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Abstract 
 
 
We investigate why we observe non-negative duration dependence among young 
unemployed men in urban Ethiopia. Assuming that genuine duration dependence is 
negative, there are five explanations for a non-decreasing hazard: the presence of 
unemployment benefits, the existence of Active Labour Market Policies, the change in 
labour demand, segmentation of the labour market, and unemployment as a queuing 
phenomenon.   We test each of these explanations and find that labour market 
segmentation is the only convincing one.  We also establish that genuine duration 
dependence is indeed negative in the long run.   
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Estragon: Wait. 

Vladimir: Let’s wait until we know exactly how we stand2 
 

 
 
 
1.  Introduction 

 

Negative duration dependence of unemployment has often been thought of as an 

established fact and has been a basic assumption in influential models [see for example 

Blanchard and Diamond (1994)].   The (conditional) probability of leaving 

unemployment would thus fall as one remains longer in unemployment; or spending 

time in unemployment would negatively affect someone’s chances to get a job.  

However, an overview of the literature on duration dependence in OECD countries (it 

is nonexistent for developing countries) shows that this is not what is found 

empirically, as is clear from Table 1.  In particular recent research often observes non-

negative duration dependence.  This has to do with the improved modelling techniques 

as well as with the richer information on the unemployed, both of which improve the 

ability to control for unobserved heterogeneity. 3  Negative duration dependence can 

indeed just be the consequence of not observing the characteristics that lead to long 

term unemployment in the first place.    

 

 

 

 

 

                                                 
2 Becket (1955)  Waiting for Godot  
 
3 A telling illustration is that when I started writing this paper, one could only control for unobserved 
heterogeneity in duration models by writing one’s own likelihood function.  Halfway through working on 
the paper, new software became available which had built in the option to choose between different 
distributions for unobserved heterogeneity.   
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Table 1:Overview of the empirical literature on duration dependence 
 

Data 
 

Duration dependence 
 

Source 
 

 
UK, 1972 

 
negative 

 
Nickel (1979) 

UK, 70’s, young workers negative Lynch (1984) 
UK, 1967-1987 negative Jackman and Layard (1991) 
UK, 1979-1992 negative van den Berg and van Ours (1994) 
UK, 1987-1988 negative Arulampalam and Stewart (1995) 
UK, West Belfast, 1995, long term unemployed  negative Sheehan and Tomlinson (1998) 
US, 1978-1985, young  negative Lynch (1989) 
US, 1967-1991, white males negative van den Berg and van Ours (1996) 
US, 1968-1992 negative Abbring, et al. (1997) 
Australia, 1984 negative Trivedi and Hui (1985) 
Italy, Lombardy, 1986, young  negative Torelli and Trivellato (1989) 
Norway,1989-1992,  first time job seekers negative Hernaes and Strom (1996) 
Spain, 1987-1996, young men negative Alba-Ramirez (1998) 
France, 1990-1993 negative van den Berg & van der Klaauw (2000) 
   
Greece, 1981, male no Meghir, et al. (1989) 
France, 1982-1992 no van den Berg and van Ours (1994) 
Spain, 1987-1996, young women no Alba-Ramirez (1998) 
   
US, 1980 – 1981, unemp insurance recipients  positive Katz (1986) 
US, 1980-82, household heads weak positive Dynarski and Sheffrin (1987) 
US, 1983, male benefit recipients weak positive Meyer (1986) 
Australia, early 80’s, young positive Hui (1986) 
Sweden, 1976-1977 positive Edin (1989) 
Norway,1989-1992, entitled to unemp.  benefits positive Hernaes and Strom (1996) 
   
The Netherlands, 1987 inverse U-shaped  

followed by constant 
Kerckhoffs, et al. (1994) 

The Netherlands, 1978-1991 inverse U-shaped 
positive net effect 

van den Berg and van Ours (1994) 

UK, 1978-1979, male inverse U-shaped Arulampalam and Stewart (1995) 
Slovenia, 1990-1992, unemp. benefit recipients inverse U-shaped Vodopovic (1995) 
France, 1986-1989, long term unemployed inverse U-shaped Bienvenue, et al. (1997) 
Russia, 1992-1994 inverse U-shaped Foley (1997) 
US, 1984-1988 inverse U-shaped Addison and Portugal (1998) 
Slovak Republic, 1994-1996 inverse U-shaped Lubyova and van Ours (1998) 
Hungary, 1992-1993, unemp. benefit recipients Inverse U-shaped Micklewright and Nagy (1996) 
   
US, 1983, male benefit recipiemts U-shaped Moffitt (1985) 
Canada, 1979-1980, male U-shaped Ham and Rea (1987) 
France, 1990-1993, male U-shaped van den Berg & van der Klaauw (2000) 
   
   
Note: Only the studies that have controlled for unobserved heterogeneity are listed.  If no further details are mentioned, the results 
are for the entire labour force, male and female, young and adults.  
 

 

We analyse duration dependence for male young adults in urban Ethiopia.   As 

described elsewhere, unemployment among young men in Ethiopia has special 

characteristics, but is not dissimilar from unemployment in other developing countries 

[see Serneels (2002)]. It is concentrated among relatively well-educated first time job 

seekers.  Half of them are looking for a public sector job.4  Time spent in 

                                                 
4 With around fifty percent of the urban young men unemployed, Ethiopia has one of the highest 
unemployment rates worldwide.  Serneels (2002) investigates the nature of unemployment in urban 
Ethiopia in more detail and finds that it is  concentrated among young, relatively well educated, first time 
job seekers, who come from the middle classes.  Almost two thirds of them are looking for a well paid 
formal sector job, mostly a public sector job.  Mean duration of unemployment is close to four years and 
is higher for those aspiring to a public sector job.   



  5 
 

unemployment is negatively correlated with household welfare, but we cannot say 

anything about the direction of causation.  Those coming from households with lower 

levels of welfare have the same job preferences as those coming from households with 

high levels of welfare, but they are less likely to get a public sector job.  This raises the 

question if it is unemployment duration itself that has a negative effect on getting a job, 

i.e. whether duration dependence is negative.  The question seems more pertinent for 

developing countries, where unemployment duration is expressed in years rather than 

months [see Dickens and Lang (1996), and Rama (1999) for Sri Lanka, Rama (1998) 

for Tunisia; Appleton, Knight, Song and Xia (2001) for China], in contrast to OECD 

countries where mean duration is typically below one year (see references in Table 1).   

