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Abstract 

The paper explores an endogenous growth model in which scale effects asymptotically vanish 

and an economy grows without population growth.  The key mechanism behind these features 

is substitution between investing in capital and in knowledge when firms face growing 

uncompensated knowledge spillovers.  The model shows that firms invest more in capital than 

in knowledge and thus scale effects asymptotically evaporate as the number of population and 

thus uncompensated knowledge spillovers increase, and an economy grows without population 

growth.  

 

 

 

JEL Classification code: O40, E10 

Keywords: Endogenous growth; Scale effects; Non scale model; Steady state growth; 

Uncompensated knowledge spillover 

 
                                                                  
Correspondence: Taiji HARASHIMA:  

Graduate School of Systems and Information Engineering, University of Tsukuba, 

1-1-1 Tenoudai, Tsukuba, Ibaraki 305- 8573, Japan 

Email: tharashm@sk.tsukuba.ac.jp 

      t-harashima@mve.biglobe.ne.jp 

*The views expressed herein are those of the author and not necessarily those of Cabinet Office of Japan. 



 2 

I. INTRODUCTION 
 

     Scale effects have been the central issue in the field of endogenous growth models over 

the last decade.  The early endogenous growth models, e.g. Romer (1986, 1987) or Lucas 

(1988), had the nature of scale effects.  However, this nature is not supported by existing 

empirical evidence, as e.g. Jones (1995a) shows.  The source of scale effects lies in the 

assumption of a linear relation between Kt and At.  The familiar Euler condition in case of a 

Harrod neutral production function such that 
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 where yt is outputs per capita, ct is consumption per capita, 
tk is 

capital inputs per capita, Yt is outputs, Kt is capital inputs, Lt is labor inputs, At is 

knowledge/technology/idea, 
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=  is the growth rate of population, θ is the rate of time 

preference, ε is the coefficient of relative risk aversion, and α is a constant.  Hence, if 
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 and nt are constant, then the growth rate of consumption can be constant.  To 
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1=−  where φ1 is a constant.  

     The simplest solution to construct a model that satisfies 
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1=−  is to assume 

that there is a linear relation between Kt and At while 0=
t

t

L

L&
.1  Early endogenous growth 

models like the familiar “AK” model adopt this strategy explicitly or implicitly.2  Assuming a 

                                                           
1 See e.g. Romer (1990), Grossman and Helpman (1991), or Aghion and Howitt (1992). 

2 Early human capital-based endogenous growth models are also categorized to this class of models. 
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linear relation between At and ( )ttt LkK =  means that 
t

t

t

t

t Lφ
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Kφ

k

A
2

2 ==  where φ2 is a constant.  

Hence, Lt plays an important role that is called scale effects.  

     Jones (1995b) adopts a completely different strategy.
3
  This strategy focuses on the 

relation between Lt and At instead of the linear relation between Kt and At and assumes that there 

is a linear relation between 
t

t

A

A&
 and 

t

t

L

L&
 such that 
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only one case such that ( )
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=+= 311  is selected to be relevant because only this case 

satisfies both the relation 
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1=−  and a “balanced growth path.”
4
  This model can 

eliminate scale effects because there is no linear relation between Kt and At.  Nevertheless, the 

growth rate of population 

t

t
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L&
, instead, plays a crucial role because of the linear relation 

between 

t

t
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A&
 and 

t

t

L

L&
.  In this sense, Jones’ (1995b) model may not still appear perfectly 

successful as the endogenous growth model. 

     To eliminate the influence of population growth, Young (1998), Peretto (1998), Aghion 

and Howitt (1998), and Dinopoulos and Thompson (1998) propose the third approach.  They 

assume a relation between 
t
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A&
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tL such that 51

4

φ

t

t

t Lφ
A

A −=
&

 where φ4 and φ5 are constants.   

                                                           
3 See also Kortum (1997), Segerstrom (1998), or Eicher and Turnovsky (1999). 

4
 Another important feature of Jones’ (1995) model is that it firstly limits the study to “balanced growth path” that is 

defined as all variables being growing at constant (exponential) rates, although it is not explained what forces are at 

work behind sustaining “balanced growth path.”  That is, this model keeps away from investigating the mechanism 

behind the linear relation 
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Hence, 
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1=−  holds and an economy is on a 

balanced growth path, and thus if 15 =φ  then even though 0=
t

t

L

L&
 an economy can grow at a 

constant rate 
41φφ .  This type of models can eliminate the influence of population growth as 

well as scale effects, however, Jones (1999) shows that it crucially depends on a very special 

assumption such that 15 =φ . 

