
The Option Value of Scientific Uncertainty on Pest - Resistance Development of 

Transgenic Crops 

 
by 

 
 

Justus Wesseler 
 

Assistant Professor 
Environmental Economics and Natural Resources Group,  

Social Sciences Department, Wageningen University, Hollandseweg 1,  
6706KN Wageningen, The Netherlands 

Phone: +31 317 482300, Fax: +31 317 484933,  
e-mail: justus.wesseler@alg.shhk.wau.nl 

 
 
 

Paper prepared for presentation at the 
 2nd World Congress of Environmental and Resource Economists 

Monterey, CA USA 
June 24-27, 2002 

 
 
 

Abstract. In this paper the option value of waiting under scientific 
uncertainty will be derived using the difference between the geometric 
Brownian motion and the mean reverting process by applying contingent 
claim analysis. The results will be compared with those generated by 
either using a geometric Brownian motion or a mean-reverting process 
only. An example based on the decision problem whether or not to release 
herbicide tolerant rape seed in the EU will be used to illustrate the 
differences. The paper contributes to the suggestion made by biologists to 
further analyze the sensitivity of the results using the real option approach, 
provides insights about the magnitude of error that can be made by 
choosing the wrong process, provides a solution to the problem and 
highlights the implication for the decision of whether or not to release 
transgenic crops. The results show that scientific uncertainty is less 
important than one would expect at first hand. 
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The Option Value of Scientific Uncertainty on Pest - Resistance Development of 

Transgenic Crops 

 

1. Introduction 

Economists have proposed the real option theory for the ex-ante valuation of costs and 

benefits from transgenic crops. Farrow, Morel, Wu and Casman (2001) in their paper 

model the uncertain incremental net-benefits from transgenic crops by using a 

geometric Brownian motion process1. The build up of pest resistance is included by 

adding a jump process describing the decay of resistance. Irreversibilities, I, are 

explained by possible gene drifts from transgenic crops. Wesseler and Weichert 

(1999) and Wesseler (2002) used almost the same approach. Wesseler (ibid.) included 

in the later paper the possibility of irreversible benefits, R. Irreversible benefits were 

defined as the reduction of irreversible costs of the alternative technology. Gilligan 

(2002) in a review of Farrow et al. (ibid.) and Wesseler (ibid.) argued that further 

discussion on the sensitivity of the results is needed in a dialogue with biologists. One 

assumption made in both papers is that resistance is inevitable. This does not 

necessarily have to be the case. As Gilligan (ibid.) clearly pointed out gene drift may 

lead to invasion but invasion may not lead to persistence and pest resistance may 

occur but may also break down again over time. That is to say that there is not only 

uncertainty about the economic variables but also uncertainty about the biological 

processes. This adds uncertainty to the models used by Farrow et al. and Wesseler and 

will have two effects. On the one hand, this will lead to uncertain irreversible costs; 

on the other hand it will affect the incremental net-benefits from transgenic crops.  

                                                           
1 The incremental net-benefits are the differences between transgenic and non-transgenic crops.  



Let’s ignore for a while the uncertainties about the irreversible costs by 

assuming they are constant2, and concentrate on the incremental net-benefits. 

If the incremental net-benefits of a transgenic crop will be negatively affected 

over time due to invasion, they will decrease, if not, it can be assumed they will 

continue to grow. Both situations are not unfamiliar to economists. A geometric 

Brownian motion can model the uncertain growth as has been done by Farrow et al. 

(ibid.) and Wesseler (ibid.). If pest resistance occurs, the decrease over time can be 

modeled by using a mean reverting process. The problem then would be to decide 

which kind of process to use.  

A solution to the problem would be simple if by using an appropriate 

econometric method time series data could be tested to decide which process to use. 