For urban Ethiopia, we find a mean duration of forty five months.   An additional 

reason why it is interesting to know whether there is duration dependence, is that it may 

reveal the importance of path dependency for young person’s career.  When we 

consider a career as a dynamic process, the early stages will have an effect on the later 

opportunities. Narendranathan and Elias (1993), Arulampalam, Booth and Taylor 

(2000) and Gregg (2001) show for the UK that it is men who have been unemployed 

once, who are more likely to become unemployed again.  But the effect may go beyond 

employability and unemployment may affect future wages, as Ackum (1991) shows for 

Sweden and Arulampalam (2001) and Gregory and Jukes (2001) show for the United 

Kingdom.5 

Our theoretical framework starts from the assumption that genuine duration dependence 

is negative in the long run.  The reason for this is that unemployment implies a loss of 

skills, so there is an unlearning-by-not-doing effect.  Another potential justification, 

often quoted for OECD countries, would be that long periods of unemployment lead to 

a loss of self-confidence. But it is not clear whether this would be because other 

                                                 
5 Another interesting result for us is that van Dijk and Fomer (1999) find that unemployment duration has 
little effect on wages in areas with high unemployment in the UK.  
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people’s unemployment spells are much shorter; loss of self-confidence may have a 

relative dimension.  Empirical findings confirm that duration dependence is negative in 

the (very) long run.  But while genuine duration dependence is negative, observed 

duration dependence may be non-negative.   The literature suggests four potential 

reasons why observed duration dependence may be non-negative for part of, or the 

entire period of unemployment, while genuine duration dependence is negative.   

 

One reason is the presence of unemployment benefits and their limited duration over 

time.   The mechanism works as follows.  The unemployed know that the support they 

receive is time limited.  The closer they come to the expiry date, the more eager they 

become to get a job.  They increase their chances to get a job by reducing their 

reservation wage.  Unemployment benefits explain non-negative duration dependence 

in, for example, the US (Katz 1986) and  Norway (Hernaes and Strom 1996). 

 

A second explanation is the presence of active labour market policies.  When a 

government targets the long term unemployed with a special employment programme, 

the probability to leave unemployment, or hazard rate, will increase for the long term 

unemployed.  This explains why there is non-negative duration dependence in The 

Netherlands (van den Berg and van Ours 1994) and Sweden (Edin 1989).  

 

A third factor is that the economy changes over time.  In an upswing of the economy, 

the long term unemployed are more likely to find a job.  This creates the impression of 

non-negative duration dependence.  Arulampalam and Stewart (1995) find evidence 

that distinct cohorts have different exit probabilities, while van den Berg and van der 

Klaauw (2000) find that the hazard changes due to business cycle effects. 
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A fourth explanation assumes that labour markets are segmented into good and bad 

jobs.  The hazard for getting a good job falls with time spent in unemployment because 

the skills needed for a good job are lost when not used.  The hazard for a bad job 

remains constant because the skills required are very basic.  People can always get a 

bad job.  In this setting people will queue in unemployment for a good job.  But as they 

spend more time in unemployment, they will lower their reservation wages and be more 

likely to accept a bad job. This creates the illusion of a non-decreasing hazard.  Korpi 

(1995) argues that this is the case for Sweden. 

 

A fifth explanation is a more general version of the previous one and argues that 

queuing in unemployment in general – whether labour markets are segmented or not –

creates the illusion of non-negative duration dependence.  When the number of jobs is 

constrained and employment is purely ‘waiting your turn’, then the hazard will not fall 

with time spent in unemployment.  

 

We will test each of these five explanations for unemployed male young adults in urban 

Ethiopia.  In the next section we set out the conceptual framework. We then investigate 

the course of the hazard rate in Section 3.  Once we have established that duration 

dependence is non-negative over a large part of durations, we test each of the five 

explanations.  In the final section we summarize our findings and draw conclusions. 

 

2.  A Framework for Testing 

 

We develop a framework to test the different explanations.  The larger picture is one 

where a career is a dynamic game.  Individuals start in unemployment and at each stage 

of the game, leave unemployment or not.  We consider individuals to be homogenous.  
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At each moment, the probability to leave unemployment is a function of three factors: 

the probability that there is a vacancy (ν), the probably that one gets selected (σ) and 

the probability that the job is accepted (π). The latter is conditional on not having 

accepted a job yet.   

  ( ), ,t t t tfλ ν σ π=       (1.1) 

At each point in time, the hazard equals the product of these three factors, so we can 

write the reduced form equation as:   

  t t t tλ ν σ π=                    (1.2) 

The product of the two first factors on the right hand side can be interpreted as the job 

arrival rate, as in a traditional job search model.   Note that the (simple) traditional 

search model, as set out in Mortensen (1986) is a special case of this general 

framework, holding all three factors constant over time.  Extensions of the basic model, 

for example a model that allows for liquidity constraints [see Mortensen (1986)], or one 

that assumes finite lives, as described by Gronau (1971), relax one parameter by 

allowing π to change over time, but still assume a constant job arrival rate.   Because 

we are particularly interested in the changes over time, we need a more general 

framework than the traditional model.  Equation (1.2) offers this framework and is our 

key equation.  The disadvantage of the more general form is that the job arrival rate can 

no longer be given its usual interpretation, where a job results from a draw of a sample 

of job offers (with attached wages) which are Poisson distributed.   

 

We let the first factor depend on labour demand (d). 

   ( )dν ν=                    (1.3) 

The probability π is the probability that the vacancy has a wage that exceeds the 

individual’s reservation wage.   
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   ( ) ( ) ( )1r r r
ww w w w F wπ π π= > = < = −                (1.4) 

Assuming that ν,  σ and π are continuous and that their first derivative exists, we can 

write the change of the hazard over time, using equation (1.2), as follows: 

   
t t t t
λ ν σ πσπ νπ νσ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂
                    (1.5) 

The second term on the right hand side captures genuine duration dependence.  It 

reflects the change over time in the probability of being hired. We assume that this 

probability is negative.  Employers will be less likely to hire long term unemployed 

because there is unlearning-by-not-doing.  We can now write genuine negative duration 

dependence as: 

    
0

t
σ∂
<

∂                    (1.6) 

When do we observe non-negative duration dependence?  This occurs when (1.5) is 

non-negative: 

   0
t t t t
λ ν σ πσπ νπ νσ∂ ∂ ∂ ∂
= + + ≥

∂ ∂ ∂ ∂
                 (1.7) 

or  

   0
t t t
ν π σσπ νσ νπ∂ ∂ ∂
+ ≥ − >

∂ ∂ ∂
                 (1.8) 

Let us now revisit the five explanations set out above. 

 

2.1. Unemployment benefits  
 

This explanation argues that people are more likely to stay in unemployment when they 

receive benefits.  But, the closer they come to the point where their benefits run out, the 

more likely it is that they want to leave unemployment.  They increase their chances to 

leave unemployment by lowering their reservation wage.  Non-negative duration 
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dependence is observed when reservation wages fall enough to compensate for genuine 

negative duration dependence.  

In the context of a developing country, benefits only make sense if we include 

household support since the state does not provide unemployment benefits.   We 

assume that richer households support their unemployed members more than poor 

households; therefore household wealth is a good proxy for unemployment benefits.  

Then, if unemployment benefits explain the observation of a non-negative hazard rate, 

we expect household welfare to be negatively associated with the hazard: those coming 

from better off households stay longer in unemployment.   

 

More formally, we assume that the probability of accepting a job is a monotonically 

decreasing function of the level of benefits or support (S) received; so its first 

differential exists and is negative.    

   0
S
π∂
<

∂
                   (1.9) 

We also assume that household support or benefits fall over time.   