     Peretto and Smulders (2002) take the fourth approach.  They assume that 
ttLA , instead 

of
tA , and

tK are positively linked and 
ttt

L
KφLA

t
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, and thus asymptotically scale effects vanish.  An 

important feature of this type of models is that they do not need the growth of population for 

endogenous growth contrary to non-scale models developed initially by Jones (1995b). 

     The basic strategy of the model in the paper is this fourth approach.5  However, the 

model in the paper is fundamentally different from the model in Peretto and Smulders (2002) 

with regard to the mechanism how the relation such that 
ttt

L
KφLA

t

6lim =
∞→

 emerges.  The key 

assumption in the model of Peretto and Smulders (2002) is that uncompensated knowledge 

spillovers diminish as the number of firms and thus the number of population increases, thereby 

the relation such that 
ttt

L
KφLA

t

6lim =
∞→

 emerges.  However, this assumption appears 

problematic.  The theories of uncompensated knowledge spillovers are, broadly speaking, 

divided to two categories: one is the theory of intra-sectoral knowledge spillover, which was 

                                                           
5 Hence, the model in the paper is different from early endogenous growth models like the familiar “AK” model 

because At ≠ φ2Kt in the model where φ2 is constant, and is also different from non-scale models initially presented by 

Jones (1995b) because 
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&  in the model where φ3, φ4 and φ5.  
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developed by Marshall (1890), Arrow (1962) and Romer (1986), abbreviated as MAR, and the 

other is the theory of inter-sectoral knowledge spillover, which was developed by Jacobs (1969).  

The former theory assumes that knowledge spillovers between homogenous firms work out 

most effectively and thus spillovers primarily emerge within one sector.  As a result, 

uncompensated knowledge spillovers will be more active if the number of firms within one 

sector is larger.  The latter Jacobs’ (1969) theory contends that knowledge spillovers are most 

effective among firms that practice different activities, and hence diversification, i.e. variety of 

sectors, is important for spillovers.  As a result, uncompensated knowledge spillovers will be 

more active if the number of sectors is larger in an economy.  Hence, both theories equally 

predict that if the number of firms increases, uncompensated knowledge spillovers becomes 

more active, which contradicts to the key assumption of Peretto and Smulders (2002).  The 

problem of this assumption may arise primarily because they neglect Jacobs externalities and 

focus only on the negative side of MAR externalities, i.e. as the number of sectors increases, 

knowledge spillovers work out less effectively.  Many empirical researches favor Jacobs 

externalities, therefore neglecting Jacobs externalities may heavily bias the result of the model.6 

     The model in the paper, contrary to the model in Peretto and Smulders (2002), assumes 

that uncompensated knowledge spillovers become more active when the number of firms 

increases as the theories of knowledge spillovers predict.  However, there will be a natural 

question: won’t this reverse of assumption make scale effects much worse?  The answer is 

“no,” if we consider substitution between accumulations of capital and knowledge.  An 

intuitive explanation behind this result is that a firm will invest more in Kt than in At if firms that 

invest in At are less compensated due to more active uncompensated knowledge spillovers. 

The model in the paper, to begin with, focuses on the behavior of a firm with respect to 

whether investing in Kt or in At.  The decision whether to invest in Kt or in At is made by a firm 

by equaling returns on investing in Kt and in At.  A linear relation between Kt and At implies 

                                                           
6 See e.g. Glaeser et al (1992), Chen (2002) or Stel and Nieuwenhuijsen (2002).  
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that returns on investing in Kt and in At have a relation such that 
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 where 

7φ  is a 

constant.  Hence, a firm that invests in At can obtain a constant share of 

t

t

A

Y

∂
∂

 for any time.  It 

suggests that for scale effects to exist, constancy of 
7φ is crucial.  However, the constancy of 

7φ does not have a strong theoretical foundation.  The parameter 
7φ indicates the degree of 

uncompensated knowledge spillovers, i.e. how much a firm that invents a new technology can 

obtain from 
t

t

A

Y

∂
∂

 as the compensation for the technology.  The theories of uncompensated 

knowledge spillovers predict that if the number of firms increases, uncompensated knowledge 

spillovers becomes more active.  According to the theories, the variable 
7φ will not be 

constant but will be a function of the number of firms and will decreases as the number of firms 

increases.  The paper incorporates this feature of 
7φ in the model in which substitution 

between investing in Kt and in At can be tractable.  The model that has these features shows 

that if the number of firms increases and thus uncompensated knowledge spillovers becomes 

more active, each firm tends to invest more in Kt rather than in At while the economy wide 

returns on investing in At increases, hence the relation such that ttt
L

KφLA
t

6lim =
∞→

 emerges.  

