1 + εt, t = 1, . . . , T, (1)
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where yt and xt could represent respectively consumption and price at time

t. The error term (εt) is assumed independently and identically distributed.

We will assume in the following that xt is a one-dimensional vector for

ease of exposition. µ, γ1,β0,β1 are unknown parameters. It is well known

that in Model 1 the short-run and long-run effects of x on y are measured

respectively by β0 and (β0 + β1)/(1− γ1).

Re-arranging terms in Model 1, we obtain the usual ECM:

∆yt = µ+ β0∆xt − (1− γ1)(yt−1 − θxt−1) + εt, t = 1, . . . , T, (2)

where ∆ represents the difference operator (e.g. ∆yt = yt − yt−1) and
θ = (β0+β1)/(1−γ1). So, the estimation of the ECM model gives directly a

measure of the short-run and long-run effects of x on y through the estimates

of β0 and θ. The second term in Model 2 (yt−1 − θxt−1) can be seen as a

partial correction for the extent to which yt−1 deviated from the equilibrium

value corresponding to xt−1. In other words, this representation assumes

that any short-run shock to y that pushes it off the long-run equilibrium

growth rate will gradually be corrected, and an equilibrium rate will be

restored. The expression (yt−1 − θxt−1) corresponds to the residual of the

long-run equilibrium relationship between x and y.4 Therefore, this error

correction term will be included in the model as long as there exists a long-

run equilibrium relationship between x and y or, in other words, if both

series are co-integrated in the sense of Granger (see Engle and Granger,
4For this reason, it is commonly said that (1− γ1) provides a measure of the speed of

adjustment towards the long run values.
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1987). If the series are co-integrated they will, in the long run, tend to grow

at similar rates, because their data generating processes may be following

the same stochastic trend, or may share an underlying common factor.

The econometric analysis will proceed in two steps. In the first step, we

test if x and y are co-integrated series. If this proves to be the case, the

estimation of the Granger co-integration relationship will give a measure of

the long-run effect of x on y. In a second step, the co-integration residuals

are used as an error correction term in the ECM model above and the

short-run effect and the speed of adjustment can be estimated. This two-

step procedure is now described in more detail.

The test for co-integration requires a test for the stationarity of the

series. If the series are integrated of the same order, a co-integrating vector

might be then found such that a linear combination of the non-stationary

variables obtained with that vector is itself stationary.

4.1 Tests for order of integration

A time series is said to be I(i) (integrated of order i) if it becomes stationary

after differencing it i-times. Since a non-stationary series can be represented

by an autoregressive process of order p, the most widely used unit-root tests

for a variable yt rely on transformed equations of the form:

∆yt = µ+ λt+ (γ − 1)yt−1 +
p−1X
i=1

γj∆yt−i + εt (3)

This test, known as the Augmented Dickey Fuller, ADF , (Dickey and
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Fuller 1981) allows for an AR(p) process that may include a nonzero overall

mean for the series and a trend variable (t). The inclusion of the term
p−1P
i=1

γj∆yt−i simply allows for the consideration of a p > 1 in AR(p). The

special case where p = 1 corresponds to the Dickey-Fuller (DF ) test. Its test

statistics would be invalidated if the residuals of the reduced form equation

∆yt = µ+ λt+ (γ − 1)yt−1 + εt

were autocorrelated.

To test the null hypothesis of nonstationarity, the t-statistic of the estim-

ate of (γ− 1) is compared with the corresponding critical values, calculated
by Dickey and Fuller (Dickey and Fuller, 1979 and 1981) . A key consider-

ation is how many lags of variable y to include in Equation 3 and whether

to include a constant and a trend variable. The best model can be selec-

ted on the basis of the R
2
, the Akaike Information Criterion (AIC ) the

Schwartz (1978) Bayesian Information Criterion and the Schwert (1989) cri-

terion. These criteria might lead to conflicting recommendations. Therefore,

for consistency, the sequential-t test proposed by Ng and Perron (1995) was

used.

If the null of a unit root cannot be rejected, a second test is conducted to

check whether the series are integrated of order one, or whether the other of

integration is more than one. The ADF test serves this purpose. It consists

of testing for the null hypothesis of a unit root in the residual series of a

regression in which the series has been differenced once. If the null of unit
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root is now rejected, the series is deemed I(1) or integrated of order one.

4.1.1 Seasonal case

The tests described above for the stationarity of the series are not sufficient

when the data exhibit a seasonal character, since seasonal unit roots must

be investigated. A number of seasonal unit root tests have been proposed

for the case of monthly data (Franses, 1991; Beaulieu and Miron, 1993) as

an extension to the one suggested by Hylleberg et al. (1990).

A characteristic of seasonal unit root tests is that they exhibit poor

power performance in small samples5 and that the power deteriorates as the

number of unit roots under examination increases. For example, in a simple

test regression with no deterministic variables, the HEGY Hylleberg et al.,

1990 test procedure in the quarterly context requires the estimation of four

parameters, whereas in a monthly context this number increases to twelve.

In addition, the algebra underlying monthly seasonal unit root tests is more

involved than in the quarterly case and the associated computational burden

non-negligible. To circumvent these problems, the analysis of seasonal unit

roots draws on the results found by Rodrigues and Franses (2003). These

authors find out which unit roots affecting monthly data can also be detec-

ted by applying tests on quarterly data and, in particular, they show that

‘with regard to the zero frequency unit root, there is a direct relationship

between the monthly and quarterly root’. This means that the problem
5Rodrigues and Osborn (1999) provide Monte Carlo evidence on the monthly seasonal

unit root tests.
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of non-stationarity of the series can be highly simplified by collapsing the

monthly data into quarterly data (obtaining N/3 quarterly observations on

all relevant variables by summing the monthly values or averaging them,

depending on the nature of the variable) and then using the original HEGY

test. If all the null hypotheses of any type of seasonal roots can be rejected

based on the quarterly test, the monthly series can be also deemed free of

seasonal unit roots.