   0S
t

∂
<

∂
                 (1.10) 

Assumptions (1.9) and (1.10) imply that the probability to accept a job rises over time, 

or reservation wages fall over time:   

0S
t S t
π π∂ ∂ ∂
= >

∂ ∂ ∂
                (1.11) 

This result is analogous to the traditional job search model with finite lives (Gronau 

1971) or the model allowing for liquidity constraints (Mortensen 1986).   

 

Why does this lead to observing a non-negative hazard?  Let us revisit equation (1.8) .   

We assume that demand does not change over time, so 0
t
ν∂
=

∂
, and write:  



  11 
 

   0
t t
π σσ π∂ ∂
≥ − >

∂ ∂
                                     (1.12) 

Since σ>0 , we can write condition (1.12)   as:  

   0
t
π∂
>

∂
                  (1.13) 

This is equivalent to equation (1.11).  Hence falling reservation wages may lead to 

observing non-negative duration dependence.   

 

How do we test this?  Our null hypothesis is that the decrease of household support 

over time leads to a fall in reservation wages, and that this explains non-negative 

duration dependence.   We write:  

   0 : 0H
t
λ∂
≥

∂
                 (1.14)

Because we assume (1) that π to be a monotonic continuous function of S, and (2) that 

receiving support does not affect the probability of being selected or getting a vacancy 

0
S S
ν σ∂ ∂ = = ∂ ∂ 

, we can write: 

   0 : 0SH
t S t
λ λ∂ ∂ ∂
= ≥

∂ ∂ ∂
                (1.15) 

 

From (1.10) we know that the second term on the right hand side is negative.  This 

means that we can rephrase (1.15) as:  

   0 : 0H
S
λ∂
≤

∂
                         (1.16) 

 

To test (1.16), we model:  

S Xλ α β γ= + +                 (1.17) 
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where X is a vector of control variables and S is proxied by household welfare. We test 

whether its coefficient is smaller than or equal to zero.  

0 : 0H β ≤                  (1.18) 

 

 

2.2. Active Labour Market Policies oriented towards the long term unemployed 
 

Active labour market policies affect the probability of leaving unemployment when 

they target those with the lowest probability of getting a job, in particular the long term 

unemployed. More formally, this policy affects hiring rates, or the probability of being 

selected.  Assume that the selection rate exists of two components: the market or 

genuine selection rate (σm) and the selection rate from the public sector or government 

programme (σp).     

m pσ σ σ= +                  (1.19) 

We assume that both are continuous monotonic functions in t, and that their first 

derivative exists. We further assume that the genuine (market) selection rate decreases 

with time spent in unemployment, while the public sector selection rate can increase or 

decrease over time.   

   0m

t
σ∂

<
∂

                 (1.20) 

 

We will observe non-negative duration dependence when:  

0pm

t t t
σσσ ∂∂∂

= + ≥
∂ ∂ ∂

                (1.21) 

or  

   0p m

t t
σ σ∂ ∂

≥ − >
∂ ∂

             (1.22) 
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This means that the effect of the programme is at least as large as the genuine duration 

dependence, but has the opposite sign.  This is possible when the programmes are 

implemented on a large scale, so that their aggregate effect compensates genuine 

negative duration dependence and result in a neutral or positive net-effect.  Is this case 

relevant for Ethiopia?  Ethiopia does not have large scale programmes that target the 

long term unemployed.  However, it may be argued that large scale government 

employment may have exactly the same effect.  But this can only be true if government 

programmes consistently target long term unemployed.  Although the public sector may 

be less strict in using unemployment duration as a screening device, there is no reason 

why the public sector systematically prefers long term unemployed.6  

We can test this formally.  Equation (1.22) states that the probability of being selected 

to work for the government should increase with time spent in unemployment.  This 

implies that unemployment duration has a positive effect on the probability of getting a 

public sector job.  Or more formally: 

p t Xσ α β γ= + +                 (1.23) 

Where t stands for time spent in unemployment, and X is a vector of control variables.  

We test whether its coefficient is strictly positive. 

0 : 0H β >                  (1.24) 

 

 

 

 

 

                                                 
6 Some would argue that unemployment is a signal of ability, for example because  those who are more 
certain about themselves wait longer in unemployment for the right job.  There is, to my knowledge, no 
empirical evidence for this.  Furthermore, the argument may be convincing in an OECD context where 
duration is mostly below one year, but is not convincing when unemployment duration is very long, as it 
is in the Ethiopian context. 
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2.3. Changes in labour demand  
 

When demand for labour has risen over the observed time period, this will have a 

positive effect on the hazard rate.  Neglecting changes in reservation wages 0
t
π∂ = ∂ 

, 

we write (1.8) as:  

   0
t t
ν σσπ νπ∂ ∂
≥ − >

∂ ∂
                           (1.25) 

Since σ is positive, this condition is equivalent to:  

0
t
ν∂
>

∂
                 (1.26) 

How can we test this formally?  Can we find a proxy for labour demand?  An increase 

in demand for labour occurs when the economy grows.  We do not have regional or 

even national growth rates for the period for which we consider the hazard, namely the 

years before 1994, the time of data collection.  The most important change in Ethiopia 

before 1994 occurred in 1991 when a new government came into power and  started a 

process of restructuring the economy.  There are indications that the economy has 

shrunk in the last years of the previous regime, when civil war got more intense [see 

MEDAC (1999)].  The most likely candidate for an increase in demand is therefore the 

change of government.  More formally we consider that there is a shift in labour 

demand due to change in political regime (r): 

   0

1

0
1

t

t

r
r

ν ν
ν ν

= =
 = =

                (1.27) 

The change in labour demand can then be represented by the switch in regime.   

   r
t t
ν∆ ∆
=

∆ ∆
                 (1.28) 

We then examine how this change in political regime affects the hazard rate by 

modelling:  
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r Xλ α β γ= + +                 (1.29) 

where X is a vector of control variables. We test whether the coefficient on the regime 

switch is strictly positive.   

0 : 0H β >                  (1.30) 

 

2.4. Segmented labour market 
 

In a segmented labour market, where good and bad jobs coexist, the observed hazard 

may be non-decreasing because a substantial number of the unemployed are queuing 

for a good job.  If they do not get the good job at a certain point, they accept a bad job.   

The framework is still one where a career is seen as a dynamic game. But now the 

labour market is segmented into good and bad jobs.  People start in unemployment and 

have two choices:  take up a bad job or queue in unemployment for a good job.    They 

accept or refuse a job only on the basis of the wage - we make an abstraction from other 

job characteristics.  The wage of the good job exceeds that of the bad job.  The 

probability of accepting a job depends on the reservation wage.  We assume that people 

can always get a bad job, and that there is no duration dependence in the bad sector.  