This is the key mechanism of the model in the paper that results in asymptotically diminishing 

scale effects.  As a result, the model can eliminate both scale effects and the influence of 

population growth.  

     Asymptotically diminishing scale effects indicate that if the number of firms is very small, 

scale effects have significant influence on growth rates, however, if the number of firms 

becomes sufficiently large, scale effects vanish.  This result suggests that in the early history of 

civilizations, scale effects may have been a crucial factor for economic growth, but in modern 

day industrialized economies, scale effects may not have to be seen as an important factor for 

economic growth.  Hence, although the model in the paper does not escape from scale effects 
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completely, it escapes from scale effects virtually without influence of population growth. 

     The paper is organized as follows.  In section II, the basic framework of the model is 

explained, particularly how the nature of uncompensated knowledge spillovers is incorporated 

into the model that can track substitution between investing in Kt and in At is explained in detail.   

In section III, the optimization problem for a central planer based on this new model is solved.   

The result shows that the model has a feature of asymptotically diminishing scale effects, which 

suggests that scale effects may not play an important role in modern day industrialized 

economies.  In section IV, a decentralized model with a patent system is examined and it is 

shown that the model also has the feature of asymptotically diminishing scale effects.  Finally 

some concluding remarks are offered in section V. 

 

II. THE MODEL 

 

1. The production function 

     The production function is assumed to be ( )tttt LKAFY ,,= , where Yt (≥ 0) is outputs, Kt 

(≥ 0) is capital inputs, Lt (≥ 0) is labor inputs, and At (≥ 0) is knowledge/technology/idea inputs 

in period t.  Knowledge/technology/idea is produced with capital inputs, labor inputs and 

knowledge/technology/idea inputs, and is purchased in markets just as consumer goods and 

capital goods are.  Each goods, whichever it is consumer goods, capital goods or 

“knowledge/technology/idea goods,” is produced by a unique combination of capital inputs, 

labor inputs and knowledge/technology/idea inputs, but as an aggregated function they can be 

expressed by the above production function.  Hence, outputs Yt consist of consumption Ct (≥ 0), 

the increase in capital
tK& , and the increase in knowledge/technology/idea

tA
& .  This expression 

is standard in the literature of endogenous growth.  Therefore in the paper, accumulations of 

capital and knowledge/technology/idea are modeled as follows: 
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Assumption:  

(A1) Accumulations of capital and knowledge/technology/idea are 
tttt AνCYK && −−= , where 

( )0>ν  is a constant and a unit of Kt and 
ν

1
 of a unit of At are produced using the same 

amounts of inputs.
7
 

 

Hence, unlike most idea-based endogenous growth models, the paper does not assume any 

special production function for “knowledge/technology/idea goods” in the model, which is 

possible because, in the model, the driving force behind constant endogenous growth rates, i.e., 

t

t

k

A
= constant, is not a special production function for “knowledge/technology/idea goods,” but 

arbitrage between investing in Kt and in At that will be explained in the following sections. 

     More specifically, the production function is assumed to have the following functional 

form; ( ) ( )tt

α

ttttt ,LKfA,L,KAFY == , where α ( )01 >> α  is a constant.  Let 

t

t
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L

Y
y = , 
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t
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L

K
k =  and 

t

t
t

L

C
c = , and assume that ( )tt LKf ,  is homogenous of degree one.  Thereby 

( )tα

tt kfAy = , and 
tt

t

t
ttt kn

L

Aν
cyk −−−=

&
& . 

 

2. Uncompensated knowledge spillovers 

     The following assumption is another key assumption in the model.  

 

Assumption: Every firm is identical and has the same size, and for any period,   

                                                           
7 Hence, like Jones’ (1995b) non-scale model, At, as well as Kt, is produced less as At and Lt increase if the usual 

production function of homogeneous of degree one is assumed. 
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(A2) constant==
t

ρ

t

L

M
m , where Mt is the number of firms and ( )1>ρ  is a constant, 

(A3) 
( )t

t

ρ
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 and thus 

t

t

t

t

A

y

mνk

y

∂
∂

=
∂
∂ 1

.  

