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1. INTRODUCTION 

The widespread usage of the Internet has increasingly provided opportunities for consumers to find sought-

after commodities without incurring large information search costs.  Such information savings on consumer 

durables is particularly valuable because better choices are made when consumers can take into account a 

wide range of product attributes, including size, make, model, and vintage, as well as prices and interest 

payments. 

Of these items of information, the efficient use of durables is crucial for maximizing utility, subject to 

constraints on resources such as income, time, and effort.  Examples include information concerning the 

setup of personal computers and cellular phones.  It is sometimes difficult for consumers owning these 

goods to find the ‘best’ setup that maximizes their satisfaction subject to resource constraints.  In response, 

suppliers of durables have attempted to facilitate consumer access to information on the efficient operation 

of their products by developing user-friendly interfaces.  Homepages that show how to use products with 

charts and animation are just one example of such interfaces.  Since the development and maintenance of 

user-friendly interfaces is costly, the benefit of easy access to information on the efficient usage of consumer 

durables is an important factor that impacts upon the markets for consumer durables. 

This paper attempts to measure the benefits of providing consumers with information on the usage of 

durables by using experimental data on Japanese households.  The focus of the paper is on providing 

consumers with information about the efficient usage of energy-using durables.  This information could be 

easily obtained at any time through a display that had been installed in each consumer's residence during the 

experiment.  Consumers did not incur the costs of installing the display nor the cost of the electricity used to 
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operate the display.  Thus, consumers could, without incurring additional costs, obtain information on how 

to use their electrical appliances more efficiently.  However, consumers did incur the costs of time and effort 

spent on operating the display if they were busy and not familiar with its operation.  If these costs were larger 

than the benefits obtained from the information, consumers would not use the display.  The consumers’ 

choice of display usage and electricity consumption was then investigated to measure consumers’ net 

benefits of information on the efficient usage of electrical appliances. 

A discrete-continuous model of display usage and electricity demand is developed to measure 

information benefits.  Discrete-continuous models assume consumers face two choices: (1) which 

alternative to adopt from a finite and exhaustive set of mutually exclusive alternatives; and (2) how much of 

a particular good to purchase, where the amount of the good can be represented by a continuous variable 

(Train, 1986, p. 82).  Since a discrete-continuous model combines the discrete choice of display usage and 

continuous demand for electricity by Roy’s identity, it allows for the exact welfare measurement of 

information provision.  The current analysis uses a nonhomothetic translog indirect utility function, which 

imposes no restrictions on substitution or income elasticities, as against previous models applying linear or 

log-linear demand functions that impose restrictions on substitution or income elasticities (Burtless and 

Hausman, 1978; Hausman, 1979; King, 1980; Dubin and McFadden, 1984; Hausman and Trimble, 1984; 

Train and Mehrez, 1994; Lohr and Park, 1995).1 

Although the present paper focuses on information associated with electrical appliances, the discrete-

continuous model developed here can be applied to the analysis of information benefits of other durables.  

Examples include the benefits, to potential users, of information on the setup of cellular phones, which have 
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functions that vary across models.  Consumers choose to see homepages that show how to use the various 

functions of cellular phones, and they receive utility from using their cellular phones and using the functions 

that exactly meet their individual needs.  If data on their choice of information and usage of cellular phones 

are available, a discrete-continuous model of information choice and usage of cellular phones can then be 

estimated to measure the benefits of information on the setup of cellular phones. 

This paper finds that the energy-conservation effects of information provision have important policy 

implications because energy conservation has increasingly received attention as an effective way to mitigate 

global warming by reducing the emission of greenhouse gases such as carbon dioxide.  The extensive 

literature on energy conservation has investigated the effectiveness of a number of policy measures, 

including carbon taxes (Dumagan and Mount, 1992; Conrad and Schröder, 1991), deduction of investment 

taxes (Hassette and Metcalf, 1995), efficiency standards of energy-using durables (Hausman and Joskow, 

1982; Greening, Sanstad, and McMahon, 1997), government or utility-funded programs of energy-

efficiency improvements (Joskow and Marron, 1992; Dumagan and Mount, 1993; Parfomak and Lave, 

1996; DeCanio and Watkins, 1998; Horowitz, 2001), and energy auditing (Waldman and Ozog, 1995; 

Anderson and Newell, 2004).  Although the experiment from which the analysis is derived used data 

directly provided to consumers concerning energy efficiency information, as in energy auditing, previous 

work on energy auditing has not employed a utility-consistent model and fails to conduct a welfare analysis 

of information provision.  The welfare analysis in this paper provides evidence that information provision is 

beneficial for consumers and is a promising policy option. 
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Providing households with appropriate information about the efficient usage of appliances is a potential 

policy to promote energy conservation because it helps to remove a ‘market barrier’ to energy conservation 

arising from consumers’ lack of information on energy efficiency (Southerland, 1991).  In sharp contrast to 

industrial customers, whose well-informed staff efficiently monitor and control energy usage at factories and 

office buildings, residential customers often find it difficult to monitor and control energy usage at home.  