We also make the assumption that people never refuse a good job.   Summarized we 

assume: 

   G Bw w>                  (1.31) 

   ( )Pr r
i iw wπ = >   for i= G, B             (1.32) 

 1Bσ =                   (1.33) 

 1Gπ =                                 (1.34) 

In a segmented labour market the hazard will be the sum over the two sectors.  We 

write the segmented labour market version of equation (1.2) as: 
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G G G B B Bλ ν σ π ν σ π= +                (1.35) 

Using (1.33) and (1.34) we write:  

G G B Bλ ν σ ν π= +                 (1.36) 

Assuming as before that the hazard, as well as the vacancy, selection and acceptance   

functions are continuous and that their first derivative exists, we now write the change 

of the hazard over time spent in unemployment as: 

G G B B
G G B Bt t t t t

ν σλ ν πσ ν π ν∂ ∂∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂
             (1.37) 

The second term on the right hand side captures genuine duration dependence, where 

the probability to get a good job falls with time spent in unemployment because of 

unlearning-by-not doing, which means:  

0G

t
σ∂

<
∂

                                                   (1.38) 

Observed duration dependence can only be non-negative when:  

 

0G GB B
G B B Gt t t t

ν σν πσ π ν ν∂ ∂∂ ∂
+ + ≥ − >

∂ ∂ ∂ ∂
                    (1.39) 

This occurs either when demand for (good or bad) labour rises over time; or when the 

probability of accepting a bad job rises with time spent in unemployment.  The first 

effect implies that there are business cycle effects or other changes in the macro-

environment that cause a rise in labour demand.  We have seen in Section 2.3 that this 

does not hold.  The second effect implies that the probability of accepting a job offer 

rises with time spent in unemployment.   

   0B

t
π∂

>
∂

                  (1.40) 

When will this hold?  Assuming that πB , as described in (1.32), is a continuous 

monotonous function of reservations wages,  we can write (1.40) as:  



  17 
 

0
r

B B
r

w
t w t
π π∂ ∂ ∂

= >
∂ ∂ ∂

                (1.41) 

The first term on the right hand side is per definition negative 0
rw
π ∂

> ∂ 
since given a 

particular wage, the probability of accepting a job is lower for a higher reservation 

wage.  Therefore equation (1.41) is equivalent to:  

0rw
t

∂
<

∂
                 (1.42) 

This means reservation wages are lower for longer durations, i.e. they fall with time 

spent in unemployment.   

 

How to test this?  Our null hypothesis is that segmented labour markets offer an 

explanation for observing non-negative duration dependence because reservation wages 

fall with time spent in unemployment.  A unique feature about the data is that we have 

information on the reservation wages of the unemployed. 7   We examine whether 

reservations wages fall with time spent in unemployment by running the following 

regression:  

rw t Xα β γ= + +                  (1.43) 

and test whether the coefficient on unemployment duration is strictly negative. 

0 : 0H β <                  (1.44) 

 

2.5. Queuing in a non-segmented labour market 
 

Do we need a segmented labour market to explain queuing in unemployment? Not 

necessarily.  Assume a homogenous job market; when demand is censored, people will 

                                                 
7 This is obtained by asking ‘What is the lowest amount that you would be willing to accept as gross 
monthly income?’.  As argued in Serneels (2002), the reservation wages turn out to be highly realistic.  
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queue in unemployment for any job.   However, when genuine duration dependence is 

negative, employers will prefer the job candidates with the shortest duration.  Someone 

who has not been unemployed has therefore a higher probability of being hired than 

someone who has been queuing in unemployment. Only if genuine duration 

dependence is non-negative, can we have general queuing in unemployment.  

In the segmented labour market model, duration dependence is non-negative for bad 

jobs only.  If queuing in general is an explanation, duration dependence has to be non-

negative for all jobs.  Time spent in unemployment should thus not affect the 

probability of leaving unemployment.   And this must hold for all types of jobs.  To test 

this against the segmented labour market model, we examine whether unemployment 

duration affects the probability of getting a good job.    

G t Xσ α β γ= + +                 (1.45) 

 The null hypothesis is that time spent in unemployment has a non-negative effect: 

0 : 0H β ≥                    (1.46) 

 The test is similar to the one we formulated in 2.2, but now we consider all good jobs, 

not just the public sector.   If (1.46) is rejected, general queuing is rejected as an 

explanation for non-negative duration dependence in favour of the segmented labour 

market model.  

 

2.6. Can we have non-negative genuine duration dependence?  
 

We argued that, from a conceptual point of view, genuine duration dependence has to 

be negative in the long run because skills are lost while in unemployment.  If 

technological progress is slow, the genuine hazard falls only slowly because the loss of 

skills is limited.  Nevertheless, in the long run the genuine hazard will still be negative 

because skills are lost by spending a long time in unemployment.  This means that, 
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although there may be mechanisms at play that make us observe non-negative duration 

dependence for considerable periods, in the long run the hazard must be negative, even 

when technological progress is slow.  We test whether observed duration dependence in 

the long run is negative by examining whether a step dummy for long durations affects 

the hazard rate.   

   
0 12
1 12

lt if duration years
lt if duration years
= ≤

 = >
              (1.47) 

   lt Xλ α β γ= + +                 (1.48) 

The null hypothesis is that the hazard is lower for longer durations. 

   0 : 0H β <                  (1.49) 

 

We will test this in Section 4.   However, before carrying out the constructed tests, we 

examine the course of the hazard rate.  

 

 

3.  The course of the hazard rate 

 

In this section we analyse the course of the hazard rate of unemployment for young 

men in urban Ethiopia, and show that it is non-decreasing over a large period.  For a 

detailed description of the data see Serneels (2002).  That paper also discusses the 

nature of unemployment including the determinants of the hazard rate, but restricst 

itself to proportional hazard (PH) models, because these models allow a straightforward 

interpretation of the coefficients.   In this paper we consider a wider range of models, 

including Accelerated Failure Time (AFT) models.  A characteristic of all duration 

models is that the estimation results are sensitive to the underlying distributional 

assumptions,  much more so than in the case of ordinary regression analysis [see van 
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den Berg (2000)].  Wrongly imposing a distribution may result in heavily biased 

estimates. We therefore start from a non-parametric approach and then compare with 

parametric specifications.   

 

3.1. Non-parametric estimation 
 

Figure 1 plots the Kaplan Meier survival function. This reflects how many people stay 

in unemployment as time proceeds.   

 

Figure 1: Kaplan Meier survival function  
Kaplan-Meier survival estimate
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From this we can calculate the product-limit estimate of the hazard function.  It reflects 

the number of people leaving unemployment relative to the total number of people 

unemployed, at each point in time.  This non-parametric estimate of the hazard rate is 

plotted in Figure 2. We observe that the hazard follows an upward trend.  It does not 

exceed ten percent, which is similar to the estimated hazard rates for OECD countries.  

We also observe that it peaks at integer numbers.  The reason for this is twofold.  For 

those cases where duration is directly observed, this reflects the tendency of 

respondents to round their duration to integer years; fifty two percent of reported 
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duration is expressed in integer years. For the other cases, the clustering around integer 

values is a consequence of the way the variable is constructed.8 

 
Figure 2: Hazard rate estimated from a Kaplan-Meier survival function 
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The observation that the hazard rate is upward sloping is the most striking one.  It 

means that the probability of getting a job does not fall with time spent in 

unemployment.  This is even more surprising given the length of the duration spells.  