 

Firstly, assumption (A2) simply assumes that the number of population and the number of firms 

in an economy are positively related, which seems intuitively natural.  In assumption (A3), the 

paper assumes that returns on investing in Kt and investing in At for a firm are kept equal.
8
  The 

driving force behind this relation is that rational entrepreneurs consider all the opportunities at 

any time and select the most profitable investments, and thus, through arbitrages, returns on 

investments in Kt and returns on investments in At should be equal in any period.  However it is 

also assumed in assumption (A3) that a firm that invents a new technology can not obtain all the 

returns on investing in At.  This means that investing in At increases Yt but returns of an 

individual firm that invests in At is only a fraction of the increase of Yt such that 

( ) ( )t
t

tt

t

ρ

t
νA

Y

mLνA

Y

M ∂
∂

=
∂
∂ 11

.  The reason why only a fraction of the increase in Yt the returns of 

an individual firm is, is uncompensated knowledge spillovers to other firms. 

     Broadly speaking, there are two types of uncompensated knowledge spillovers: one is the 

intra-sectoral knowledge spillover, i.e. MAR externalities, and the other is the inter-sectoral 

knowledge spillover, i.e. Jacobs externalities.  The theory of MAR assumes that knowledge 

spillovers between homogenous firms work out most effectively and thus spillovers primarily 

emerge within one sector.  As a result, uncompensated knowledge spillovers will be more 

active if the number of firms within one sector is larger.  On the other hand, Jacobs (1969) 

contends that knowledge spillovers are most effective among firms that practice different 

                                                           

8 Remind that a unit of Kt and
ν

1
of a unit of At are produced using the same amounts of inputs by assumption (A1). 

Hence, a unit of Kt and a unit of Vt have the same value as an investment where Vt = νAt. 
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activities, and hence diversification, i.e. variety of sectors, is important for spillovers.  As a 

result, uncompensated knowledge spillovers will be more active if the number of sectors is 

larger in an economy. 

     If it is assumed that all the sectors have the same number of firms, an increase of the 

number of firms in an economy results in more active knowledge spillovers due to either of 

MAR externalities or Jacobs externalities.  That is, if an increase of the number of firms in an 

economy is a result of an increase of the number of firms in each sector, uncompensated 

knowledge spillovers will become more active by MAR externalities, and if an increase of the 

number of firms in an economy is a result of an increase of the number of sectors, 

uncompensated knowledge spillovers will become more active by Jacobs externalities.  In 

either case, an increase of the number of firms in an economy leads to more active 

uncompensated knowledge spillovers. 

Furthermore more active uncompensated knowledge spillovers will reduce the returns of 

a firm that invests in A.  

t

t

A

Y

∂
∂

 indicates the over all increase in Y in an economy by an 

additional A, that consists of both the increase in production in the firm that invented the new 

technology and the increase in production in other firms that use the newly invented technology 

that the firms obtained either compensating for it to the firm or by uncompensated knowledge 

spillovers.  If the number of firms becomes larger and thus uncompensated knowledge 

spillovers becomes more active, the compensated fraction in 

t

t

A

Y

∂
∂

 that the firm can obtain will 

become smaller and thus the returns of the firm will become also smaller.  The assumption 

(A3) simply describes this mechanism. 

     By assumptions (A2) and (A3),
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t
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     In the paper, the case of Harrod neutral technological progress such that 
α

t

α

tt kAy
−= 1
 and 

thus ( )αtt

α

tt LAKY
−= 1

 is examined.
9
  As Barro and Sala-i-Martin (1995) argue, technological 

progress must take the labor-augmenting form in the production function if the models are to 

display a steady state.  The model in the paper also can not achieve a stable growth path if 

technological progress is not Harrod neutral (see Appendix).  

If the production function is Harrod neutral such that 
α

t

α

tt kAy
−= 1

 and thus 

( )αtt

α

tt LAKY
−= 1

, then 
( ) tt k

αmν

α
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1
 and 

α

α

f

ff
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′
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12
, which lucidly indicates that the 

model has the feature constant=
t

t

k

A
, therefore the model can be an endogenous growth model.  