For residential customers using a large number of energy appliances with different levels of energy 

efficiency, it is difficult to see how to use these appliances in a more efficient manner.  In addition to energy 

efficiency labels that help identify energy efficient products, providing residential customers with 

information on the efficient usage of energy durables is expected to promote energy conservation at home. 

The paper itself is organized as follows.  The discrete-continuous model of the choice of display usage 

and electricity consumption is developed in Section 2.  In Section 3, the data and estimation results of the 

model are discussed, along with the information effects on energy conservation and welfare analysis.  

Section 4 presents some conclusions. 

2. THE MODEL 

2.1 Discrete-Continuous Choices of Display Usage and Electricity Demand 

For each month during the experiment, households are assumed to allocate expenditure into two 

commodities: electricity service, S, and other goods, Z, given their ownership of durables.  Electricity service 

is defined as the comfort and convenience that households obtain from the usage of electrical appliances.  

The given level of electricity service is assumed to depend on electricity consumption, E, and the technical 
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energy efficiency of appliances, q.  This efficiency of appliances is defined as the ratio of service output to 

energy input.  The technical efficiency of appliances depends on various factors, including appliance 

attributes, space, weather conditions, and appliance usage.  Providing households with information on the 

efficient usage of appliances is expected to improve the technical efficiency of appliances. 

Given appliance attributes, space, and weather conditions, access to information on the efficient usage of 

electrical appliances is assumed to affect the level of electricity service through the improvement of energy 

efficiency, and the level of electricity service is assumed to be the product of electricity consumption and 

energy efficiency:2 

S = E · q(Mk, X), k = 0, 1, (1) 

where Mk represents a variable associated with the kth level of display usage and X represents factors 

affecting energy efficiency of appliances that are not associated with display usage during the experiment.  

Examples of factors included in X are ownership levels and attributes of electrical appliances, space, weather 

conditions, and households’ ability to process information about energy efficiency.  A value of k = 1 

indicates that households obtain information on the efficient usage of appliances through the display installed 

at their residence during the experiment, and k = 0 indicates that they never use the display. 

Access to information on the efficient usage of appliances is assumed to improve energy efficiency so 

that q(M1) > q(M0).  Equation (1) implies that, given the level of electricity service, electricity consumption is 

reduced by the improvement of energy efficiency through access to information.  For instance, given a 

thermostat setting of an electric room air conditioner, access to information on the efficient operation of the 
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air conditioner could improve its energy efficiency, thereby reducing electricity consumption and 

expenditure. 

Households’ allocation of income into electricity service and other goods can be described by the 

following utility maximization problem, subject to the technological constraint in Equation (1) and the 

budget constraint:3 

max. Uk(S, Z; Mk) 

E, Z 

subject to S =  E · q(Mk, X), 

peE + pz Z � y , (2) 

where pe, pz, and y are the electricity price, price of nonelectrical goods, and monthly income, respectively.  

Uk(S,  Z; Mk) represents a direct utility function conditional on the choice of the kth level of display usage.  It 

is assumed that U1 < U0, given the level of electricity service and consumption of nonelectrical goods.  This 

assumption indicates that access to information on the efficient usage of appliances requires households to 

incur costs of time and effort, thereby lowering the utility level of households. 

Households are assumed to choose the kth level of display usage to maximize their utility levels.  