Mean duration is forty five months.  To investigate whether this upward sloping course 

is driven by outliers, we restrict the analysis to shorter spells.  We find the hazard to be 

at a lower level but still increasing. 9 

 

3.2. Parametric estimation 
 

A parametric estimation allows us to test formally whether the hazard increases or 

decreases, and also allows us to draw a smooth plot of the hazard rate.  The 

disadvantage of parametric models is that they impose stringent distributional 

                                                 
8 For the currently unemployed, duration is calculated as current age minus experience minus age at 
leaving school.  Both the first and last variable is expressed in integer years.  Because of this truncation, 
duration is clustered around integer values. For a detailed description of the construction of 
unemployment duration for the currently unemployed, see the appendix of  the previous Serneels (2002). 
9 As a robustness check we did the same analysis for the completed spells of duration only, which are 
reported rather than being the result of construction.  Although this will give an upward biased estimate 
of the hazard, it is interesting to see whether its course over time is similar.  We find that the course is 
very similar.   



  22 
 

conditions on the data.  Different duration models assume different distributions for the 

unemployment spells, and the results are sensitive to the assumptions made.  It is 

therefore important to test as carefully as possible which distribution fits the data best.  

Ideally one would follow a general-to-specific approach, starting from a model that 

encompasses all the others and formally test for restrictions.  But there is no such model 

at hand.  The most general fully parametric model is the one assuming a generalised 

gamma distribution. This model encompasses the lognormal and Weibull models. The 

exponential model is a restricted version of the Weibull.  Alternative models like the 

Gompertz or the log-logistic are not nested and can therefore not be written as a 

restricted form of any of the other models.  We will compare those models using the 

Akaike Information Criterion (AIC).10 

 

An issue of special concern is unobserved heterogeneity.   A model may lead to the 

conclusion that duration dependence is negative, just because it does not take 

unobserved heterogeneity into account.  People who stay longest in unemployment may 

do so because of unobservable characteristics, and not because of the time spent in 

unemployment.  Controlling for unobserved heterogeneity is therefore crucial in 

duration analysis [see van den Berg (2000)].   We control for it in a parametric way in 

all the models.  We do not control for it in a non-parametric way, using a mixture 

model, because we find that our estimates are robust for alternative distributions for 

unobserved heterogeneity. There is also evidence that the main cause of bias in the 

results of mixture models is misspecification of the baseline hazard rather than the 

distribution of heterogeneity [see Ridder and Verbakel (1983)]. A final reason is that 
                                                 
10 The AIC compares the likelihood scores while taking into account the degrees of freedom used in each 
model.  AIC= -2* loglikelihood + 2 * (number of covariates + ancillary parameters), where the number 
of covariates = number of variables + constant – 1.  We are well aware that the AIC is an unorthodox, 
relative and arbitrary measure.  Unorthodox because it has no firm base in theory. Relative because it 
only shows which one of the evaluated models performs best relative to the others, not whether that 
model is appropriate in itself.  The AIC is also arbitrary in the way it penalises: one could use a factor 
three instead of two to penalise for the number of covariates and ancillary parameters.  The obvious 
advantage of the AIC is that it offers a way of comparing non-nested models. 
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the method to estimate mixture models is complex and its calculations are long and 

error prone [see Lancaster (1990)]  Because it has not been applied frequently, little is 

known about the properties of the estimator.   

 

We start from a generalised gamma model with Inverse Gaussian heterogeneity. 11  

Testing the appropriate restrictions we find that we can reject the lognormal against the 

gamma at the p=0.00 level, while we can reject the Weibull only at p=0.84 level.  When 

we compare the log likelihood scores, we find that the gamma model, which uses one 

parameter more than the other models, scores best, followed by the Weibull and the 

lognormal models.  To enable comparison with non-nested models, we calculate the 

Akaike Information Criterion (AIC).  Table 2 shows that according to this criterion, the 

log-logistic model scores best, followed by the Weibull model. The exponential model 

comes third.  According to the AIC, the log-logistic allowing for inverse Gaussian 

heterogeneity is thus the preferred model, followed by the Weibull and the exponential 

model. 

 
Table 2: Overview of the Akaike Information Criterion scores 

 loglikelihood
Number of 
covariates

Number of 
parameters AIC 

 
rank

inverse Gaussian heterogeneity      
Exponential -254.244 16 0 540.4884 3 
Piecewise exponential with 15 1 year pieces -253.287 30 0 566.5732 7 
Weibull -253.071 16 1 540.1429 2 
Gompertz -254.011 16 1 542.0214 4 
Lognormal -254.291 16 1 542.5818 6 
Log-logistic -253.066 16 1 540.1325 1 
Generalised gamma -253.067 16 2 542.133 5 
      
Cox partial likelihood -432.901 16 0 897.8013 8 
      
 

 

What are the implications for the course of the hazard rate? The predicted hazard for 

the two best performing models is plotted in Figure 3.  We can see that both models 
                                                 
11 The results remain unchanged when we assume a gamma distribution for unobserved heterogeneity. 
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predict a hazard rate that first rises and then falls.12  The maximum occurs around 6 

years of duration, when more than four fifths of the young unemployed have already 

left unemployment.  This suggests that the majority of unemployed face an increasing 

hazard.  13   

 
Figure 3: Predicted hazard rates allowing for inverse Gaussian heterogeneity 
                     (a) log-logistic model    (b) Weibull model 
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It is interesting to investigate the Weibull model still further for two reasons.  First, it is 

widely applied to unemployment duration analysis in OECD countries and thus allows 

comparison; second, it encompasses the exponential model, which came third 

according to the AIC score.  Using a variety of tests, discussed in detail in the appendix, 

we find evidence that the Weibull model is appropriate, although it fails monotonicity 

indicating that the hazard is not increasing monotonically, but follows a more complex 

course, as indicated by the non-parametric estimate plotted in the above Figure 2.  

When we test Weibull against the exponential model we can only reject the Weibull 

model at p=0.71.  This suggests that a more flexible form, the piece-wise constant 

hazard model, may be more appropriate.  This is an exponential model that implies a 

constant hazard rate, but by including step dummies we allow the hazard to shift each 

period.  When we allow the level of the hazard to vary per year, we find a pattern close 

                                                 
12 Note that the Weibull hazard rate in a basic model is only allowed to increase or decrease 
monotonically, but introducing (control for unobserved) heterogeneity, makes a decrease at the end 
possible, as can be seen in Figure 3b.   
13 The other models predict a similar course, except for the Gompertz model, which does (by 
construction) not allow the hazard to fall in the long term. 
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to what we expect.  The hazard shifts up during the early years but falls after the sixth 

year.  However, none of these changes is significant, apart from the decrease beyond 

twelve years.  Table 3 shows that the step dummy variables only become significant 

after twelve years.  Note that the constant is highly significant, as is the parameter 

indicating unobserved heterogeneity (p-value 0.00).   