At the same time, clearly the model in the paper is not a type of early endogenous growth 

models like the familiar “AK” model because 
tt KφA 2≠  in the model where φ2 is constant, nor 

a type of non-scale models initially presented by Jones (1995b) because 
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 in the model where φ3, φ4 and φ5 are constants, and of course it is not a type of 

human capital-based endogenous growth models. 

 

III. THE CENTRAL PLANNER’S PROBLEM 

                                                           
9 As is well known, only Harrod neutral technological progress matches the stylized facts presented by Kaldor 

(1961). 
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1. Growth rates 

     The optimization problem of a central planner is  

Max ( ) ( )dtθtcuE t −∫
∞
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where 
tλ  is a costate variable.  The optimality conditions for the problem are  
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To begin with, three lemmas are proved to show that the growth rates of output, 

knowledge/idea, consumption and capital converge at the same rate.  First, to make the model 
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more easily tractable, it is assumed that the growth rate of population nt is constant and 

non-negative and the utility function is a CRRA type.  

 

Lemma 1: The growth rate of consumption is 
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Proof: Because the production function is 
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λθtcuH

t

tttα

αα

tt
  

  ( ) ( ) ( )
( )

( )











−−−








+−

−
+−= −

tttt

α

α

t

t
tt knckα

mν

α

ααmL

αmL
λθtcu 1

1

1
exp . 

Then condition (2) is  

  
( )

( )
( )












−−








+−

−
−= −

t

α

α

t

t
tt nα

mν

α

ααmL

αmL
λλ 1

1

1&                                     (5) 

and condition (3) is  

  
( )

( )
( )












−−−








+−

−
= −

tttt

α

α

t

t
t knckα

mν

α

ααmL

αmL
k 1

1

1& .                                (6) 

Hence, by condition (1) and equation (5),  

    

( ) ( )

( )









′
′′

−

−
+−

−











−−






−

=

−

u

uc

θ
ααmL

αnnα
mν

α
αmL

c

c

t

t

tt

α

α

t

t

t 1

11

&

( ) ( )

( )
ε

θ
ααmL

αnnα
mν

α
αmL

t

tt

α

α

t

−
+−

−











−−







−

=

−

1

11

.  

                                                                  Q.E.D. 
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Therefore the growth rate of consumption is constant if the utility function is a CRRA type. 

 

Lemma 2: The transversality condition (4) 0lim =
∞→ tt

t
kλ  is not satisfied if and only if 0=

t

t

k

c
.    

 

Proof: By equation (6), 
( )

( )
( )












−−−








+−

−
= −

tttt

α

α

t

t
t knckα

mν

α

ααmL

αmL
k 1

1

1
& , and thus 

( )
( )

( )











−−−








+−

−
= −

t

t
t

α

α

t

t

t

t

k

c
nα

mν

α

ααmL

αmL

k

k
1

1

1&
.  If ( )

t

t
t

α

α

k

c
nα

mν

α
>−−







 −
1  then 0>

t

t

k

k&
. 

     On the other hand, by equation (5), 
( )

( )
( )












−−








+−

−
−= −

t

α

α

t

t
tt nα

mν

α

ααmL

αmL
λλ 1

1

1&  and thus 

( )
( )

( )











−−








+−

−
−= −

t

α

α

t

t

t

t nα
mν

α

ααmL

αmL

λ

λ
1

1

1&
. 

     Here, 
( )

( )
( ) ( )

( )
( )












−−−








+−

−
+











−−








+−

−
−=+ −−

t

t
t

α

α

t

t
t

α

α

t

t

t

t

t

t

k

c
nα

mν

α

ααmL

αmL
nα

mν

α

ααmL

αmL

k

k

λ

λ
1

1

1
1

1

1&&
 

( )
( )[ ] t

t

t

t

k

c

ααmL

αmL

+−
−

−=
1

1
.  Thereby if 0>

t

t

k

c
, then 0<+

t

t

t

t

k

k

λ

λ &&
.  Hence, the transversality 

condition (4) 0lim =
∞→ tt

t
kλ  is not satisfied if and only if 0=

t

t

k

c
 (Because 0≥tc  and 0≥tk ).  

                                                                  Q.E.D. 

 

Lemma 3: If and only if 

t

t

t
t

t

t k

k

c

c &&

∞→∞→
= limlim , all the conditions are satisfied. 