To test for a seasonal unit root in the {yt, t = 1, . . . , T} series, HEGY

propose to apply OLS on the following model:

yt − yt−4 = π0 + π1z1,t−1 + π2z2,t−1 + π3z3,t−2 + π4z3,t−1 + εt, (4)

where z1t = (1 + L+ L2 + L3)yt,

z2t = −(1− L+ L2 − L3)yt,

z3t = −(1− L2)yt,

with L, the lag operator. To find that yt has no unit root at all and is

therefore stationary, we must establish that each of the πi(i = 1, . . . 4) is

different from zero. Moreover, we will reject the hypothesis of a seasonal

unit root if π2 and either π3 or π4 are different from zero, which therefore

requires the rejection of both a test for π2 and a joint test for π3 and π4.

Hylleberg et al. (1990) derive critical values for the tests corresponding to
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each of the following null hypothesis:

H01 : π1 = 0,

H02 : π2 = 0,

H03 : π3 = 0,

H04 : π4 = 0,

H03+04 : π3 = 0 and π4 = 0.

The tests statistics are based on Student-statistics (t-stat) for the first four

tests and on a Fisher-statistic (F -stat) for the last one.

4.2 Co-integration

If, on the basis of these unit root tests, the series are found integrated of the

same order, their long-run relationship is then investigated applying OLS

on the simple model:

yt = θxt + εt (5)

Series x and y are said to be co-integrated if there exists a linear combination

of those non-stationary variables that is itself stationary. This means that

their linear combination yields a stationary deviation (the residuals series is

stationary). As suggested by Engle and Granger (1987) the stationarity of

the estimated co-integration residuals (bεt) from this regression is analyzed.

A unit root test6 is applied whereby the resulting t-statistic is compared with
6The ADF test applied in this instance does not contain neither a trend nor a con-

stant term, since the OLS residuals will be mean zero with a constant included in the
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the critical values provided by Engle and Yoo (1987).7 The null hypothesis,

in this case, is that of non-cointegration. Therefore, rejecting a unit root

in the residuals in a Dickey-Fuller type of test will constitute evidence of a

co-integrating relationship among the variables. The OLS estimates have

the desirable property of superconsistency (Stock, 1987). This means they

are not only consistent estimates of the underlying parameters of the data

generation process, but they converge on the population values more quickly

than OLS estimates in the context of stationary regressors.

If the series are proved to be co-integrated, θ̂ in Equation 5 provides a

measure of the long-run effect of x on y. Therefore, the long-run estimates

of the price-elasticities are calculated using the estimated coefficients of the

price variables in this equation. Additionally ût can be used as an error

correction term in the ECM model:

4yt = µ+ β04xt − (1− γ1)ût−1 + εt, t = 1, . . . , T, (6)

where bβ0 and (1 − γ̂1) represent the short-run effect and the speed of

adjustment towards the long-run values respectively. Short-run price elast-

icities are then derived from the estimates of price variables in this model.

cointegration regression.
7The conventional critical values calculated by Dickey and Fuller are not appropri-

ate, since the distribution of the t-statistic is affected by the number of variables in the
cointegration regression (Engle and Yoo, 1987).
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5 Results

All the econometric analysis was conducted using STATA 7.0 (Stata 2001).

The reader is directed to the manuals and online documentation for details

on calculations.8

5.1 Unit root tests

First, the order of integration of all relevant series was investigated, using

a test of seasonal integration (see Section 4.1.1) and the ADF test 4.1.

Table 4 in the Appendix summarizes the seasonal tests applied on the series

collapsed into quarterly data. The non-rejection of H01, together with the

rejection of both H02 and the joint hypothesis H03+04, suggests the presence

of a unit root at the zero frequency and no seasonal unit roots. Since there

is a correspondence between the quarterly and the monthly root at the zero

frequency, not detecting seasonal unit roots at the quarterly level is enough

to consider that the series is affected only by unit roots at the zero level

and no testing at the monthly level is necessary. The table shows that the

null of seasonal unit roots can be rejected for all series,9 with the not very

surprising exception of TEMP .

After detecting with the seasonal approach the presence of only unit

roots at the zero frequency, the order of integration of the series was further
8Details about the specific procedures employed are available form the author upon

request.
9The test also permitted to reject the null hypothesis of seasonal unit roots in the

INFOR series, although the estimates are not shown, since this variable is not used in
most of the main final water demand models.
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tested using Dickey-Fuller-type tests. Two auxiliary DF regressions with a

without a trend were used, and the optimal lag was chosen by an automatic

sequential t-test. The results, shown in Table 5 in the Appendix, reveal

that the trend component is not relevant in most cases. Table 5 shows that

most variables proved to be I(1).10 The hypothesis tests permit the rejection

of the null of non-stationarity of the differenced series at the 99% level of

confidence. Once again, there is some doubts about the climate variables.

TEMP appears to be stationary, but the seasonal unit root tests did not

reject the hypothesis of seasonal roots, so this variable should be considered

with caution, since it might be I(0, 1). In the case of RAIN , we also see that

the series might actually be stationary in levels also at all frequencies, I(0).

Since the possibility of seasonal unit roots was rejected, there is no problem

with introducing this variable in a co-integration regression, whether it is

I(0, 0) or I(1, 0).

The augmentation of the basic DF regression with extra lags described

in Section 4.1 above was motivated by the need to generate iid errors. An

alternative solution is the Phillips—Perron (PP ) test (Phillips and Perron,

1988). This test uses the same models as DF but, instead of lagged vari-

ables, it employs a non-parametric correction (Newey and West, 1987) for

serial correlation. The critical for both the Dickey Fuller and Phillips Perron

tests have the same distributions. Critical levels are reproduced in Hamilton

(1994). In principle, the PP tests should be more powerful than the ADF
10The test also permitted to reject the null hypothesis of seasonal unit roots in the

INFOR series, although the estimates are not shown, since this variable is not used in
most of the main final water demand models.
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alternative, so the unit root tests have been conducted using both the ADF

and PP tests. Since the ADF tests suffice to prove that the desirable dy-

namic properties of the variables, the results of the PP test are not reported

but available upon request.