Table 3: Estimates for proportional hazard models assuming Inverse Gaussian heterogeneity 
 Piece wise constant 
d2  0.13583 
 (0.29402) 
d3 -0.26181 
 (0.37805) 
d4 -0.02808 
 (0.39256) 
d5 -0.02340 
 (0.43137) 
d6 0.12948 
 (0.47318) 
d7 -0.24914 
 (0.62702) 
d8 -0.93149 
 (1.06089) 
d9 -0.55166 
 (1.03304) 
d10 -0.24466 
 (1.04644) 
d11 -0.08302 
 (1.04830) 
d12 0.31444 
 (0.92275) 
d13 -27.88370 
 (0.48946)** 
d14 -27.91665 
 (0.54207)** 
d15 -27.80898 
 (0.61466)** 
Constant 10.85783 
 (4.58286)* 
Parameter for (unobserved heterogeneity -13.41132 
 (0.97456)** 
Observations 378 
  
Robust standard errors in parentheses + significant at 10%; * significant at 5%; ** significant at 1% 
The model controls for age, age squared, levels of education, body mass index, ethnicity, father’s 
activity, mother’s education, place of living and local unemployment rate.  Unobserved 
heterogeneity is assumed to be inverse Gaussian distributed.   

 

We conclude that the hazard rate follows a very flat inverse-U shaped course, which is 

difficult to distinguish from a constant course.  The maximum occurs between five and 
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six years, after which the hazard falls.  By then more than four fifths of the unemployed 

have left unemployment.  

 

 

4.  Testing the Different Explanations 

 

In the sections which follows, we carry out the tests designed in Section 2.   

 

4.1. Unemployment benefits 

 

As we argued before it only makes sense to talk about benefits in the Ethiopian context 

if we include household support, since state benefits are entirely absent.  We also know 

that eighty four percent of the male young unemployed are supported by their parents 

[see Serneels (2002)].  Using household welfare as a proxy for household support, we 

test condition (1.17) using an exponential model.  We find that household support has a 

significant positive effect on the hazard, whether we use consumption per household 

member or value of household assets per household member, as shown in Table 4.  The 

result is also robust for other parametric specifications.  Although we cannot exclude 

that household welfare is endogenous, it is clearly negatively associated with duration.  

 

Our finding contrasts with OECD countries where unemployment benefits have a 

negative effect, be it not very large and mostly in the short run [see Layard, Nickell and 

Jackman (1990), Atkinson and Micklewright (1985, 1991)] while household support 

also has a negative effect, be it limited (Atkinson, 1999).  Note also that in most of the 

cases where a non-decreasing hazard has been found, the considered sample existed of 

unemployment insurance recipients only [see for example Moffitt (1985), Katz (1986), 
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Meyer (1986), Vodopovic (1995), Hernæs and Strøm (1996)].  We conclude that in the 

case of Ethiopia, household support cannot be the explanation for observing a non-

negative hazard – while assuming that genuine duration dependence is negative - 

because the unemployed who are coming from better off households are more likely to 

leave unemployment sooner.   

 

Table 4: The effect of household welfare on the hazard 
 (1) (2) (3) 
Consumption per household member 0.00193 0.00208  
 (0.00036)** (0.00034)**  
Value of household assets per household member  0.00006  0.00009 
 (0.00005)  (0.00004)* 
Parameter for unobserved heterogeneity -14.99707 -13.40895 -14.35325 
 (0.63983)** (0.65511)** (0.82200)*

* 
Observations 342 342 342 
    
Robust standard errors in parentheses + significant at 10%; * significant at 5%; ** significant at 1% 
The model controls for age, age squared, levels of education, body mass index, ethnicity, father’s 
activity, mother’s education, place of living, local unemployment rate and a constant.  Unobserved 
heterogeneity is assumed to be inverse Gaussian distributed.   

 

4.2. Active Labour Market Policies 

 

We argue in Section 2.2 that labour market programmes oriented towards the long term 

unemployed can make the hazard rate appear non-negative.  Although there are no such 

policies in Ethiopia, we examine whether public sector employment, which is still the 

largest employer, has a similar effect by testing condition (1.24) in equation (1.23).  

However, we find that the probability of getting a public sector job is negatively related 

to time spent in unemployment, as shown in Table 5.  This means that those who have 

been longer in unemployment are less likely to get a public sector job.  Public sector 

employment has thus not the same effect as labour market programmes oriented 

towards the long term unemployed.  Therefore this is not a good explanation for 

observing non-negative duration dependence.    
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Table 5: The effect of unemployment duration on getting a public sector job for men 
 (1) (2) 
Time spent in unemployment  -0.01169 -0.00936 
 (0.00256)** (0.00216)** 
Consumption per household member -0.00346  
 (0.00089)**  
Value of household assets per household member  -0.00006 
  (0.00002)** 
Observations 908 908 
   
Robust standard errors in parentheses + significant at 10%; * significant at 5%; ** significant at 1% 
The model controls for age, age squared, levels of education, body mass index, ethnicity, father’s 
activity, place of living and a constant.  Unobserved heterogeneity is assumed to be inverse 
Gaussian distributed.   

 

The estimates are obtained from an instrumented variable probit, with working in the 

public sector as the dependent variable.  Because we find evidence that unemployment 

duration is endogenous, we use an instrumental variable model.14  We also control for 

household welfare, which we allow again to be endogenous. The results are robust for 

different proxies of household welfare.15   

 

4.3. Changes in the demand for labour 

 

The only way we can control for changes in labour demand is to look at structural 

changes.  As argued in 2.3, since our data is from 1994, the major change in the 

Ethiopian economy that is relevant to us is the change in political regime in 1991, when 

the new government took power and signed an adjustment programme with the World 

Bank.  As set out in (1.27) we include a step dummy representing the regime switch 

and test whether it has a significant effect on the hazard.  We find that it does not, as 

shown in Table 6.   

                                                 
14 Using a Hausman test we find that the coefficients from an instumented variable probit are 
significantly different from those of an ordinary probit.  We also allow household welfare to be 
endogenous.  Instruments are location, local unemployment rate, and sex, age, education level, marital 
status, ethnicity, religion, activity and labour income from the household head. 
15 Note that the estimates are obtained from applying the model to all men to get a perspective over the 
longer term.  
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Table 6: Effect of a change in political regime on the hazard  
  
Unemployment spell started in or after 1991 -0.02322 
 (0.41274) 
Observations 378 
  
Robust standard errors in parentheses + significant at 10%; * significant at 5%; ** significant at 1% 
The model controls for age, age squared, levels of education, body mass index, ethnicity, father’s 
activity, mother’s education, place of living, local unemployment rate and a constant.  Unobserved 
heterogeneity is assumed to be inverse Gaussian distributed.   
 
 
When we try a step dummy for the neighbouring years, we find they also have a small 

and insignificant effect.  This confirms that if there were changes in labour demand due 

to a change in political regime, they had no immediate effect on the hazard.  