 

Proof: 

(Step 1) Since the growth rate of population nt is constant by assumption (A3), Lt increases 



 15 

exponentially, and thus for any nt constantlim =
∞→

t

t

t c

c&
 because for 0>tn  

( ) ( )

( )
ε

θ
ααmL

αnnα
mν

α
αmL

c

c t

tt

α

α

t

t
t

t

t

−
+−

−











−−






−

=

−

∞→∞→

1

11

limlim
&

( )
constant

1

=
−−−








=

−

ε

θnα
mν

α
t

α

α

, and 

for 0=tn  

( ) ( )

( )

( ) ( )

( )
constant

1

11

1

11

limlim =
−

+−

−





−

=
−

+−

−











−−







−

=

−−

∞→∞→ ε

θ
ααmL

α
mν

α
αmL

ε

θ
ααmL

αnnα
mν

α
αmL

c

c t

α

α

t

t

tt

α

α

t

t
t

t

t

&
. 

     On the other hand, for 0>tn  

( )
( ) ( ) ( ) t

t

t
t

α

t

t
t

α

t

t

t
t

t

t k

c
n

αmν

α

k

c
n

αmν

α

ααmL

αmL

k

k

∞→∞→∞→
−−









−
=












−−









−+−
−

= lim
111

1
limlim

&
, and for 0=tn , 

( )
( )

( ) ( )
( )

( )











−−








+−

−
=












−−−








+−

−
=

∞→

−−

∞→∞→
t

t

t

α

α

t

t

t

t
t

α

α

t

t

t
t

t

t k

c
α

mν

α

ααmL

αmL

k

c
nα

mν

α

ααmL

αmL

k

k
lim1

1

1
1

1

1
limlim

&
. 

 (Step 2) If 
t

t

t
t

t

t c

c

k

k &&

∞→∞→
> limlim , then 

t

t

k

c
 diminishes as time passes, then 

t

t

t k

k&

∞→
lim  increases.  

Hence, eventually 
t

t

k

c
 diminishes to zero.  Therefore, by lemma 2, the transversality condition 

(4) is not satisfied. 

     If 

t

t

t
t

t

t c

c

k

k &&

∞→∞→
< limlim , then 

t

t

k

c
 increases as time passes, then 

t

t

t k

k&

∞→
lim  diminishes and 

eventually becomes negative.  Hence, 
tk  decreases and eventually violates equation (6) since 

0≥tk  and thus 
tk  can not be negative. 

   However, if 

t

t

t
t

t

t k

k

c

c &&

∞→∞→
= limlim , then 

t

t

k

c
 is constant and thus 

t

t

t k

k&

∞→
lim  and 

t

t

t c

c&

∞→
lim  continue 

to be constant and identical. 
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                                                                  Q.E.D. 

 

By lemma 1, lemma 2 and lemma 3, it is proved that the growth rates of output, 

knowledge/idea, consumption and capital converge at the same rate, if the central planner 

behaves as the following assumption. 

 

Assumption: 

(A4) Given the initial A0 and k0, the central planner sets the initial consumption so as to achieve 

a growth path that satisfies all the conditions, i.e. a growth path of 

t

t

t
t

t

t k

k

c

c &&

∞→∞→
= limlim  while 

adjusts kt so as to achieve ( )t
t

ρ

tt

t

νA

Y

MK

Y

∂
∂

=
∂
∂ 1

.10 

 

Proposition 1: 

t

t

t
t

t

t
t

t

t
t

t

t k

k

c

c

A

A

y

y &&&&

∞→∞→∞→∞→
=== limlimlimlim . 

 

Proof: 

(Step 1) As for yt , because 
α

t

α

tt kAy
−= 1
, 

( ) 







+−








= t

t

t
t

α

t

t
t A

A

k
αkα

k

A
y &&& 1 .                                                (7) 

Since, 
( ) ttt k

αmν

α

f

ff
k

mν

α
A &&&

−
=








′
′′

−=
1

1
2

, then ( )
( ) 









−
+−








=

t

t

α

t

t
tt

A

k

αmν

α
α

k

A
ky

1
1

2

&& , and thus 

( )
( ) 









−
+−=

t

t

t

t

t

t

A

k

αmν

α
α

k

k

y

y

1
1

2&&
.  Because 

( ) tt k
αmν

α
A

−
=

1
, ( )[ ]

t

t

t

t

t

t

k

k
αα

k

k

y

y &&&
=+−= 1 .  Hence 

                                                           
10 Because 

( ) tt k
αmν

α
A

−
=

1
, it is assumed that 

( ) 00
1

k
αmν

α
A

−
= .   
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t

t

t
t

t

t
t

t

t k

k

c

c

y

y &&&

∞→∞→∞→
== limlimlim . 