5.2 Co-integration regression analysis

Since all the series in first-differences are stationary, the next step is to check

that there exists a long-run equilibrium relationship between the variables

(that the series are co-integrated in the sense of Granger). This requires an

extension of the linear relationship between water consumption and a series

of variables that the economic theory suggest appropriate. The model given

by Equation (5) was extended into two alternative models (time subscripts

have been dropped to simplify the exposition):

Q = α+ P + P 2 +REST + V I +BAN + SUM + ε (7)

which includes the binary variable SUM instead of the climatic variables

(see Section 3) and:

Q = α0 + P + P 2 +REST + V I +BAN + TEMP +RAIN + ε0 (8)

Tables 6 and 7 show the OLS estimated coefficients of each of the vari-

ables and their t-statistics in these estimations.

The ADF test shows that the hypothesis that the residuals in Regression
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7 are non-stationary can be rejected. The relevant t-ratio is −5.62511 in the
usual test of a unit root and must be compared with the critical values

provided by (Engle and Yoo 1987), which depend on the dimension of the

time-series and on the number of variables included in the model. The DW

statistic is also higher than the R2, which suggests the existence of the co-

integration relationship.12

The long run price-elasticity calculated at the means of price and quant-

ity according to Model 7 is −0.491. All the variables present the expected
signs and are highly significant.

The ADF test shows that the hypothesis that the residuals in Regression

8 are non-stationary can be rejected. The relevant t-ratio is −5.36413 in the
usual test of a unit root and must be compared with the critical values

provided by (Engle and Yoo 1987). The DW statistic is higher than the R2.

The long run price-elasticity calculated at the means of price and quantity

according to Model 7 is once again −0.494, which is basically the same
obtained with Model 7. Once again, all the variables present the expected

signs and are highly significant. The exception is RAIN , which presents a
11This value permits the rejection of the null of no cointegration at a 99% confidence

level, but it is achieved when the auxiliary regression includes no lags. Five lags are selected
by Ng Perron’s sequential t-ratio and the Akaike Information Criterion test, yielding a
t-statistic of -3.053 and one lag is selected by the Hannan-Quinn (Hannan and Quinn
1979) criterion, yielding a t-statistic of -3.804.
12This is based on an alternative cointegrating regression test developed by (Sargan

and Bhargava 1983). This uses the DW statistic from the cointegrating regression. If the
residuals are non-stationary, DW will approach zero as the sample size increases. This
means that large values of DW suggest that a cointegrating relationship exists.
13This value permits the rejection of the null of no cointegration at a 99% confidence

level, but it is achieved when the auxiliary regression includes no lags. If the auxiliary
regression is run with the optimal number of lags (three) the t-ratio is −4.192.
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positive sign while we would normally expect more precipitation to reduce

water use, but it cannot be rejected that its coefficient is null.

According to the ADF tests, the null of no co-integration can only be

rejected if the lag length of the auxiliary regression is not optimally chosen.

However, the value of the DW test and economic intuition suggest that a

long run relationship would govern the variables concerned.

In the presence of persistent roots, the Engle-Granger tests tend to lack

power to detect a co-integrating relationship in the data, even when one

is present. It is difficult to discern whether the inability to reject the null

hypothesis actually reflects a non-cointegrated system or simply the weak

power of these co-integration tests. Additionally, there could exist more

than one co-integrating relationship.

To obtain more definite evidence on the existence of a co-integrating

regression, the Johansen and Juselius maximum likelihood method for co-

integration (see Johansen, 1988; Johansen and Juselius, 1990 and Osterwald-

Lenum, 1992 for details) was used to determine the number of co-integrating

relationships. The summarized results are shown in Tables 10 and 11. The

eigenvalues and the maximal eigenvalue and trace statistics for the VAR

matrix are shown as well as the relevant critical values. The null hypo-

thesis of more than one co-integrating relationship was rejected at the 1%

level of significance in all cases, except in the case of the the trace test

for Model 7, which rejects the null of no-cointegration only at about the

15%. Likelihood-ratio and Wald test statistics for the exclusion of variables
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from that co-integrating relationship were also conducted, and all variables

included in the co-integration tests were found relevant. Therefore, the Jo-

hansen tests support the assumption of co-integration for both models.

5.3 ECM models

Since most of the evidence points towards the stationarity of the residuals

of the co-integrating regressions, their residuals can be introduced as error

correction terms in two ECM models. The xt variables in Equation 6 are

substituted by first differences and lagged differences14 of the co-integrating

variables. The first error correction specification, ECM7 includes a summer

variable, whereas the second model, ECM8 includes TEMP and RAIN

(although TEMP could well suffer problems of seasonal unit roots, so this

second model should be considered with caution). Tables 8 and 9 report

the results of these OLS estimations. These include lagged values of the

differences of some variables. V I was left out of the ECM models, since it

showed problems of multicollinearity with the price variables and its intro-

duction made them non-significant. It is reasonable to assume that changes

in income tend to affect water use only in the long run, most likely through

impacts on the composition of the capital stock. BAN was found non-

significant too and it was removed from the ECM models.

The speed of adjustment towards equilibrium is given by −0.218 in
ECM7 and −0.249 in ECM8. It can be seen that these error correction

terms are both significant and have the expected negative sign. The signi-
14The significance of lagged values was also tested.
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ficance of the coefficient associated with the error correction term further

supports the acceptance of the co-integration hypothesis.

The Ramsey RESET-test (using powers of the fitted values of ∆Qt)

shows that the null hypothesis that Models ECM7 and ECM8 have no

omitted variables cannot be rejected. Tables 8 and 9 include a battery

of diagnostic tests used to check that the residuals are normally distrib-

uted and are neither autocorrelated nor heteroskedastic. These include a

Jarque-Bera (1980) test for normality of the residuals; White’s (1980) gen-

eral test statistic and Cook-Weisberg (1983) test15 which uses fitted values

of ∆Qt) tests for heteroskedasticity a Lagrange multiplier test for autore-

gressive conditional heteroskedasticity (ARCH), based on Engle (1982); and

a Breusch (1978)-Godfrey (1978) LM statistic. They all present acceptable

values, with the exception of the Breusch-Godfrey LM test, which leads to

the rejection of the null of non-autocorrelation in ECM7. An alternative

model with extra lagged values of the price variables solves this problem

and yields a short-run elasticity of −0.073, as reported below. The results
of this additional augmented regression do not differ significantly from the

ones reported and are available upon request.