 

4.4. Segmentation in the labour market 

 

A final explanation for observing non-negative duration dependence is that the labour 

market is segmented into good and bad jobs.   As set out above, people can take up a 

bad job whenever they want and there is no negative duration dependence in the bad 

sector.  This is because the skills needed for a bad sector job are basic.  We argued that 

people will queue in unemployment for a good job, and this leads to non-negative 

duration dependence because, as time proceeds, more people accept a bad job by 

lowering their reservation wage.  We estimate equation (1.43) for those unemployed 

who aspire to a good job16 and test whether reservation wages fall with time spent in 

unemployment, following the test in (1.44).  The results in Table 7 show that we find a 

negative relationship between reservations wages and duration, indicating that 

reservation wages fall with time spent in unemployment.   

 

                                                 
16 Jobs in an international organization, civil service, public sector enterprises and formal private 
enterprises are considered to be good jobs because they pay higher, offer fringe benefits and offer a 
higher job security.  
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Table 7: The change of reservation wages over time for those aspiring to a good job  
 reservation wage 
Time spent in unemployment -0.88832 
 (0.52542)+ 
Observations 148 
R-squared 0.33 
 
Robust standard errors in parentheses + significant at 10%; * significant at 5%; ** significant at 1% 
The model controls for age, age squared, levels of education, ethnicity, father’s activity, mother’s 
activity, local unemployment rate, household welfare and a constant.  Unobserved heterogeneity is 
assumed to be inverse Gaussian distributed.   
 
 

This confirms earlier results, like those from Kasper (1967) who was the first to 

empirically establish the fall of reservation wages with time spent in unemployment.    

 

4.5. Queuing in a non-segmented labour market  

 

We showed above that explaining unemployment by queuing in general, without 

having to assume a segmented labour market, is equivalent to accepting that time spent 

in unemployment has no effect on the probability of getting a job.  We test whether 

unemployment duration affects the probability of getting a good job by estimating 

equation (1.45) and using the test formulated in (1.46).  

 
Table 8: The influence of unemployment duration on the probability of getting a good job for young and 
adult men 
  
Time spent in unemployment (I) -0.01120 
 (0.00226)** 
Observations 908 
  
Robust standard errors in parentheses + significant at 10%; * significant at 5%; ** significant at 1% 
The model controls for age, age squared, levels of education, body mass index, ethnicity, father’s 
activity, mother’s level of education, place of living, household welfare and a constant.  Unobserved 
heterogeneity is assumed to be inverse Gaussian distributed.   
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We allow unemployment duration to be endogenous by instrumenting for it, using 

household and local characteristics as instruments.17  We find that time spent in 

unemployment does affect the probability of getting a good job.  Therefore general 

queuing in the labour market is not a good explanation for observing non-negative 

duration dependence. 

 

4.6. Is duration dependence negative in the long run? 

 

We argued above that, however slow technological progress, unemployment will 

eventually have an unlearning-by-not-doing effect.  This means that, although observed 

duration dependence may be non-negative for a considerable time, in the (very) long 

run, we expect duration dependence to be negative.  When we examined the course of 

the hazard rate in Section 3.  , we found that the hazard has an inverse U-shaped shape, 

which is indistinguishable from a flat line for most of the time spent in unemployment.  

However, we found the hazard to fall significantly in the last years.  To follow the 

procedure set out in Section 2.6 we define a step dummy for the long term following 

(1.47).  We then estimate equation (1.48) and test whether the hazard falls in the long 

term, following (1.49).  

 

Conforming with earlier results we find that the observed hazard falls in the long run.  

Table 9: Observed duration dependence in the long term for young men 
  
Long term (>12 years) -27.54564 
 (0.45231)** 
Constant 10.80867 
 (4.56454)* 
Observations 378 
  

Robust standard errors in parentheses + significant at 10%; * significant at 5%; ** significant at 1% 
The model controls for age, age squared, levels of education, body mass index, ethnicity, father’s 
activity, mother’s level of education, place of living, local unemployment rate and a constant.  
Unobserved heterogeneity is assumed to be inverse Gaussian distributed.   

                                                 
17 Using a Hausman test we find that the coefficients from an instumented variable probit are 
significantly different from those of an ordinary probit.  We also allow household welfare to be 
endogenous.  Instruments are location, local unemployment rate, and sex, age, education level, marital 
status, ethnicity, religion, activity and labour income from the household head. 
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5.  Summary and conclusion 

 

It is often accepted as a stylized fact that unemployment duration dependence is 

negative.   Time spent in unemployment would thus have a negative effect on 

someone’s probability of leaving unemployment.   The recent literature, however, often 

observes non-negative duration dependence.  This research is only applied to OECD 

countries.  We investigate whether we observe negative unemployment duration 

dependence among male young adults in a developing country, namely urban Ethiopia.  

This is intriguing because unemployment duration is often much longer in developing 

countries - in urban Ethiopia mean duration is forty-five months - raising the possibility 

that unemployment leads to a higher depletion of skills.  Another reason is that the 

existence of negative duration dependence would reveal the importance of path 

dependency in a men’s career.    

 

Our theoretical framework starts from the assumption that genuine duration 

dependence is negative in the long run.  This is because, however slow technological 

progress, there is unlearning-by-not-doing when spending time in unemployment.  But 

while genuine duration dependence is negative, observed duration dependence may be 

non-negative.  The literature suggests four potential reasons why this may be the case.   

 

The first reason is the presence of unemployment benefits, and their limited duration 

over time.   Because the unemployed know that the support they receive is limited in 

time, they are more eager to get a job the closer they come to the expiry date. They 

increase their chances of getting a job by lowering their reservation wages.   In the 

Ethiopian context we include household support as benefits.    
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A second explanation is the presence of active labour market policies that target the 

long term unemployed. Therefore the probability of leaving unemployment, or hazard 

rate, will increase for the long term unemployed.  Ethiopia has no labour market 

programmes targeted towards the unemployed, but one might argue that public sector 

employment works in the same way.    

A third factor is that the economy changes over time.  In an upswing of the economy, 

the long term unemployed are more likely to find a job.   

A fourth explanation assumes that the labour market is segmented into good and bad 

jobs.  The hazard for a good job falls with time spent in unemployment because the 

skills needed for a good job are lost when left unused.  The hazard for a bad job, 

however, remains constant because the skills required are very basic.  People can 

always get a bad job.  This can create the illusion of a non-decreasing hazard.  

A fifth explanation is a more general version of the previous one and argues that 

queuing in unemployment in general – whether labour markets are segmented or not –

creates the illusion of non-negative duration dependence.  When the number of jobs is 

constrained and employment is purely ‘waiting your turn’, then the hazard will not fall 

with time spent in unemployment.  

 

We develop a theoretical framework to test each of these explanations.  The key 

equation to our framework is that at each point in time, the hazard is the product of 

three factors: the probability that there is a vacancy, the probability of being selected 

for a job, and the probability of accepting the job.   This is a more general formulation 

than the one found in traditional job search models.  Within this framework we can 

translate each of the above explanations into an empirical test.   
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Before that, we examine the course of the hazard rate and establish that it follows an 

inverse U-shaped course, which is not significantly different from a flat line.   This 

means that the hazard does not fall for most of the time spent in unemployment, or that 

duration dependence is non-negative for most of the time spent in unemployment.  

We then test each of the potential explanations using the tests developed within the 

theoretical framework.  

