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There exists a growing sense among resource scientists that scientific effort should be directed at 

multiples species, community and ecosystem approaches. (van Kooten and Bulte 2000, p. 217; 

quoted also in Finnoff and Tschirhart 2003)  

1. Introduction 

Growth of a fishery population is determined to a large extent by its environment. Since one 

species only forms part of a complex ecological system including prey, competitors or 

predators, modeling its dynamics with a single differential or difference equation neglects such 

ecological interdependence, and can lead to wrong assessments. In the literature, it was pointed 

out that spillovers that occur from one population onto another might change crucially the 

optimal extraction plan in a fishery (Clark, 1976; Ragozin and Brown, 1985; Hannesson, 1986; 

Conrad and Adu-Asamoah, 1986; Wilen and Brown, 1986; Flaaten, 1991; Tu and Wilman, 

1992; Conrad and Salas, 1993; Stroebele and Wacker, 1995; Flaaten and Stollery, 1996; van 

Ierland and De Man, 1996; Wacker, 1999; Arnason, 2000; Barbier, 2001; Imeson, van den 

Bergh and Hoekstra, 2002; Tschirhart, 2002; Finnoff and Tschirhart, 2003). In contrast to the 

single species model, the optimal solution can involve harvesting of some species at a loss as a 

lower stock increases the profits from the fishery of the interdependent species.  

One frequently quoted paper of this literature which studies the bioeconomics of Gause’s 

(1934) deterministic competing species model is by Flaaten (1991). Flaaten provides six 

theorems of which the last two involve general conjectures on the impact of market parameter 

changes on the long run stock levels. In his Theorem 5 (Theorem 6), Flaaten conjectures that a 

higher price (harvesting costs) of one species will yield a lower (greater) own stock level and a 

greater (lower) stock level of the competing species in the steady state. In this paper, I show that 

the theorems are no general results. In fact, Theorem 5 is reversed if costless harvesting is 

assumed.     
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In the remainder of the paper, I review the competing species model and derive the 

optimal harvesting decision of the sole owner. I follow closely the steps of Flaaten (1991). I 

show where the proof of the theorems is flawed and I provide counter examples for both 

theorems. Finally, I sum up. 

2. The model 

In the notation I follow Flaaten (1991). The growth function of species i is given by the logistic 

production function:  

 

Gi(X1, X2) = riXi (1 - Xi - αiXj), (i,j = 1, 2, i≠j),  (1) 

 

where Xi ∈ [0,1] denotes the stock of species i relative to its carrying capacity, αi is the 

dimensionless competition parameter,1 and ri is the intrinsic growth rate. In contrast to the 

single species model the competition parameter is incorporated to describe by how much the 

living space of species i is affected through the presence of the competing species j. The greater 

the competition parameter is the “flatter” is the curve of the growth function of species i, and 

the lower is the species’ stock level in the biological equilibrium without harvesting. 

Harvesting from both resource stocks is assumed to be independent from each other. 

Each unit of effort E can be dedicated either to catching species 1 or species 2 but not to both at 

the same time. The catch rates are yi(Xi) = Ei Xi (i = 1, 2). Given Schaefer’s harvest function and 

assuming constant costs per unit effort, the unit harvesting costs are ci(Xi) = ci/Xi (i = 1, 2).2 

Under the assumption of constant prices p1 and p2 of species 1 and 2, respectively, the total 

profit from harvesting the two species is  

 

                                                           
1 Throughout the paper we will assume that αi∈(0,1), i=1,2. This is a necessary condition for having an interior, 
positive stable steady state without harvesting (see Flaaten [7, 166]). 
2 The unit cost of harvesting species i accounts for i’s catchability quotient. 
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π(X1, X2) = b1(p1, X1) y1 + b2(p2, X2) y2,    (2) 

 

where bi(pi, Xi) = pi - ci(Xi) (i = 1, 2) denotes the net profit per unit harvest of species i.  

The management problem of the competing species problem involves the maximization 

of the present value (PV) of the total profit from both fisheries subject to the two equations of 

motion. Thus, the externality of the production of species 1 is internalized in the production of 

species 2, and vice versa. The planner faces the following two-control problem:  

 

max PV= ∫
∞

−

0
21 ),( dtXXe tπδ  

s.t. 2,1),())(),(()( 21 =−= itytXtXGtx iii&     (3) 

 

where δ denotes the discount rate and the dot in the constraints indicates time derivatives. The 

stocks change in time due to the difference between growth and catch. Assuming an interior 

solution the following equation pair determines the optimal solution to the planner’s 

maximization problem, 

 

b1(X1
*) = 1/δ [b1(X1

*) G11 + b2(X2
*) G21 – c1’(X1

*) G1(X1
*, X2

*)] 

b2(X2
*) = 1/δ [b1(X1

*) G12 + b2(X2
*) G22 – c2’(X2

*) G2(X1
*, X2

*)]  (4) 

 

where Gji(X1
*, X2

*) = ∂Gi/∂Xj
* (i, j = 1, 2) is the derivative of species j’s growth function with 

respect to i’s steady state stock level. In the steady state, the total profit of the marginal unit 

extracted from the stock (on the left hand side) must equal the discounted marginal rent of this 

unit (on the right hand side), which reflects the present value of all future losses that result 

through harvesting from a lower stock. In the steady state, growth must equal catch, yi = Gi. 