Household i’s choice of display usage in month t is described by the following indirect utility function: 

V it (peit , pzit , yi ; M it,  X1it, X2it,  weit, wzit, eit) =  

max{V 0 it(peit , pzit , yi ; M0
 it, X1it, X2it, weit, wzit, e0

it), V 1 it(peit , pzit , yi ; M1
 it ,  X1it, X2it,  weit, wzit, e1

it)}, (3) 
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where V k it(.) denotes the indirect utility function that is conditional upon the choice of the kth level of display 

usage for household i in month t, k = 1 indicates that households use the display at least once in month t, and 

k = 0 indicates that they never use it in month t, and peit, pzit, and yi are the electricity price, price of 

nonelectrical goods, and income for household i in month t, respectively.  Since monthly data on income 

were not available, yi is assumed to be identical across all months for household i.  M it is a variable 

associated with the usage of the display for household i in month t.  It is assumed that M1
 it = 1 and M0

 it = 0 

for all households and months.  X1it is a vector of household characteristics, appliance holdings, and monthly 

dummies that are not associated with the choice of the level of display usage, and X2it is a vector of those 

variables that affect the choice of the level of display usage.  weit and wzit represent unobserved factors 

affecting the consumption of electricity and other commodities and ek
it  represents an unobserved factor 

affecting the choice of the kth level of display usage. 

Assuming a probability distribution of error terms in Equation (3), the choice of display usage is 

described by a probabilistic discrete choice model.  The application of Roy’s identity to the conditional 

indirect utility function leads to the conditional demand function of electricity.  Thus, the discrete choice of 

information acquisition and continuous demand for goods are jointly modeled and estimated so as to be 

theoretically consistent with utility maximization. 

2.2 Tranlog Indirect Utility Function and Electricity Cost Share Function 

The indirect utility function that is conditional upon the choice of the kth level of display usage for household 

i in month t is assumed to take the following form of a translog function (Christensen, Jorgenson, and Lau, 

1975): 
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logV k it  = –ae log (peit /yi) – az log (pzit /yi) – 0.5 bee [log (peit /yi)]2 – 0.5 bzz [log (pzit /yi)]2 

– 0.5(bez + bze)[log (peit /yi)] [log (pzit /yi)] – aem log (peit /yi) Mk
 it – ( aex X1it )log (peit /yi) 

– ( azx X1it )log (pzit /yi) + ck X2it – weit log (peit) – wzit log (pzit)  + ek
it , (4) 

where ae,  az, bee, bzz, bez, bze, and aem are parameters, and aex, azx, and ck are a vector of parameters.  The 

translog model is flexible in the sense that there are no restrictions on substitution or income elasticities and it 

has been widely applied to empirical studies on energy demand (Aigner and Hausman, 1980; Caves and 

Christensen, 1980; Cameron, 1985; Jorgenson, Slesnick, and Stoker, 1988).  Another attractive feature of the 

translog function is that the underlying indirect utility function is known and exact welfare measurement is 

possible.  In contrast to familiar flexible functional forms such as the almost ideal demand system, 

generalized logit, Rotterdam and generalized Leontief models, the translog indirect utility function is linear 

in parameters and is more easily estimated than other flexible functional forms.  These have either 

complicated indirect utility functions (almost ideal demand system and generalized Leontief models) or no 

explicit form of indirect utility function (generalized logit and Rotterdam models).4 

Assuming that the error terms e0
it and e1

it are normal with zero means, the term e0
it – e1

it is also normally 

distributed with mean zero and with variance �.  Assuming further that � = 1, the probability of using the 

display is described by the following probit model: 

Pr{ d it = 1} = Pr{logV 1 it � logV 0 it}  = �(R it) 

Pr{ d it = 0} = Pr{ logV 1 it < logV 0 it} = 1 – Pr{ d it = 1} =  1 – �(R it), (5) 

where �(.) is the standard normal distribution function, and 
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R it = –aem log (peit /yi)( M1
 it – M0

 it ) + ( c1 – c0) X2it . 

d it is a dummy variable that becomes unity when the display is used at least once for month t by household i 

and zero otherwise. 

Assuming that (1) bez = bze (symmetry), (2) ae + az + aex X1it + azx X1it + aem(d it M
1
 it + (1 – d it) M0

 it) = 1 

(normalization, Pollak, and Wales, 1992, p. 56), and (3) pzit = 1 for all households in all months, the 

application of Roy’s identity to the conditional indirect utility function in Equation (4) leads to the following 

form of a cost share function of electricity CS it: 

CS it = [ae + bee log(peit) – (bee + bez)log(yi) + aem(d it M1
 it + (1 – d it) M0

 it) + aexX1it]/D + (weit/D), (6) 

where 

D = 1 + (bee + bez)log(peit) – (bee + bzz + 2bez)log(yi). 