5.4 Price elasticities

The computation of short-run price elasticities (eSR) using the average price

and water consumption, yields the following results. Using ECM7 and the

co-integration regression in Model 7, eSR = −0.159 (while the augmented
15Also known as Breusch-Pagan (1979) test for heteroskedasticity.
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model used to correct for autocorrelation would yield eSR = −0.073) and
the eLR = −0.494. Similarly, ECM7 and Model 8 yield eSR = −0.101 and
eLR = −0.491.

These estimates of price-elasticities confirm that residential water de-

mand is inelastic to its price, but not perfectly so. Almost all the papers

published on residential water demand agree on this result. Additionally

these results confirm the intuition that long-run elasticities are higher (in

absolute values) short-run ones (Dandy, et al., 1997; Nauges and Thomas,

2003, Martínez-Espiñeira and Nauges, 2004) and also than most of the meas-

ures that have been obtained in other European countries.16 The use of the

co-integration approach to model the demand for water yields rather sens-

ible results and help to distinguish between the short-run effects and the

long-run effects of pricing policies.

5.5 Wickens-Breusch one-step approach

The Engle-Granger procedure described above enjoys important attractive

asymptotic properties but it also suffers weaknesses. In finite samples, the

parameter estimates are biased. The extent of this bias will depend on

omitted dynamics and failure of weak exogeneity among other things. This

bias can be extremely severe. The reasonable size of the sample and the

fact that the estimates agree with economic theory and previous empirical

research suggest that this might be a minor problem in this case. Another
16See Arbués et al. (2003) for a review of water demand studies with a special focus on

European cases.
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problem is that there is no possibility to test the long run parameters. The

limiting distributions of the β parameters are non-normal and non-standard.

Standard hypothesis testing is invalid as t and F statistics do not have t or

F distributions in the context of the co-integrating regression.

For this reason, an additional regression was run using the one-step

Wickens-Breusch approach.17 The results are reported in Tables 12 and

13. The associated price-elasticities, calculated at the means of price and

quantity are eSR = −0.08 and eLR = −0.405 in the model that uses SUM
and eSR = −0.113 and eLR = −0.514 in the model that uses TEMP and

RAIN . The estimates are very close to the ones calculated with the Engle-

Granger approach, which suggests that they can be accepted with more

confidence.

6 Conclusions and suggestions for further research

This study is innovative in two aspects. This is the first time that co-

integration and error correction techniques are employed in the field of wa-

ter consumption. Moreover, the estimation of residential water demand

using time-series monthly data is still rather uncommon in Europe. The

application of these techniques to monthly data to the case of Seville leads

to satisfactory results. The fit of the Granger co-integration relationship

between water use and the variables that should be expected to influence it
17See (Wickens and Breusch 1988) for details on the algebra of this one-step approach..
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in the long run and of the Error Correction Models is quite good. The dy-

namic properties of the series have been analyzed using different approaches

and two alternative specifications for the water demand functions have been

used. However, the results in terms of price elasticities, most of all in the

short run, are remarkably close. This robustness to specification and testing

procedures leads to confidently accept the main results.

The estimates of the price effects obtained are less than one in absolute

value, which confirms the inelasticity of household demand with respect to

the price of water. As predicted by the theory, the long-run price elasticities

are greater, in absolute value, than their short-run counterparts.

The measure of the impact of pricing policies on the behaviour of house-

holds depending on the changes that these policies introduce in the tariff

structure is still an open research area. The long-run effects of water pricing

on water use should be investigated using other datasets, involving differ-

ent regions, and if possible longer time-series or panel data. Ideally, studies

should be conducted at the individual level, with observations linked to the

ownership and frequency of renewal of capital stock.

References

Agthe, D. E. and R. B. Billings (1980). Dynamic models of residential

water demand. Water Resources Research 16 (3), 476—480.

Agthe, D. E., R. B. Billings, J. L. Dobra, and K. Rafiee (1986). A sim-

29



ultaneous equation demand model for block rates. Water Resources

Research 22 (1), 1—4.

Arbués, F., M. A. García-Valiñas, and R. Martínez-Espiñeira (2003).

Estimation of residential water demand: A state of the art review.

Journal of Socio-Economics 32 (1), 81—102.

Beaulieu, J. J. and J. A. Miron (1993). Seasonal unit roots in aggregate

U.S. data. Journal of Econometrics 55 (1), 305—328.

Beenstock, M., E. Goldin, and D. Nabot (1999). The demand for electri-

city in Israel. Energy Economics 21 (2), 168—183.

Bentzen, J. (1994). Empirical analysis of gasoline demand in Denmark

using cointegration techniques. Journal of Energy Economics 16 (2),

139—143.

Billings, R. B. (1982). Specification of block rate price variables in demand

models. Land Economics 58 (3), 386—393.

Breusch, T. S. (1978). Testing for autocorrelation in dynamic linear mod-

els. Australian Economic Papers 17, 334—355.

Breusch, T. V. and A. R. Pagan (1979). A simple test for heteroskedasti-

city and random coefficient variation. Econometrica 47 (5), 1287—1294.

Carver, P. H. and J. J. Boland (1980). Short-run and long-run effects of

price on municipal water use. Water Resources Research 16 (4), 609—

616.

Chicoine, D. L. and G. Ramamurthy (1986). Evidence on the specifica-

30



tion of price in the study of domestic water demand. Land Econom-

ics 62 (1), 26—32.

Cook, R. D. and S. Weisberg (1983). Diagnostics for heteroscedasticity in

regression. Biometrika 70 (1), 1—10.

Dalhuisen, J. M., R. Florax, H. L. F. de Groot, and P. Nijkamp (2003).

Price and income elasticities of residential water demand: Why em-

pirical estimates differ. Land Economics 79 (2), 292—308.

Dandy, G., T. Nguyen, and C. Davies (1997). Estimating residential water

demand in the presence of free allowances. Land Economics 73 (1),

125—139.

Dickey, D. A. and W. A. Fuller (1979). Distribution of the estimators for

autoregressive time series with a unit root. Journal of the American

Statistical Association 74 (366), 427—431.

Dickey, D. A. and W. A. Fuller (1981). Likelihood ratio statistics for

autoregressive processes. Econometrica 49 (4), 1057—1072.