As Dixit and Pindyck (1994) and others (e.g. Gjolberg and Guttormsen, 2002) have 

pointed out the results are ambiguous. Depending on the time frame used, the tests 

either lead to a rejection or acceptance of a non-stationary process. They recommend 

choosing the process not based on time series analysis but based on theoretical 

grounds. This is a straightforward recommendation, if scientists can agree about the 

relevant theory. But as the case for transgenic crops shows (Gilligan ibid.), there is no 

scientific certainty about the stochastic benefits from transgenic crops. Scientists are 

aware of the problem, but have no method available that tells them which model to 

choose. This is what in this context will be called scientific uncertainty.  

From a decision makers point of view this may not be important if different 

processes do not lead to different recommendations. As Wesseler (2001) has pointed 

out, the choice of a stochastic process may but not necessarily will lead to different 

recommendations. Figure 1 shows a comparison between a geometric Brownian 

                                                           
2 That this is a useful assumption has been explained by Wesseler (ibid.). 



motion and a mean reverting process and the decision to release transgenic crops, 

where it is assumed that each process represents a scientific belief or view about the 

benefits from transgenic crops. The situations depicted under quadrant I and quadrant 

IV lead to unequivocal decisions: either immediate release, quadrant I, or delaying the 

release, quadrant IV. On the other, hand the situations depicted in quadrant II and III 

are equivocal: depending on the stochastic processes either immediate release or 

delaying the release is economical. Specifically the situation in quadrant III is of 

importance as the geometric Brownian process dominates the mean reverting process 

by almost first degree of stochastic dominance (FSD).3 

 

 

GB1 

MR2 

I 

Release 

Release 

V ≥ V*GB ∧  V ≥ V*MR 

II 

Delay 

Release 

V ≤ V*GB ∧  V ≥ V*MR  

 

GB 

MR 

III 

Release 

Delay 

V ≥ V*GB ∧  V ≤ V*MR  

IV 

Delay 

Delay 

V ≤ V*GB ∧  V ≤ V*MR  

1GB: geometric Brownian motion; 2MR: mean reverting process. 

Figure 1: Possible Combinations of Results Under Different Belief Systems 

(Wesseler, 2001). 

 

These observations lead to an important question: Do we have to choose 

between different processes or is it possible to combine the processes to also capture 

                                                           
3 For a definition of almost first degree of stochastic dominance see Anderson et al. (1989). 



the uncertainty about the choice of the stochastic process? This is what will be 

discussed in this paper. 

In the following, the option value of waiting under scientific uncertainty as 

illustrated in quadrant III of figure 1 will be derived using the difference between the 

geometric Brownian motion and the mean reverting process by applying contingent 

claim analysis. The results will be compared with those generated by either using a 

geometric Brownian motion or a mean-reverting process only. An example based on 

the decision problem whether or not to release herbicide tolerant rape seed in the EU 

will be used to illustrate the differences. The paper contributes to the suggestion made 

by Gilligan (ibid.) to further analyze the sensitivity of the results by Farrow et al. 

(ibid.) and Wesseler (ibid.), provides insights about the magnitude of error that can be 

made by choosing the wrong process, provides a solution to the problem and 

highlights the implication for the decision of whether or not to release transgenic 

crops. 

 

2. The Option Value Under Scientific Uncertainty 

The full value of owning the right to release a specific transgenic crop, F(B,t), 

depends on the incremental net-benefits B from releasing the transgenic crop. 

Exercising the option to release provides a benefit stream π(B,t) to the holder of the 

right4 and produces not only irreversible costs but also irreversible benefits as 

discussed in detail in Wesseler (2002). The owner of the option, the decision maker, 

likes to know the value of the option and if to exercise immediately that is allowing 

releasing the transgenic crop for planting. Let’s also assume the decision maker likes 

to release the transgenic crops without bearing any economic risk. By replicating the 



uncertain returns with known values from the market will derive the riskless value of 

the option to release transgenic crops. This is one of the basic insights of real option 

theory.5 As Fisher (2000) has demonstrated this is equivalent to the quasi-option 

approach in environmental economics by Arrow and Fisher (1974) and Henry (1974) 

and further developed by Fisher and Hanemann (1986) and Hanemann (1989). 