Hence, we can rewrite (4) using (2) to obtain 
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Flaaten (1991) starts from equation (5) to analyze how equilibrium stock levels change when 

prices or costs change. Following his steps we differentiate with respect to p1 to yield the 

following  
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Rearranging equations (6) and (7) with respect to stock-price derivatives we obtain 
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Applying Cramer’s rule, equations (9) and (10) can be solved with respect to the stock-price 

derivatives, yielding the following equations, 
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Equations (11) and (12) coincide with equations (54) and (55) in Flaaten only if ∂πi/∂p1 = 0 (i 

=1, 2). Since ∂π1/∂p1 = G11 = r1 (1 - 2X1
*

 - α1X2
*) and ∂π2/∂p1 = G12 = - α1 r1 X1

*
 < 0 are different 

from zero, the proofs to Theorem 5 and Theorem 6 in Flaaten are wrong. In fact, we can find an 

illustrative example which reverses Theorem 5 as the following observation reveals. 

 

Observation If harvesting in the competing species model (with αi>0, i=1,2) is costless the 

following holds: 0
1

*
1 ≥

∂
∂

p
X , and 0

1

*
2 ≤

∂
∂

p
X . 

 

As shown in Flaaten, it follows from the second order condition for the existence of an 

interior solution that the denominator to both equation (11) and (12) is positive, i.e. |D| > 0, and 

the second derivative of the profit function with respect to the own stock, πii = - 2 ri  pi < 0  (i = 

1, 2), is negative. Note bip = 1, and ci = 0 (i = 1, 2) implies bix = 0. Taking into account πij = - α1 

r1 p1 - α2 r2 p2 < 0, and G12 < 0, the proof reduces thus to showing that the marginal growth rate 

in the steady state exceeds the interest rate, i.e., G11 ≥ δ. This is trivially satisfied, because if the 

interest rate is greater than the marginal growth rate the optimal management decision is to 

extinguish the species. At the corner solution the stock-price derivatives are zero. If both stocks 

are positive the inequalities are strict. A higher price of species 1 implies its higher relative 

efficiency. In other words, if there are no extraction costs and 1’s price increases the planner 
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cares less about the spillovers from species 1 to species 2 and more about the externality that 

affects species 1. 

Figure 1 illustrates for given parameter values (α1 = α2 = c1 = c2 = δ = ½ and r1 = r2 = 1) 

that Flaaten’s Theorem 5 is not verified either if positive costs are allowed. Figure 1 displays 

the signs of the derivatives for the price ranges p1, p2 ∈ [1, 10]. Note that prices in this range are 

at least double as high as costs. In the northwest area of Figure 1 where the competing species’ 

price is sufficiently greater than the own species’ price, i.e., approximately when p2 > - 2.75 + 

3.75 p1 ≥ 1, derivatives are in line with Flaaten’s theorem. However, for other price ratios the 

theorem must be rejected. 

 

---- Insert Figure 1 about here ---- 

 

As pointed out above, the proof to Flaaten’s Theorem 6 has the identical flaw as the 

proof to Theorem 5. Theorem 6 states that the steady state stock level of one species is (i) 

increasing in own harvesting costs and (ii) decreasing in the harvesting costs of the competing 

species. Using the same parameter values and price ranges as in Figure 1, Figure 2 depicts the 

signs of the derivatives with respect to harvesting costs. In the south east area of Figure 2, i.e., 

approximately where 1 ≤ p2 < - 1/6 + 2.4 p1, the second part of the theorem must be rejected. 

 

---- Insert Figure 2 about here ---- 

 

3. Summary 

In the paper, it has been shown that two essential theorems of Flaaten’s (1991) well-known 

paper on optimal management of competing species are wrong. These theorems make a claim 

about how the equilibrium stock in the sole owner fishery moves when prices or costs are 
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changed. A higher price of one species does not imply necessarily a lower bioeconomic 

equilibrium stock as Flaaten conjectured. This result is important since it shows that the 

competing species model does not behave the same as the single species model.3 Particularly in 

the case of costless harvesting the optimal resource management decision might induce more 

extraction of the competing species in order to enhance the stock of the more valuable species. 

Furthermore, the steady state stock level is not necessarily decreasing in the harvesting costs of 

the competing species as conjectured in Flaaten’s Theorem 6. It turns out that for some values 

the opposite is true. Finally, I cannot reject both conjectures of Flaaten’s Theorem 6 since the 

steady state stock level is increasing in own harvesting costs for all values I considered. 

However, I am not able to provide a proof in favor of the theorem either. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
3 Flaaten 1991 shows that even harvesting one species at a loss can be optimal in the long-run equilibrium. 
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Figure 1. Sign of price derivatives 

 

Parameter values: α1= α2 =c1=c2 = δ = 0.5, r=1.5, p1, p2 ∈ [1,10] 

 

Figure 2. Sign of costs derivatives  

 

Parameter values: α1= α2 =c1=c2 = δ = 0.5, r=1.5, p1, p2 ∈ [1,10] 

 