The third assumption is necessary because no data on the prices of nonelectrical goods were available for 

households participating in the experiment.  The sum of cost shares should be unity for all observations, and 

the cost share equation for nonelectrical goods is dropped in estimation.  The error terms (e1
it – e0

it) and weit/D 

are assumed to be distributed according to a bivariate normal distribution, and Equations (5) and (6) are 

jointly estimated with the parameter restrictions associated with symmetry and normalization. 

2.3 Econometric Considerations 

The probabilistic choice model of display usage and the electricity cost share model contain two endogenous 

variables: the electricity price (peit) and the display usage dummy (dit).  The marginal price of electricity is 
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used for peit.  Inverted block rates are applied to Japanese households, and the marginal price of electricity 

depends on which consumption block is chosen.  The tariffs have a three-tier inverted block rate structure 

and consist of energy and demand charges.5  During the experiment, the first block of 120 kilowatt hours 

(kWh) had a marginal price of 17.64 cents per kWh (assuming one US dollar = 100 yen).  Beyond that, and 

up to 280 kWh, the marginal price rose to 23.29 cents per kWh.  The highest price was 25.59 cents per kWh 

for consumption over 280 kWh. 

The unobserved factors affecting households' choice of electricity price may be correlated with the error 

terms ek
it and weit/D.  Because of the endogeneity of electricity prices, the estimates of Equations (5) and (6) 

are biased.  A predicted value of the marginal price of electricity was used to correct for a bias associated 

with the endogeneity of electricity prices.  This predicted value was obtained from the fitted value of 

electricity consumption, which was computed by regressing monthly electricity consumption of each 

household on selected exogenous variables (Train and Mehrez, 1994).  These exogenous variables are the 

contracted amount of electricity, the number of household members, the number of electric room air 

conditioners, the number of TV sets, ownership dummy variables for electric clothes driers and dishwashers, 

and dummy variables for the months of July and August.  All of these variables displayed significant 

positive coefficients at the 1% level. 

Equation (6) also contains the display usage dummy, d it, which is also considered to be an endogenous 

variable.  The level of display usage is assumed to be affected by the unobserved factors that are correlated 

with the error term in Equation (6).  Because of the endogeneity of display usage, estimates of Equation (6) 
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are biased.  A Heckman-type correction term is added to Equation (6) to correct for the endogeneity bias 

(Heckman, 1979; Metcalf and Hassett, 1999).  Specifically, the correction term, H it, is given by: 

H it = �(R it)/�(R it)  if k = 1 

H it = –�(R it)/�(–R it) if k = 0, (7) 

where �(.) is the standard normal density function.  The coefficient of H it that is added to Equation (6) 

implies covariance between the error terms weit/D and (e1
it – e0

it). 

3. DATA AND ESTIMATION RESULTS 

3.1 The Data 

The New Energy and Industrial Technology Development Organization (NEDO) and the Kyushu Electric 

Power Company (KEPCO) jointly conducted an experiment during the summer working days in 1996.  In 

the experiment, participating households could obtain information on the efficient usage of electrical 

appliances through a display at their dwellings.  Households could easily see how to use electrical appliances 

such as room air conditioners, refrigerators, TV sets, and clothes washers through the display at any time 

during the experiment.  Households did not incur any of the costs of display installation or of the electricity 

used to operate the display.  During the period of the experiment, no monetary incentives were paid to 

participating households. 

The NEDO and KEPCO began soliciting participants for the experiment in 1994.  They used a random 

sampling procedure to select households living in the Maebaru District of Fukuoka City.  The population of 
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Fukuoka City is approximately 1.3 million, and Maebaru is located in the west of Fukuoka City.  The 

experiment lasted from the beginning of July to the end of September in 1996, excepting weekends and 

public holidays. 

Use of the display was recorded whenever participants activated the display at least once during each 

month.  Through the display, participants could see eight programs for the efficient usage of electrical 

appliances at any time during the experiment.  Each program explained how to use electrical appliances 

more efficiently with elaborate charts and illustrations on the screen of the display.  Examples included room 

air conditioners, refrigerators, TV sets, washing machines, clothes driers, and microwave ovens.  Table 1 

presents some examples of the information provided on the efficient usage of these appliances. 

Table 2 presents information on electricity usage per day, the ratio of households using the display at 

least once each month, demographic characteristics, and appliance holdings.  Data on income, demographic 

characteristics, and appliance holdings were collected from a questionnaire mailed during the experiment.  

Daily electricity usage was recorded by the electric utility.  After eliminating those observations with missing 

data, data were available on 194 households.  We excluded participants whose data on electricity 

consumption and display usage were not completely recorded because of equipment failure during the 

experiment. 