If it is assumed that the incremental net-benefits B of releasing transgenic crops 

follow a mean reverting process, they should be released immediately if B is greater 

than the identified hurdle rate for a mean reverting process *
MRB . As B may also follow 

a geometric Brownian motion that dominates the mean reverting process the 

additional uncertainty of the difference between the two stochastic processes, the 

scientific uncertainty, *
SUB , can be added, resulting in a hurdle rate *

SUMRB + : 

*
SU

*
MR

*
SUMR BBB ⋅=+  (1) 

The hurdle for transgenic crops under a mean-reverting process has been 

identified and discussed already elsewhere (e.g. Wesseler, 2002). Now, the steps to 

derive the real option value under scientific uncertainty and hence the hurdle for 

scientific uncertainty will be presented. Following Dixit and Pindyck (1994, pp. 20-

21) a portfolio can be constructed that replicates the risk of releasing transgenic crops 

which consists of n units of incremental net-benefits from transgenic crops, nB, and 

one Euro invested in a riskless asset. If this portfolio will be hold over a short time 

interval, dt, the value of the portfolio will change depending on the rate of return, r, of 

the riskless asset and the change in value of nB. The change in value of nB may pay a 

dividend, δ, from holding it over the short time interval nδBdt and an uncertain return 

                                                                                                                                                                      
4 Think, e.g., of the EU-commission acting as the representative of EU citizens, similar to the manager 
of a private company acting on behalf of the stock owners. 
5 The seminal book by Dixit and Pindyck (1994) demonstrate the wide application possibilities of the 
real option approach. Nobel laureate Robert C. Merton (1998) provides an overview of the application 



ndB. dB follows a process which is the difference between a geometric Brownian 

process and a mean reverting process, where the geometric Brownian process 

dominates the mean reverting process by FSD: 

( ) BdzBdtBBBdz~BdtdB σησα −−−+=  (2) 

with  B: incremental net-benefits of transgenic crops, 

 α: growth rate of incremental benefits assuming geometric Brownian motion, 

 σ~ : variance rate of the geometric Brownian motion, 

 η: speed of reversion, 

 σ : variance rate of the mean-reversion process, 

 B : reversion level, 

 dz: Wiener process 

The expected value of a percentage change in incremental net-benefits over a 

short time interval is ( )BB −−ηα  which is not constant as it depends on B which 

fluctuates stochastically. Therefore, as B has to provide an expected rate of return 

equal to the risk adjusted rare of return, µ, derived from the capital asset pricing 

model as otherwise it would be more economically to reallocate investments, the 

expected return of the investment has to equal ( ) δηαµ +−−= BB  and hence δ 

depends on B, ( ) ( )BBB −+−= ηαµδ  (Dixit and Pindyck 1994, 147-150).  

The return per Euro invested in the whole portfolio is: 

( )( )
nB1

BdzBdtBBBdz~BdtnBdtnr
nB1

dBnr
+

−−−+++=
+

+ σησαδσ  

This can be rearranged to provide: 

( )( ) ( )dz
nB1

~nBdt
nB1

BBBnr
+

−+
+

+−−+ σσδηα . (3) 

                                                                                                                                                                      
of option pricing theory outside financial economics. The book by Amram and Kulatilaka (1999) 



The first part of equation 3 is certain while the second part is uncertain. To 

simplify the notation we write BdzBdz~Bdz σσσ −= . This portfolio can be compared 

with planting transgenic crops instead of buying them. Planting transgenic crops 

means exercising the option and hence, costs F(B,t). Exercising the option provides 

immediate incremental net-benefits π(B,t)dt. At the time of release this benefits are 

known with certainty over the short time interval dt. Also, the value of the option to 

release transgenic crops changes over the time interval dt. This random change can be 

calculated by applying Ito’s Lemma:  

( )( ) dzBFdtFB
2
1BFBBFdF BBB

22
Bt σσηα +



 +−−+= . 