(Step 2) As for At, by equation (7) and 
( ) tt k

αmν

α
A &&

−
=

1
, 

( )








+

−








=

t

t

α

t

t
tt

A

k
α

α

αmν

k

A
Ay

2
1

&& , 

and thus 
( )

t

t

t

t

t

t

A

A
α

α

αmν

k

A

y

y &&&
+

−
=

2
1

.  Because 
( ) tt k

αmν

α
A &&

−
=

1
, then ( )

t

t

t

t

t

t

A

A
α

k

k
α

y

y &&&
+−= 1 .  

Hence, ( )
t

t

t

t

t

t

t

t

A

A
α

k

k
α

k

k

y

y &&&&
+−== 1  and thus

t

t

t

t

A

A

k

k &&

= .  Therefore 

t

t

t
t

t

t
t

t

t
t

t

t k

k

c

c

A

A

y

y &&&&

∞→∞→∞→∞→
=== limlimlimlim . 

                                                                  Q.E.D. 

 

Hence, if the central planner set the initial consumption so as to achieve 

t

t

t
t

t

t k

k

c

c &&

∞→∞→
= limlim  

that leads to a growth path satisfying all the conditions, the growth rates of yt, ct, kt and At 

asymptotically converge at the same rate.  This growth path can be seen as a natural extension 

of “steady state” in the conventional Ramsey models with exogenous technology growth and 

may be called as “steady state growth path.”  Like “steady state,” “steady state growth path” is 

the only path that satisfied all the conditions and achieved by setting the initial consumption at a 

unique appropriate level. 

     In the special case such that 0=tn , the growth rates are equal at any time.  

 

Corollary 1: If 0=tn , then constant====
t

t

t

t

t

t

t

t

k

k

c

c

A

A

y

y &&&&
. 

 

Proof: 

( ) ( )

( )
( )

( )
( )

ε

θα
mν

α

ααmL

αmL

ε

θ
ααmL

αnnα
mν

α
αmL

c

c

α

α

t

t

t

tt

α

α

t

t
t

t

t

−−







+−

−

=
−

+−

−











−−







−

=

−

−

∞→∞→

1
1

1

1

11

limlim
&
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 constant==
t

t

c

c&
, and 

( )
( )

( ) ( )
( )

( )











−−








+−

−
=












−−−








+−

−
=

∞→

−−

∞→∞→
t

t

t

α

α

t

t

t

t
t

α

α

t

t

t
t

t

t k

c
α

mν

α

ααmL

αmL

k

c
nα

mν

α

ααmL

αmL

k

k
lim1

1

1
1

1

1
limlim

&
.  

Therefore, if and only if 

t

t

t

t

k

k

c

c &&
= , 

t

t

t
t

t

t k

k

c

c &&

∞→∞→
= limlim .  Hence, by the proof of proposition 1, 

constant====
t

t

t

t

t

t

t

t

k

k

c

c

A

A

y

y &&&&
. 

                                                                  Q.E.D. 

 

This case is important since it indicates that an economy can grow endogenously without the 

growth of population contrary to non-scale models developed initially by Jones (1995b). 

 

2. Asymptotically diminishing scale effects 

     The model in the paper has a feature of asymptotically diminishing scale effects.  Before 

examining this feature, scale effects are defined as follows: 

 

Definition: Scale effects are defined as ( ) θ
c

c
εLS

t

t
t +=

&
. 

 

Hence, scale effects are defined here as the population related part of 
t

t

c

c&
.  The scale effect in 

the above case is thereby ( )
( ) ( )

( ) ααmL

αnnα
mν

α
αmL

LS
t

tt

α

α

t

t +−

−











−−







−

=

−

1

11

.   
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Proposition 2: The scale effect ( )
( ) ( )

( ) ααmL

αnnα
mν

α
αmL

LS
t

tt

α

α

t

t +−

−











−−







−

=

−

1

11

 has an upper 

bound if ( ) 01 >−−






 −
t

α

α

nα
mν

α
. 