Electricity consumption in September was much lower than in previous months.  The ratio of 

households using the display was largest during the first month of the experiment and lower in later months.  

This may imply that the length of learning period differed across households, depending on their eagerness 

and ability to process information. 
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3.2 Estimation Results 

Pooled data on 194 households and three months (July, August, and September in 1996) were used to jointly 

estimate the parameters in display usage choice (Equation (5)) and electricity cost share (Equation (6)) with 

the variable H it (Equation (7)).  A full information maximum likelihood (FIML) estimation procedure was 

employed to obtain estimates of these parameters.  These FIML estimates of the discrete-continuous choice 

model are asymptotically unbiased and efficient.  A two-step estimation of Equations (5) and (6), which first 

estimates Equation (5) and then estimates Equation (6) with the predicted value of H it obtained from the 

parameters of Equation (5) at the first step, was also conducted to obtain starting values for the FIML 

estimation.  The FIML estimates are expected to converge by setting the two-step estimates as the starting 

values (Hanemann, 1984).  The BHHH (Berndt–Hall–Hall–Hausman) method was used to compute the 

covariance matrix of coefficients. 

Table 3 summarizes the estimation results of the indirect utility function and electricity cost share 

function.  The electricity cost share was normalized so that the share of electricity expenditure was 50% at 

the sample mean.  Of the explanatory variables, income and the nondummy variables associated with X1it 

were also normalized to unity at their sample means.  Explanatory variables associated with household 

characteristics, appliance holdings and monthly dummies were only included if they were significant at the 

10% level of significance or lower. 

3.2.1 Conservation Effects of Information Provision 

As shown, display usage significantly affected the household demand for electricity.  As shown in Table 3, 

the estimated coefficient aem in Equations (5) and (6) is statistically significant at the 1% level.  The negative 
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estimated coefficient aem implies that the use of the display promoted energy conservation.  The energy-

conservation effect of information is also indicated by Sexton et al. (1989) and Matsukawa (2004).  Sexton 

et al. (1989) estimated the effect of the exogenous dummy variable for the presence of the monitor in a time-

of-day pricing experiment in the USA.  Sexton et al. (1989) found that the presence of the monitor 

contributed to a reduction in electricity usage during the peak period by providing consumers with detailed 

information on their expenditure of electricity and time-of-day prices.  Matsukawa (2004) also found the 

energy-conservation effect of monitor-provided information about households’ own usage of electricity in a 

Japanese experiment.  Matsukawa (2004) concluded that the contribution of monitor usage to energy 

conservation was modest, as indicated by the small estimates of the elasticity of electricity demand with 

respect to monitor usage. 

Although the information provided by monitors was associated with electricity prices and households’ 

usage of electricity in these previous studies, the present paper examines information about how to use 

electrical appliances efficiently.  Thus, the estimates in this paper directly reflect the effects of information on 

energy conservation.  It should be noted that previous work did not use a utility-consistent model for the 

analysis of information effects on energy conservation, whereas the present analysis applies a discrete-

continuous model to the analysis of information effects on energy conservation. 

Using the estimated coefficient aem in Table 3, the information effect of energy conservation was 

computed at the sample mean for each month in Table 4.  Information provision was found to reduce daily 

electricity consumption of a participating household by approximately 0.141 kWh, or by 1.05% of the 

average daily consumption of electricity per household during the experiment (13.3 kWh per day).  This 
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reduction in electricity consumption is relatively modest because: (1) information provided through the 

display was associated only with some major appliances so that energy conservation activities of the 

household were confined to these appliances; (2) households using the display did not necessarily see all 

programs, and information on some appliances was disregarded; and (3) households using the display did 

not perfectly implement energy conservation activities because of constraints on resources such as time and 

effort. 

3.2.2 Effects of Price, Income, and Household Characteristics on Electricity Demand 

Using the parameter estimates in Table 3, price and income elasticities were computed at the sample mean.  

The results are shown in Table 5.  Except for the uncompensated elasticity of electricity demand with respect 

to the price of nonelectrical goods, all elasticity estimates are significant at the 1% level of statistical 

significance.  The compensated own-price elasticities are negative whereas the compensated cross-price 

elasticities are positive.  This implies that consumer preferences are well behaved, at least, at the sample 

mean.  In fact, all observations exhibited negative values of the compensated own-price elasticities and 

positive values of the compensated cross-price elasticities. 