 

In the theoretical framework, we show that under certain assumptions, unemployment 

benefits can only explain the observation of non-negative duration dependence if 

household support has a negative effect on the hazard rate.   We test this and find that a 

significant positive relationship.  Therefore this does not offer an explanation.   

 

We also show that public sector employment can only offer an explanation if time spent 

in unemployment has a positive effect on the probability of getting a public sector job. 

When we test this we find a significant negative relationship.   

 To test the third explanation, whether an increase in labour demand can explain 

observed non-negative duration dependence, we consider the most important shift in 

macro-economic policy proceeding the date of data collection.   In 1991 a new regime 

was installed and a process of economic liberalization was begun.  This may have 

brought about a shift in labour demand.  We show that if this is to be an explanation, 

the regime switch should have a positive effect on the hazard.  We find that it has no 

significant effect.  

 

To test whether segmentation of the labour market can explain non-negative duration 

dependence, we show in the theoretical framework that we have to prove that 

reservation wages fall for those unemployed who are queuing for a good job.  Because 
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our data contains information on reservation wages, we can test this.  We find that those 

who have spent a longer time in unemployment have indeed lower reservation wages.  

This indicates that segmented labour markets are a valid explanation for observing non-

negative duration dependence.   

But do we need a segmented labour market, or would queuing in general offer as good 

an explanation?  We show that queuing in a homogenous labour market can only 

explain a non-negative hazard when genuine duration dependence is non-negative.  We 

also test the general queuing model against the segmented labour market model and 

reject the former in favour of the latter.   

 

Finally, we show that however slow technological progress, observed duration 

dependence should be negative in the very long run.  We show that this indeed is what 

we find in our data.    
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7.  Appendix 

 

7.1. Diagnosing the Weibull model 
 
We first test the appropriateness of the Weibull using a conditional moment test 
(Stewart 1998).  The test diagnoses whether the sum of squared generalised residuals 
equals two, taking censoring into account.  The test statistic is 

( ) ( )2

1 1

1
ˆ ˆ 1 1

n n

j j
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e
n

η δ
= =

= − − −
 
  
∑ ∑  where j j jCSη δ= + .  We find that a fitted Weibull does 

not fail a score test for the second moment (p-value 0.93).      
 
A second test we apply is a simple visual test to evaluate whether the Weibull is the 
appropriate model, as set out by Lancaster (1990).  Figure 4 plots the logarithm of 
integrated hazard against the logarithm of duration. If the Weibull is the appropriate 
distribution, the result should be a linear curve.  Indeed, under the assumption of 
Weibull distributed duration spells, ( ) ( )t t αλΛ = , or, written in logs this gives 
log[ ( )] log logt tα λ αΛ = + .  This means that the logarithm of the cumulative hazard 
{log[Λ(t)]} is linear in the logarithm of duration [log(t)].  The integrated hazard can be 
proxied by the negative of the logarithm of the (non-parametric) Kaplan-Meier survival 
function.  Although the relationship is not perfectly linear, most observations are close 
to the forty-five degree line.  The result remains the same when we leave out the 
outliers. 
 
 
Figure 4: Visual test for the appropriateness of the Weibull model 
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A third test is again a diagnostic visual test. We plot the Cox-Snell residuals against 
their cumulative hazard rate.  Cox-Snell residuals are defined as the estimated 
cumulative hazard function obtained from the fitted model  (Cox and Snell 1968).  Cox 
and Snell (1994) argue that if the correct model has been fitted to the data, these 
residuals are n observations from an exponential distribution with unit mean.  Hence a 
plot of the cumulative hazard rate against the residuals themselves should result in 
straight line with slope unity.  Figure 5(a) indicates that the Weibull does not fit 
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perfectly for all values.  However, when we leave out very long durations (those above 
100 months, which represent only 9% of the non-zero durations), the Weibull seems 
appropriate, as can be seen in  Figure 5(b).   A comparison with similar plots for other 
distributions shows us that the Weibull does not seem to fit the data worse than any of 
the other distributions.   
 
 
Figure 5: Log of Kaplan Meier cumulative hazard versus Cox-Snell residuals for the Weibull for all 
observations 
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Another diagnostic test is to plot the deviance residuals, following Stata (1999).  We 
first define Martingale-like residuals.  They can be interpreted as reflecting the 
difference over time between the actual number of those leaving unemployment and the 
expected number based on the model.  They are easily derived from Cox-Snell 

residuals: and are defined as: ( ) ( )j j j j
M t CS tδ= − , where 

1

0
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δ
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However, because these residuals take values between −∞  and 1, they are difficult to 
interpret.  Therefore we focus on deviance residuals, which are a rescaling of 
Martingale-like residuals to make them symmetric about zero, which makes detection 
of outliers easier.  The transformation used is 

( ) ( )( ) ( ) ( )( )( )[ ]2j j j j jD t sign M t M t M tδ= − + − . The graphical analysis plots those 
residuals against duration.  The diagnostic graph for the Weibull model is shown in 
Figure 6 and indicates that the hazard may be overestimated for very long durations (>= 
100 months).   
 
Figure 6: Deviance residuals for the Weibull model for all observations 
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A final test is that for monotonicity of the hazard rate.  Comparison of the AIC scores 
for different models (see Table 2) suggests that a model that allows for the hazard rate 
to fall after its initial rise may still fit better than the Weibull model.  Lancaster (1990, 
p322) provides a formal test to check whether the hazard rate is monotonically 
increasing.  We find that we can strongly reject monotonicity (p-value 0.00).  This 
suggests that the hazard rate falls at least once over the considered duration.  In the 
simplest case, the hazard rate initially increases and falls after a certain point, 
suggesting that there is only one maximum.  The high fit of the log-logistic model for 
the completed-spells-only, which allows for a final decrease, supports this.  A more 
complicated case occurs when several intermediate downward movements interrupt the 
upward trend of the hazard.  This corresponds to what we find using the piece wise 
constant hazard, although the changes in between are insignificant.   
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7.2. Testing the Weibull against the exponential model 
 
Since the Weibull model encompasses the exponential model, we can formally test the 
latter as a restriction of the former.  We carry out a Wald test for the ancillary 
parameter p being equal to unity, which is the condition to restrict the Weibull to the 
exponential.  The hypothesis that ln(p)=0 is rejected at p=0.70. This suggests that the 
Weibull does not fit much better than the exponential.   
 
A very similar test to the one we applied above can be used to investigate the 
appropriateness of the exponential model.   Figure 7 plots the integrated hazard against 

duration. Since log ( )d S t

dt
λ = −  and Λ is the integration of λ over t, we get that 

ˆˆ ( ) log ( )t S tΛ = − .  Now, since tλΛ = , plotting  Λ against t should be a straight line 
through the origin if λ is indeed assumed to be constant.  The more the plotted line 
deviates from a straight line through the origin, the less appropriate is the exponential 
distribution (Stewart, 1998).  We observe deviation from the line especially for higher 
values of duration, but overall the fit does not seem much poorer than the Weibull 
model. 
 
Figure 7: Visual test for the appropriateness of the exponential model 
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