Eltony, M. N. and N. H. Al-Mutairi (1995). Demand for gasoline in

Kuwait. an empirical analysis using cointegration techniques. Energy

Economics 17 (3), 249—253.

EMASESA (1997). Crónica de una Sequía. Sevilla: EMASESA.

EMASESA (2000). Water demand management: The perspective of

EMASESA. Technical report, EMASESA.

Engle, R. (1982). Autoregressive conditional heteroskedasticity with es-

31



timates of the variance of united Kingdom inflation. Economet-

rica 50 (4), 987—1007.

Engle, R. and C. W. J. Granger (1987). Cointegration and error cor-

rection: Representation, estimation and testing. Econometrica 55 (2),

251—76.

Engle, R. F., C. W. J. Granger, and J. S. Hallman (1989). Merging short

and long run forecasts: An application of seasonal cointegration to

monthly electricity sales forecasting. Journal of Econometrics 40 (1),

45—62.

Engle, R. F. and B. S. Yoo (1987). Forecasting and testing in co-integrated

systems. Journal of Econometrics 35 (1), 143—159.

Fouquet, R. (1995). The impact of VAT introduction on UK residential

energy demand. an investigation using the cointegration approach. En-

ergy Economics 17 (3), 237—247.

Franses, P. (1991). Seasonality, nonstationarity and forecasting of monthly

time series. International Journal of Forecasting 7, 199—208.

García-Valiñas, M. Á. (2002). Residential water demand: The impact of

management procedures during shortage periods. Water Intelligence

Online 1 (May).

Godfrey, L. G. (1978). Testing against general autoregressive and moving

average error models when the regressors include lagged dependent

variables. Econometrica 46 (6), 1293—1301.

32



Hamilton, J. D. (1994). Time Series Analysis. Princeton NJ: Princeton

University Press.

Hannan, E. and B. G. Quinn (1979). The determination of the order of

an autoregression. Journal of the Royal Statistical Society Series B

41 (2), 190—95.

Hansen, L. G. (1996). Water and energy price impacts on residential water

demand in Copenhagen. Land Economics 72 (1), 66—79.

Hendry, D. F., A. R. Pagan, and J. D. Sargan (1984). Dynamic spe-

cification. In Z. Grilliches and M. D. Intrilligator (Eds.), Handbook of

Econometrics, Volume III. Amsterdam: North-Holland.

Höglund, L. (1999). Household demand for water in Sweden with im-

plications of a potential tax on water use. Water Resources Re-

search 35 (12), 3853—3863.

Hylleberg, S., R. F. Engle, C. W. J. Granger, and B. S. Yoo (1990). Sea-

sonal integration and cointegration. Journal of Econometrics 44 (1),

215—238.

Jarque, C. M. and A. K. Bera (1980). Efficient tests for normality, homo-

skedasticity, and serial independence of regression residuals. Econom-

ics Letters 6, 255—259.

Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal

of Economic Dynamics and Control 12, 231—254.

Johansen, S. and K. Juselius (1990). Maximum likelihood estimation and

33



inference on cointegration - with applications to the demand for money.

Oxford Bulletin of Economics and Statistics 52, 169—210.

Lyman, R. A. (1992). Peak and off-peak residential water demand.Water

Resources Research 28 (9), 2159—67.

Martínez-Espiñeira, R. (2002). Residential water demand in the Northw-

est of Spain. Environmental and Resource Economics 21 (2), 161—187.

Martínez-Espiñeira, R. and C. Nauges (2004). Is really all domestic water

consumption sensitive to price control? Applied Economics forthcom-

ing.

Moncur, J. (1987). Urban water pricing and drought management.Water

Resources Research 23 (3), 393—398.

Nauges, C. and A. Thomas (2000). Privately-operated water utilities, mu-

nicipal price negotiation, and estimation of residential water demand:

The case of France. Land Economics 76 (1), 68—85.

Nauges, C. and A. Thomas (2001). Dynamique de la consommation d’Eau

potable des ménages: Une étude sur un panel de communes françaises.

Economie et Prevision 143-144, 175—184. numéro spécial: ‘Economie

de l’Environnement et des Resources Naturelles’.

Nauges, C. and A. Thomas (2003). Long-run study of residential water

consumption. Environmental and Resource Economics 26 (1), 25—43.

Newey, W. K. and K. D. West (1987). A simple positive semi-definite

heteroskedasticity and autocorrelation consistent covariance matrix.

34



Econometrica 55 (3), 1029—1054.

Ng, S. and P. Perron (1995). Unit root tests in ARMA models with data-

dependent methods for the selection of the truncation lag. Journal of

the American Statistical Association 90 (268-81), 268—81.

Nieswiadomy, M. L. and D. J. Molina (1989). Comparing residential water

estimates under decreasing and increasing block rates using household

data. Land Economics 65 (3), 280—289.

Nordin, J. A. (1976). A proposed modification on Taylor’s demand-supply

analysis: Comment. The Bell Journal of Economics 7 (2), 719—721.

Osterwald-Lenum, M. (1992). A note with fractiles of the asymptotic dis-

tribution of the maximum likelihood cointegration rank test statistics:

Four cases. Oxford Bulletin of Economics and Statistics 54 (4), 361—78.

Phillips, P. C. B. and P. Perron (1988). Testing for a unit root in time

series regression. Biometrika 75 (2), 335—346.

Ramanathan, R. (1999). Short- and long-run elasticities of gasoline de-

mand in India: An empirical analysis using cointegration techniques.

Energy Economics 21 (4), 321—330.

Renwick, M. E. and S. O. Archibald (1998). Demand side management

policies for residential water use: Who bears the conservation burden?

Land Economics 74 (3), 343—359.

Renwick, M. E. and R. D.Green (2000). Do residential water demand

side management policies measure up? An analysis of eight California

35



water agencies. Journal of Environmental Economics and Manage-

ment 40 (1), 37—55.

Rodrigues, P. M. M. and P. H. Franses (2003). A se-

quential approach to testing seasonal unit roots in high

frequency data. Institute Reports, Econometrics De-

partment, Erasmus University Rotterdam. Available at

http://www.eur.nl/WebDOC/doc/econometrie/feweco20030410140109.pdf.