The return per Euro invested than is: 

( )( )
dz

F
BF

dt
F

FB
2
1BFBBF

F
dFdt B

BB
22

Bt σ
σηαπ

π +




 +−−++

=+ . (4) 

As the portfolio should replicate the risk of releasing transgenic crops, the 

uncertain part of the portfolio has to be equal to the uncertain part of the returns from 

releasing them:  

dz
F
BFdz

nB1
nB Bσσ =
+

. (5) 

The arbitrage pricing principle says that two assets in the market with the same 

risk have to have the same value. If the same line of thinking will be applied, than also 

the certain return of the portfolio and the certain return from the release of transgenic 

crops have to be the same: 

( )( ) ( )( )
dt

F

FB
2
1BFBBF

dt
nB1

BBBnr BB
22

Bt σηαπδηα +−−++
=

+
+−−+ . (6) 

                                                                                                                                                                      
includes several case studies of real option pricing. 



If nB/(1+nB) is substituted on the right-hand side by dz
F

BFB  from equation 4 and δ 

substituted by ( )BB −+− ηαµ , equation 5 can be rearranged to provide: 

( )( ) 0rFBFBBrFB
2
1

BBB
22 =+−−−+−+ πηαµσ . (7) 

The term Ft dropped as an infinite stream of returns from transgenic crops is assumed 

if once released. The boundary conditions for the differential equation 7 are the well-

known ‘value matching’ (equation 9) and the ‘smooth pasting’ (equation 10) 

conditions and that the value of the option to release transgenic crops has no value if 

there are no incremental net-benefits (equation 8): 

0)0(F =  (8) 

RI*B*)B(F +−=  (9) 

*B*)B(F ′=′ . (10) 

A solution to the differential equation 7 and hence, the value of the option, can be 

found by defining a function of the form: 

( ) ( )BhABBF θ= , (11) 

where A and θ are constants that have to be chosen to solve equation 7. Following the 

steps provided by Dixit and Pindyck (1994, 162-163), first equation 11 will be 

substituted in equation 6. After rearrangement: 

( ) ( )

( ) .0hhBBrBh
2
1B

rBr1
2
1hB

B
2

BB
21

2

=



 ++−+−++

+



 −−+−+−

+ ηθηηαµθσσ

θηαµθθσ

θ

θ

 (12) 

Second, the terms in brackets both have to be equal to zero. The first bracketed term is 

a quadratic equation. As one of the boundary conditions is F(0) = 0, only the positive 



solutions will be considered. Solving the quadratic equation provides the following 

solution for θ: 

( )
2

2

22

r2
2
1BrBr

2
1

σσ
ηαµ

σ
ηαµθ +







 −−+−++−−+=  (13) 

Third, the second bracketed term can be transformed into a hypergeometric 

differential equation by the substitutions 2

B2x
σ

η−= , ( ) ( )xgBh = , x2B gB2h
σ

η−= , 

xx

2

2BB gB2h 




 −=

σ
η : 

( ) 0ggxbxg xxx =−−+ θ  (14) 

where  

( ) 2Br22b σηαµθ −+−+=  

Fourth, the solution to equation 14 is the confluent hypergeometric function 

( )b,;xH θ  (see Dixit and Pindyck 1994, p.163) which results in the following solution 

to equation 66: 

( ) 




 −= b,;B2HABBF 2 θ

σ
ηθ  (15) 

The values for A and the critical value B* where the release could be justified can be 

found numerically using the two remaining boundary conditions F(B*) = B*-I+R and 

FB(B) = 1. 

 

3. Application of the model 

The growth rate α and the variance rate σ~  were estimated by computing the 

maximum likelihood estimator assuming continuous growth (Campbell et al., 1997, 

                                                           
6 Note the difference to the result provided by Dixit and Pindyck for a mean-reverting process, where x 
is positive. 



Chapter 9.3). The estimators for α and σ~  in closed form for annual returns, g, over t 

= n years are: 

∑
= −







=

n

1t 1t

t

g
g

ln
n
1α̂  (16) 

( )( )( )∑
=

− −=
n

1t

2
1tt âggln

n
1~̂σ  (17) 

The estimators for the mean reverting process are ( ),b̂1lnˆ,b̂âĝ +−=−= η  and 

( )
( ) 1b̂1

b̂1lnˆˆ
2

−+

+= εσσ , where â  and b̂  are estimators of the linear regression 

( ) t1t1tt gbaggln ε++= −−  and εσ̂  is the standard error of the regression. a and b 

are substitutes for  

 ( )η−−= e1ga  (18) 

 ( ) 1tg1eb −
− −= η  (19) 

of a first order autoregressive process (AR(1)) with a normally distributed error term 

with mean zero and variance ( )η
ε η

σσ 2
2

2 e1
2

−−= . 