Uncompensated price elasticities, which hold income but not utility constant, are also presented in Table 

5.  The uncompensated elasticity of electricity with respect to price of nonelectrical goods is positive.  In 

contrast, the uncompensated elasticity of nonelectricity demand with respect to electricity price is negative, 

because the income effect on nonelectricity demand is dominant.  The uncompensated own-price elasticity 

of electricity was –0.58 at the sample mean.  This own-price elasticity of electricity lies close to the estimate 

(–0.55) of Barnes, Gillingham, and Hagemann (1981).  The improvement in energy efficiency may raise 
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energy consumption if the own-price elasticity of electricity in absolute terms is larger than unity (Wirl, 1997, 

p. 28).  This ‘conservation paradox’ would not happen in our case because the uncompensated own-price 

elasticity of electricity is far less than unity in absolute terms. 

The elasticity of residential electricity demand with respect to income is 0.52 at the sample mean and is 

significant at the 1% level.  This level of income elasticity is slightly larger than that found for summer (0.46) 

in Herriges and Kuester (1994).  The estimates of income elasticities are significantly different from unity for 

both electrical and nonelectrical goods.  This implies that consumer preferences are not homothetic.  In fact, 

the null hypothesis of homotheticity, i.e., bee = bzz = –bez, was rejected at the 1% level according to a Wald 

test. 

Turning to household characteristics associated with X1it, contracted amount of electricity, the total 

number of household members, and the age of the household head have positive impacts on electricity 

demand.  Given the number of household members, the number of the elderly in the household only slightly 

reduced electricity usage.  Electrical appliances such as room air conditioners, TV sets, and dish driers 

significantly raised electricity demand.  When compared with the month of September, households used 

more electricity in July and August, which is also suggested by the positive coefficients for the monthly 

dummies in Table 3. 

Display usage was affected by the number of children 0–6 years old in the household, which is 

associated with X2it in Equation (5).  The positive coefficient of this variable implies that households with 

small children tended to use the display more than those without small children during the experiment.  The 
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ratio of households using the display was highest in July and lowest in September, as shown by the 

coefficients of monthly dummies associated with X2it. 

Finally, unobserved factors affecting display usage choice may be positively correlated with electricity 

demand, as the estimated covariance between the error terms weit/D and (e1
it – e0

it), denoted by �de, was 

positively significant at the 5% level.  Thus, households using more electricity were more active in obtaining 

information on energy conservation. 

3.3 Welfare Analysis of Information Provision 

To examine the benefits of the information consumers received, the compensation for changes in display 

usage was estimated by using the estimation results of the discrete-continuous model of display usage and 

electricity demand.  The compensation corresponds to income changes that would counterbalance a change 

in display usage level and leave the indirect utility level unchanged.  The estimates of compensation 

presented indicate the benefits to consumers of the information received during the experiment. 

Consumers receive the benefits of information on the efficient usage of appliances through the 

improvement of energy efficiency.  This improvement in energy efficiency raises the direct utility level 

through two paths: (1) holding electricity consumption constant, the improvement of energy efficiency raises 

the level of electricity service, thereby increasing the direct utility level; and (2) holding the level of 

electricity service constant, the improvement of energy efficiency reduces electricity consumption, thereby 

increasing the consumption of nonelectrical goods and the direct utility level.  Consumers also incur costs of 

information through the decrease in their direct utility levels, given the consumption of electrical and 



 18 

nonelectrical goods.  The compensation for a change in display usage measures the amount of net benefits 

that consumers obtain from access to information on the efficient usage of appliances. 

The total compensation required to make household i indifferent both to the case of k = 1 (using the 

display) and to the case of k = 0 (not using the display) in month t, denoted by CVit, is defined in the 

following equation (Parks and Weitzel, 1984): 

V 0 it (peit , pzit , yi) = V 1 it (peit , pzit , yi + CVit). (8) 

Information acquisition can be said to benefit household i in month t whenever CVit is negative, and (–

CVit) measures the size of the information benefit.  If households choose display usage so as to maximize 

their utility in the experiment, the inequality V 0
 it � V 1

 it holds according to Equation (3).  Thus, CVit in 

Equation (8) should be nonpositive. 