Rodrigues, P. M. M. and D. R. Osborn (1999). Performance of seasonal

unit root tests for monthly data. Journal of Applied Statistics 26 (8),

985—1004.

Sargan, J. D. and A. Bhargava (1983). Testing residuals from least squares

estimators for being generated by the Gaussian Random Walk. Eco-

nometrica 51 (1), 153—174.

Schefter, J. E. and E. L. David (1985). Estimating residential water de-

mand under multi-tariffs using aggregate data. Land Economics 61 (3),

272—80.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of

Statistics 6 (2), 461—464.

Schwert, G. W. (1989). Tests for unit roots: A Monte Carlo investigation.

Journal of Business and Economic Statistics 7 (2), 147—159.

StataCorp (2001). Statistical Software: Release 7.0. College Station, TX:

Stata Corporation.

36



Stock, J. H. (1987). Unit roots, structural breaks and trends. In

R. F. Engle and D. McFadden (Eds.), Handbook of Econometrics,

Chapter 46, pp. 2740—2831. Amsterdam: Elsevier.

Taylor, L. D. (1975). The demand for electricity: A survey. The Bell

Journal of Economics 6 (1), 74—110.

White, H. (1980). A heteroskedasticity-consistent covariance estimator

and a direct test for heteroskedasticity. Econometrica 48 (4), 817—838.

Wickens, M. R. and T. S. Breusch (1988). Dynamic specification, the

long run and the estimation of the transformed regression models.

The Economic Journal 98 (390), 189—205.

37



Appendix: Summary of demand measures

Measures taken to reduce demand were of three types:

1. Changes in tariff structure to promote savings (see Tables 1 and 2).

2. Meter Replacement Campaign (Plan Cinco) to increase the reliability

of consumption readings. In the year 2000, meters in Seville and its

metropolitan area were on average less than four years old.

3. Promotion of the replacement of collective meters in blocks of dwell-

ings by individual ones. A total of 18,822 supplies corresponding to

226,034 buildings, 87% of them located in the city of Seville, was to

be included in the project. 50% of these buildings have between two

and eight dwellings, 28.4% have between 9 and 16 dwellings, 10.8%

are buildings with between 17 and 24 dwellings and the same per-

centage corresponds to buildings with more than 25 dwellings. The

supply company has provided a series of measures to facilitate the

replacement, taking into account the problems and disadvantages en-

countered (EMASESA 2000, pp. 9-10) .
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Table 1: Evolution of pricing-block sizes

1991-1995 1996-1999

Block 1 0-7 m3 0-7 m3

Block 2 0-20 m3 0-17 m3

Block 3 >20 m3 > 17 m3

Table 2: Tariff evolution (1992 EURO equivalents, excluding VAT)

Water Sewage and Treatment
Year Fixed PBL∗1 PBL2 PBL3 Canon TEC∗∗ Fixed Sewage Treat. Canon

1991 1.063 0.139 0.214 0.386 0.000 0.000 0.000 0.075 0.130 0.000
1992 1.010 0.138 0.212 0.384 0.000 0.000 0.000 0.082 0.123 0.000
1993 1.133 0.132 0.206 0.378 0.000 0.020 0.000 0.089 0.120 0.000
1994 1.187 0.126 0.204 0.398 0.016 0.019 0.270 0.088 0.118 0.016
1995 1.246 0.125 0.213 0.421 0.016 0.021 0.285 0.092 0.124 0.016
1996 1.443 0.126 0.252 0.505 0.015 0.093 0.505 0.111 0.131 0.015
1997 1.524 0.130 0.260 0.609 0.015 0.093 0.550 0.125 0.140 0.015
1998 1.540 0.131 0.263 0.616 0.050 0.000 0.555 0.126 0.141 0.040
1999 1.533 0.131 0.262 0.614 0.048 0.000 0.553 0.126 0.141 0.039

* PBLi = water price in block i.
**TEC = Temporary Extra Charge
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Table 3: Summary Statistics
Variable N Min Max Mean Std. Dev.

ABONS 108 109,082 201,385 148,310 27,671
POP 108 683,028 719,588 702,529 9684
Q 108 5.054 8.201 6.352 0.648
P 108 0.472 0.700 0.571 0.080
W 108 1128 1410 1235 71,379
D 108 0.522 1.413 0.999 0.369
RES 108 0 12.00 1.40 2.99
BAN 108 0 1 0.273 0.445
SUM 108 0 1 0.333 0.474
TEMP 108 152 385 255.259 68.965
RAIN 108 0 3105 421.926 605.559
INFOR 108 0 1 0.319 0.466
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Table 4: Quarterly seasonal unit root test
Variable Test HEGY model specification(a)

SEAS TREND STREND CONST
t-stat(b) Lags(c) t-stat Lags t-stat Lags t-stat Lags

Q H01 -1.947 8 -2.379 0 -1.199 8 -2.929* 0
H02 -3.998** -3.684** -3.867** -3.848**
H03+04 17.857** 6.176** 16.407** 6.485**

P H01 -0.033 1,4,5 -1.136 0 -1.528 0 -1.108 0
H02 -4.116** -2.708** -2.795* -2.708**
H03+04 12.143** 11.666 13.407** 11.701**

P 2 H01 0.044 1,4,5 -1.237 0 -4.016** 4 -1.124 0
H02 -4.455** -2.750** -3.475** -2.743**
H03+04 14.219** 12.233** 20.187** 12.194**

V I H01 1.181 0 -0.787 1 0.311 0 -0.791 1,5
H02 -3.172** -0.418 -3.051 -0.829
H03+04 6.711** 0.332 6.604 0.744

REST H01 -2.970* 6 -2.643 3,5,7 -3.549* 0 -2.732* 5,6
H02 -3.177** -4.419** -4.299** -3.291**
H03+04 15.982** 2.785* 7.027** 13.050**

BAN H01 -1.757 1 -5.310** 1,2 -3.543* 1 -2.153 1
H02 -3.788** -2.779** -3.585** -3.547**
H03+04 11.913** 9.464** 12.272** 10.323**

TEMP H01 -2.419 0 -3.401* 2,3,8 -2.399 0 -3.800** 2,3,6,7,8
H02 -2.133 -1.281 -2.111 -1.057
H03+04 8.117** 0.040 7.850** 0.280