The same estimators can be used for the parameters of the combined process of 

equation 1. dB can be decomposed in dB = dBBM - dBMR.. 

The parameters to calculate the different hurdle rates will be estimated from 

FAO time series data for rape seed in France. Rape seed was chosen as herbicide 

tolerant seed varieties exist that show a high adoption rate in the United States and can 

be expected to be technically suitable for France as well where rape seed is grown on 

a large scale. The average return per hectare for rape seed in France over the period 

1970 to 1995 are provided by FAO (2002). As the FAO statistics provide only 

nominal prices, the data were transferred into real prices in US dollar (USD) using the 



United States Department of Agriculture (Shane, 2000) real exchange rates for rape 

seed. The data to estimate the mean-reverting process have been scaled down by 

dividing the annual gross revenue from rape seed by the estimated long-run average 

level, which was estimated to be about 5510 USD per hectare. These data have been 

used for the estimation of the parameter values shown in table 1 and table 2. 

In addition to the estimated parameter values the risk free interest rate, r, is 

assumed to be about 4.5%, which is equivalent to the interest rate at the European 

Central Bank for the month of December 2000. The risk adjusted rate of return µ is 

assumed to be 8%. For simplicity it is also assumed that the net irreversible costs  

I – R = 1. 

In the case of rape seed the immediate incremental net-benefits are about 32% if 

the results from Canada are applied to the EU (Serecon Management Consulting Inc. 

and Koch Paul Associates, 2001, Table 4.4). In this case modeling incremental net-

benefits B by a mean reversion process would result in a hurdle rate of *
MRB  = 1.296 

and passed by B = 1.32. The value of scientific uncertainty with 1.009 is low and 

increases the hurdle rate to about *
SUMRB +  = 1.308, which will also be passed by B. If a 

geometric Brownian motion would be assumed the hurdle rate would be *
GBB  = 2.43 

and not be passed. Ignoring the scientific uncertainty about the underlying stochastic 

process would in this case result in the wrong decision to not release transgenic crops, 

if a geometric Brownian motion would be assumed. 



Table 1. Parameter estimations for the geometric Brownian motion and the 

mean reverting process. 

Geometric Brownian motion Mean reverting process 

α̂  = 0.0473 â = 0.2635 

σ̂~  = 0.2871 b̂ = -0.2635 

 
εσ̂ = 0.2728 

 η̂ = 0.3059 

 σ̂ = 0.1824 

 

 

Table 2. Parameter values chosen for the calculation of immediate minimum benefits 
B* 

Parameter (annual) Value Source 

growth rate α̂  0.047 FAO (2002) 

risk-free rate of return r 0.045 European Central Bank, Dec. 2000 

standard deviation σ̂~  0.287 FAO (2002) 

risk adjusted rate of return, µ 0.080 assumed 

convenience yield, δ 0.033 (µ-α̂ ) 

β 1.453 equation (9) 

β/(β−1) 3.207  

2.429 geometric Brownian motion 

1.296 mean reverting process 

1.009 scientific uncertainty 

B*  
assuming I – R = 1 

1.308 including scientific uncertainty 
 



4. Conclusion 

In this paper we have addressed the problem of scientific uncertainty defined as the 

problem of identifying the correct stochastic process of incremental net-benefits from 

transgenic crops. Combining a mean reversion and geometric Brownian process 

reduced the problem of scientific uncertainty. An application of the approach to the 

release of rape seed indicated only a small impact of scientific uncertainty. Ignoring 

scientific uncertainty on the other hand may lead to a wrong decision. It still has to be 

shown if that in general is the case. 
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