Neglecting the error terms and substituting Equation (4) into Equation (8), yields the following quadratic 

equation with respect to log(yi + CVit), which is solved to calculate the compensating variation for a change 

in display usage: 

– 0.5(bee + bzz + 2bez)[log(yi + CVit)]2 + [1 + (bee + bez)log(peit)] log(yi + CVit) – aem log (peit)(M1
 it –

 M0
 it) + (c1 – c0)X2it + 0.5(bee + bzz + 2bez)[log(yi)]2 – [1 + (bee + bez)log(peit)] log(yi) = 0. (9) 

Note that M1
 it = 1 and M0

 it = 0 for all households and months.  Although two different solutions for (–

CVit) were obtained from Equation (9), one solution exhibited an extremely large value.  Having excluded 

this extreme solution, the solution of Equation (9) for (–CVit) was 2.5% of their income level in the last 

month of the experiment (September) for households who chose the largest usage block of electricity (i.e., 
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peit = 25.59 cents per kWh), earned the mean monthly income, and had no small children.  This 

compensation relative to income was close to the average expenditure share of electricity for Japanese 

households.  So long as the sum of the installation and operating costs of the display and software and lost 

profits of the electric utility is less than the sum of the compensation for the change in display usage (–CVit) 

and the environmental benefits of energy conservation, the provision to households of information on 

efficient usage of appliances through the display deserves to be considered as a favorable policy option for 

energy conservation. 

4. CONCLUSION 

This paper investigated the effect of information about the efficient usage of appliances on the residential 

demand for electricity using data from a Japanese experiment.  In the experiment, a small display was 

installed in the residence of participating households.  The display was designed so that each household 

could easily obtain information on the efficient usage of electrical appliances at any time.  Participating 

households that were eager to conserve energy could learn about how to use their appliances more 

efficiently without incurring any installation costs or the cost of electricity associated with use of the display. 

A discrete-continuous choice model of display usage and electricity consumption, which is consistent 

with utility maximization, was estimated by a full information maximum likelihood (FIML) estimation 

procedure.  FIML estimates of a translog indirect utility function and electricity cost share function indicate 

that display usage contributed to a reduction in electricity consumption and that the energy conservation 

effect of display usage was relatively modest. 



 20 

The findings of this paper suggest that energy conservation can be enhanced by providing consumers 

with appropriate suggestions on the efficient usage of energy durables.  An example includes the Internet, 

which enables consumers to obtain such information at relatively low cost.  The effectiveness of such 

services can be explored by investigating how consumers respond to alternative forms of information on 

energy conservation.  The estimates of information effects in this paper will be of value in the investigation 

of consumer responses to information on energy conservation. 

NOTES 

1. Although Hausman and Trimble (1984) applied an almost ideal demand system to peak and off-peak 

electricity demand models, they assumed a linear expenditure system for total electricity demand and 

composite goods, which imposes substitution and income elasticities.  King (1980) applied a homothetic 

translog model, which assumes that income elasticity is unity, to the analysis of a discrete-continuous model 

of tenure choice and housing demand. 

2. Following Wirl (1997, p. 19), for simplicity, Equation (1) assumes a linear relationship between the level 

of electricity service and electricity consumption.  The linear relationship between electricity service and 

consumption may not hold for some electrical appliances.  For instance, Dubin, Miedema, and Chandran 

(1986) assume a quadratic relationship between electricity service and consumption for heating and cooling. 

3. The utility-maximization problem in Equation (2) can be applied to the analysis of information on other 

durables.  For example, suppose S is the level of service a consumer receives from a cellular phone, E is the 
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usage level of the cellular phone, and Mk is the kth level of access to homepages that show how to setup the 

cellular phone.  Assuming that S is a function of E and Mk, the discrete choice of information acquisition and 

continuous demand for phone usage can be jointly analyzed by the utility-maximization model in Equation 

(2). 

4. Although the cost share functions associated with the nonhomothetic translog model are not linear in 

parameters, it was not difficult, as shown in Section 3.2, to jointly estimate the indirect utility function and 

cost share functions by a full information maximum likelihood estimation procedure. 

5. The demand charge depends on the contracted amount of electricity.  Since no households changed the 

contracted amount of electricity during the experiment, the demand charge levels were constant and not 

modeled in this paper. 
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Table 1.  Examples of Information on the Efficient Usage of Electrical Appliances 
Appliance Item Suggestion 

Filters Clean air conditioner filters at least once in two weeks. Room air 
conditioners Timers Use a timer to operate an air conditioner only when heating or cooling is 

necessary. 
Food storage Do not store too much food in a refrigerator. Refrigerators 
Cleaning Keep the door seals of a refrigerator clean. 
Brightness Do not make the screen too bright. 
Operation Turn off a TV set when you are not watching it. 