RAIN H01 -2.062 4 -1.888 0 -2.775 2,4,8 -1.779 0
H02 -1.674* -1.674* -3.193** -1.677*
H03+04 2.437* 2.437* 7.753** 2.400*

(a) Test specifications: SEAS (Seasonal dummies + constant) TREND (Constant + trend) STREND
(Seasonal dummies + constant + trend) CONST (constant only)
(b) HEGY estimates, ∗∗ and ∗ denote a t-ratio significant at the 5% and 10%
(c) lag length and lags of the fourth difference of the time-series to be included in the auxiliary regression

41



Table 5: Unit root tests to determine the order of integration of the series
Variable Test No trend With trend

t-stat(a) Lags t-stat(b) Lags Trend t-ratio

Q ADF in levels -2.527 4 -2.384 4 -0.06
ADF in differences -6.287*** 5 -6.966*** 8 2.48**

P ADF in levels -1.165 0 -1.888** 0 1.50
ADF in differences -3.801*** 7 -10.550*** 0 -0.26

P 2 ADF in levels -1.202 0 -1.847 0 1.42
ADF in differences -10.569*** 0 -10.525*** 0 -0.28

V I ADF in levels 0.333 8 -0.524 8 1.76*
ADF in differences -12.709*** 8 -13.800*** 8 3.35***

REST ADF in levels -2.547 1 -3.369* 2 -1.23
ADF in differences -5.472*** 1 -5.454*** 1 -0.28

BAN ADF in levels -2.130 0 -2.404 0 -1.22
ADF in differences -9.494*** 0 -9.470*** 0 -0.47

TEMP ADF in levels -8.921*** 6 -9.016*** 6 1.17
ADF in differences -12.124 *** 6 -12.041*** 6 -0.22

RAIN ADF in levels -6.849*** 0 -6.834*** 4 0.43
ADF in differences -12.334*** 0 -12.273*** 0 0.09

(a) t-ratio of estimates *** ,∗∗ and ∗ denote a t-ratio significant at the 1%, 5% and 10%
(b) The number of lags (with a maximum of 8) to be included was selected using the Ng-Perron
sequential-t test

Table 6: Cointegration regression results, Model 7
Variable Coef. Std. Err. t P/t/ [95% Conf. Interval]

P -78.62897 11.63832 -6.76 0.000 -101.7163 -55.54167
P 2 64.06969 10.0208 6.39 0.000 44.19111 83.94827
REST -.065878 .0198825 -3.31 0.001 -.1053196 -.0264364
V I .0028973 .0005331 5.44 0.000 .0018398 .0039548
BAN -.4509199 .1399911 -3.22 0.002 -.7286246 -.1732152
SUM .3165457 .0797838 3.97 0.000 .158276 .4748153
CONS 26.48916 3.335331 7.94 0.000 19.87276 33.10556

R
2
= 0.6438 F(6,101)=33.23, , Prob > F = 0.0000

N=108 Durbin-Watson d-statistic= 0.919

42



Table 7: Cointegration regression results, Model 8
Variable Coef. Std. Err. t P>/t/ [95% Conf. Interval]

P -76.9496 12.07195 -6.37 0.000 -100.9 -52.99919
P 2 62.56866 10.40075 6.02 0.000 41.93387 83.20345
REST -.0669561 .0206834 -3.24 0.002 -.1079914 -.0259208
V I .0024044 .0005813 4.14 0.000 .0012512 .0035576
BAN -.4732595 .146367 -3.23 0.002 -.7636475 -.1828715
RAIN .000081 .0000733 1.11 0.271 -.0000643 .0002264
TEMP .0020339 .0006714 3.03 0.003 .0007017 .003366
CONS 26.1972 3.457589 7.58 0.000 19.33744 33.05696

R
2
= 0.6194 F(7,100)=25.88 , Prob > F = 0.0000

N=108 Durbin-Watson d-statistic= 0.8559396

Table 8: OLS results of Model ECM7
Variable Coef. Std. Err. t P>/t/ [95% Conf. Interval]

∆P t -37.43696 21.09048 -1.78 0.079 -79.29572 4.421804bεt−1 -.218386 .0853624 -2.56 0.012 -.3878068 -.0489652
∆P 2t 31.26435 17.50574 1.79 0.077 -3.479696 66.0084
∆REST t -.0764792 .024869 -3.08 0.003 -.1258373 -.027121
∆SUM t .316758 .0667966 4.74 0.000 .1841852 .4493308
∆P t−1 -71.00558 20.68853 -3.43 0.001 -112.0666 -29.94457
∆P 2t−1 54.72853 17.2249 3.18 0.002 20.54189 88.91518
∆Qt−1 -.27307 .0880438 -3.10 0.003 -.4478126 -.0983274
CONS .0190848 .0266035 0.72 0.475 -.0337157 .0718853

R
2
= 0.3864 Jarque-Bera normality test: 2.044 κ(2) = 0.3598

AIC = 0.306 ARCH-LM test statistic, order( 1): 2.913434 κ2(1) P-value = 0.0878
RESET= 1.48 Breusch-Godfrey LM-statistic:16.91713 κ2(1) P-value = 0.000
p value = 0.23 White’s general test statistic : 44.02462 κ2(1)(44) P-value = 0.4706

Cook-Weisberg test κ2(1) = 3.26, Prob > κ2 = 0.0711
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Table 9: OLS results of ECM88
Variable Coef. Std. Err. t P>/t/ [95% Conf. Interval]

∆P t -32.6092 20.1055 -1.62 0.108 -72.5183 7.299901bε0t−1 -.2488099 .0775516 -3.21 0.002 -.4027486 -.0948713
∆P 2t 27.57213 16.69743 1.65 0.102 -5.572012 60.71628
∆TEMP t .0035901 .0006697 5.36 0.000 .0022609 .0049194
∆REST t -.0981625 .0238574 -4.11 0.000 -.145519 -.050806
∆P t−1 -79.55463 20.42766 -3.89 0.000 -120.1032 -39.00605
∆Qt−1 -.2756471 .0836188 -3.30 0.001 -.4416292 -.109665
∆P 2t−1 61.88111 17.07977 3.62 0.000 27.97803 95.78418
∆RAIN t .0000862 .0000444 1.94 0.055 -1.82e-06 .0001743
CONS .018672 .0257402 0.73 0.470 -.032422 .0697659