TV sets 

Standby power Unplug a TV set to save standby power. 
 
 

Table 2.  Description of Sample Characteristics  
Description  Means (standard deviations) 
Electricity usage in July           (kWh per day) 14.1 (6.2) 
Electricity usage in August      (kWh per day) 15.6 (6.7) 
Electricity usage in September  (kWh per day) 10.4 (4.4) 
Ratio of households using the display in July           (%)  83.2 
Ratio of households using the display in August      (%) 75.8 
Ratio of households using the display in September (%) 61.3 
  Household income (1 million yen per year) 7.3 (3.2)  
 Contracted amount of electricity (ampere) 37.6 (10.7) 
 Number of household members 3.6 (1.5) 
 Number of children, 0-6 years old 0.2 (0.6) 
 Number of elderly, over 65 years old 0.4 (0.7) 
 Age of household head 54.3(12.6) 
 Number of electric room air conditioners 2.4 (1.3) 
 Number of TV sets 2.3(1.0) 
 Ratio of households owning dishwashers (%) 9.3 
 Ratio of households owning dish driers (%) 50.5 
 Ratio of households owning electric cloth driers (%) 22.2 
Number of Households 194 
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Table 3.  Full Information Maximum Likelihood Estimates of the Indirect Utility Function and  

Electricity Cost Share Equation (standard errors are in parentheses) 
aem : display usage -0.132 (0.050)*** 
 ae 0.202 (0.035)*** 
Variables associated with X1it 
     Contracted amount of electricity 0.045 (0.012)*** 
     Number of household members 0.109 (0.008)*** 
     Number of elderly, over 65 years old -0.006 (0.002)** 
     Age of household head 0.054 (0.017)*** 
     Number of electric room air conditioners 0.036 (0.005)*** 

 Number of TV sets 0.029 (0.006)*** 
      Dish drier dummy 0.019 (0.006)*** 
      July dummy 0.142 (0.013)*** 
      August dummy 0.147 (0.011)*** 
Variables associated with X2it 

Constant 0.023 (0.105) 
       Number of children, 0-6 years old 0.433 (0.112)*** 

July dummy 0.600 (0.138)*** 
       August dummy 0.396 (0.136)*** 
 bee 0.349 (0.065)*** 
bez  -0.075(0.058) 
bzz -0.139(0.061)** 
�de  : covariance between weit/D and (e1

it - e0
it)   0.074 (0.031)** 

standard deviation of weit/D  0.065 (0.002)*** 
Log likelihood at convergence 439.47 
Note:  * denotes statistically significant at the 10% level, ** denotes 5%, and *** denotes 1%.  

 
 
 
 
 
 
 
 

Table 4. Energy Conservation Effect of Information Provision at Sample Mean 
 

 Electricity reduction (kilowatt hours 
per day) 

Ratio of electricity reduction to total 
electricity consumption (%) 

July 0.148 1.05 
August 0.163 1.04 
September 0.109 1.05 
Monthly average 0.141 1.05 
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Table 5. Price and Income Elasticities at Sample Mean (standard errors are in parentheses) 
 
Uncompensated elasticity of the demand for electricity with respect to the price of 
electricity  

-0.583 (0.120)*** 

Uncompensated elasticity of the demand for non-electricity goods with respect to the 
price of non-electricity goods 

-1.066 (0.118)*** 

Uncompensated elasticity of the demand for electricity with respect to the price of 
non-electricity goods 

0.065 (0.116) 

Uncompensated elasticity of the demand for non-electricity goods with respect to the 
price of electricity 

-0.425 (0.122)*** 

Compensated elasticity of the demand for electricity with respect to the price of 
electricity  

-0.321 (0.118)*** 

Compensated elasticity of the demand for non-electricity goods with respect to the 
price of non-electricity goods 

-0.328 (0.120)*** 

Compensated elasticity of the demand for electricity with respect to the price of non-
electricity goods 

0.321 (0.118)*** 

Compensated elasticity of the demand for non-electricity goods with respect to the 
price of electricity 

0.328 (0.120)*** 

Income elasticity of the demand for electricity 0.517 (0.017)*** 
Income elasticity of the demand for non-electricity goods 1.492 (0.017)*** 

Note:  * denotes statistically significant at the 10% level, ** denotes 5%, and *** denotes 1%.  
 
 
 

 