R
2
=0.4254 Jarque-Bera normality test: 2.059 κ(2) = 0.3572

AIC = 0.249 ARCH-LM test statistic, order( 1): 0.0007344 κ2(1) P-value = 0.9784
RESET= 1.75 Breusch-Godfrey LM-statistic: 1.876757 κ2(1) P-value = 0.1707
p value = 0.16 White’s general test statistic : 75.72078 κ2(1)(44) P-value = 0.0272

Cook-Weisberg test κ2(1) = 0.78, Prob > κ2 = 0.3773

Table 10: MODEL 1 Johansen-Juselius cointegration rank test
H1:

H0: Max-lambda Trace
Eigenvalues rank<=(r) statistics statistics
(lambda) r (rank<=(r+1)) (rank<=(p=7))
.40067781 0 54.779285 115.46473
.2222569 1 26.895414 60.685446
.16540982 2 19.347149 33.790032
Osterwald-Lenum Critical values (99% interval):
Table/Case: 1* (assumption: intercept in co-integrating Equation)

H0: Max-lambda Trace
0 51.91 143.09
1 46.82 111.01
2 39.79 84.45

Table/Case: 1 (assumption: intercept in VAR)
H0: Max-lambda Trace
0 51.57 133.57
1 45.10 103.18
2 38.77 76.07

Sample: 1 to 108 N= 107
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Table 11: MODEL 2 Johansen-Juselius cointegration rank test
H1:

H0: Max-lambda Trace
Eigenvalues rank<=(r) statistics statistics
(lambda) r (rank<=(r+1)) (rank<=(p=8))
.58686628 0 94.586283 185.98108
.2725507 1 34.048574 91.394798
.23272295 2 28.345084 57.346224
Osterwald-Lenum Critical values (99% interval):
Table/Case: 1* (assumption: intercept in co-integrating Equation)

H0: Max-lambda Trace
0 57.95 177.20
1 51.91 143.09
2 46.82 111.01

Table/Case: 1 (assumption: intercept in VAR)
H0: Max-lambda Trace
0 57.69 168.36
1 51.57 133.57
2 45.10 103.18

Sample: 1 to 108 N= 107
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Table 12: Wickens Breusch one-step cointegration regression, Model 1 (de-
pendent variable: ∆Qt−1)
Variable Coef. Std. Err. t P>/t/ [95% Conf.Interval]

Pt−1 -14.8257 8.765719 -1.69 0.094 -32.23517 2.583775
Qt−1 -.1971793 .0584825 -3.37 0.001 -.3133306 -.0810279
P 2t−1 12.20513 7.459134 1.64 0.105 -2.609352 27.01962
∆Qt−2 .2262604 .0813084 2.78 0.007 .0647749 .3877459
BAN t−1 -.1857024 .0789577 -2.35 0.021 -.3425193 -.0288856
∆Pt -4.904221 1.691726 -2.90 0.005 -8.264135 -1.544306
∆SUM t .2359263 .0761873 3.10 0.003 .0846117 .3872408
∆SUM t−1 -.2278216 .068657 -3.32 0.001 -.3641804 -.0914628
∆REST t -.0536682 .0226287 -2.37 0.020 -.0986108 -.0087256
∆Pt−2 68.63656 19.74489 3.48 0.001 29.4215 107.8516
∆P 2t−2 -53.91469 16.35266 -3.30 0.001 -86.39248 -21.43691
SUM t−1 .1210409 .0743297 1.63 0.107 -.0265843 .268666
CONS 5.663556 2.738408 2.07 0.041 .2248421 11.10227

R
2
= 0.4553 Jarque-Bera normality test: 21.49 κ(2) = 0.000

AIC=0.166 ARCH-LM test statistic, order( 1): 3.153843 κ2(1) P-value = 0.757
RESET = 0.55 Breusch-Godfrey LM-statistic: .8856157 κ2(1) P-value = 0.3467
(p value= 0.6464) White’s general test statistic : 101.2766 κ2(1)(44) P-value = 0.0732

Cook-Weisberg test κ2(1) = 0.75, Prob > κ2 = 0.3851
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Table 13: Wickens Breusch one-step cointegration regression, Model 2 (de-
pendent variable: ∆Qt−1)
Variable Coef. Std. Err. t P>/t/ [95% Conf.Interval]

Pt−1 -12.81087 9.062847 -1.41 0.161 -30.80788 5.186152
Qt−1 -.2188747 .0571935 -3.83 0.000 -.3324497 -.1052997
P 2t−1 10.12214 7.725367 1.31 0.193 -5.218908 25.46319
BAN t−1 -.2861252 .0822907 -3.48 0.001 -.4495382 -.1227122
∆Qt−2 -.4171249 .084715 -4.92 0.000 -.5853522 -.2488976
∆TEMP t−2 .0036692 .0007519 4.88 0.000 .0021761 .0051624
∆REST t -.0711663 .026048 -2.73 0.008 -.1228924 -.0194402
∆P t−2 -6.273908 1.880937 -3.34 0.001 -10.00908 -2.53874
RAIN t−1 .0001814 .0000621 2.92 0.004 .0000581 .0003048
∆INFORt -.5578359 .2148499 -2.60 0.011 -.9844853 -.1311865
∆RAIN t .0000904 .000051 1.77 0.080 -.0000109 .0001916
∆BAN t .3630526 .2119329 1.71 0.090 -.0578042 .7839094
CONS 5.353634 2.813476 1.90 0.060 -.2333728 10.94064

R
2
= 0.4207 Jarque-Bera normality test: 5.669 κ(2) = 0.0587

AIC=0.282 ARCH-LM test statistic, order( 1): 0.0265371 κ2(1) P-value = 0.8706
RESET=1.75 Breusch-Godfrey LM-statistic: 1.717154 κ2(1) P-value = 0.1901
(p value= 0.1618) White’s general test statistic : 89.59179 κ2(1)(44) P-value = 0.0341

Cook-Weisberg test κ2(1) = 1.95, Prob > κ2 = 0.1625
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