 

Proof: ( )
( ) ( )

( )
( ) constant1

1

11

limlim =−−






=
+−

−











−−







−

= −

−

∞→∞→
t

α

α

t

tt

α

α

t

L
t

L
nα

mν

α

ααmL

αnnα
mν

α
αmL

LS
tt

, and 

 if ( ) 01 >−−






 −
t

α

α

nα
mν

α
 then 

( )
0>

t

t

dL

LdS
 and 

( )
0

2

2

<
t

t

dL

LSd
. 

                                                                  Q.E.D. 

 

Existence of the upper bound has an important meaning that can be understood by the following 

example. 

 

Example: Assume for example that 60.α = , 0=tn , 050.θ = , 5.1=ε , 3000=ν  and 

03.0=m , then the degrees of scale effects for various cases of population are shown in the 

table.  

 

The example clearly shows that scale effects are economically important if the size of 

population is very small, i.e. the number of firms is very small, while if the size of population is 

sufficiently large, i.e. the number of firms is sufficiently large, scale effects are economically 

unimportant.  In the early days of human history, scale effects may have played a crucial role 

and actually early civilizations developed in the areas where the size of population was 

relatively large.  However, in modern day industrialized economies, it may not be necessary to 

treat scale effects as an important factor, because the number of firms in these economies seems 
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sufficiently large. 

     This example implies that if it is assumed that the number of firms is irrelevant to the 

number of population, the familiar scale effects emerge. 

 

Remark: If 
tM  is constant such as 

0MM t =  for any t, and thus if m is time-variable, then 

the usual scale effects emerge in the model. 

 

Proof: If 
tM  is constant such as 

0MM t =  for any t, and thus if m is time-variable, then 

( ) ( )

( )
ε

θ
ααmL

αnnα
mν

α
αmL
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c t
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α

t

t

t
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−







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
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
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−
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&
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α
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ρ
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α
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−
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−


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






−

=

−

1

11

0

0

0

. 

                                                                  Q.E.D. 

 

IV. DECENTRALIZED ECONOMIES 

 

1. The model of decentralized economies 

     In the decentralized economy examined below, a patent system is introduced to enhance 

an incentive to inventions.  Assume that by inventing a new technology, a firm that invented 

the technology can enjoy some degree of monopoly for a predetermined period and after that 

period the monopoly ends and every firm can use this new technology freely.  The monopoly 

will prevent other firms from using this new technology for their production to some degree.  

Then with the patent system, available knowledge for firms will be older compared to that 

without patent system.  Considering the above features of the patent system, the following 

assumption is introduced.  
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Assumption: 

(A5) The production function in decentralized economies is ( )tα

δtt kfAy −= , where δ is the 

length of patented period, while the accumulation of capital follows 
tt

t

δt
ttt kn

L

Aν
cyk −−−= −

&
& . 

(A6) The returns on investing in At for a firm that invests in At in decentralized economies is 

δt

t

A

y

γmν −∂
∂1

, where ( )10 ≤< γγ  is the function of the period of patent ( )0>δ  such that 
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( )10 ≤< γγ  can be interpreted as the degree of monopoly.  Larger γ means that a firm that 

invests in At can not fully exploit profit because the period of monopoly is shorter. 
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2. Growth rates 

     The optimization problem of a representative household is  
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tλ is a costate variable.  The optimality conditions for the problem are  
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     As section III, to begin with, three lemmas are proved to show that the growth rates of 

output, knowledge/idea, consumption and capital converge at the same rate. 

 

Lemma 4: The growth rate of consumption is 
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Proof: Because the production function ( )tα
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Therefore the growth rate of consumption is constant if the utility function is a CRRA type. 

                                                                  Q.E.D. 

 

Lemma 5: The transversality condition (11) 0lim =
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Proof: By equation (13), 
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Lemma 6: If and only if 
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     Unquestionably rational consumers will set the initial consumption that leads to a growth 

path satisfying all the conditions, i.e. consumers will chose intentionally the “steady state 

growth path.” 

 

Assumption: 
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By lemma 4, lemma 5 and lemma 6, it is proved that the growth rates of output, knowledge/idea, 

consumption and capital converge at the same rate, if consumers behave according to the above 

assumption. 
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                                                                  Q.E.D. 

 

Hence, if consumers set the initial consumption so as to achieve 
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= limlim , the growth 

rates of yt, ct, kt and At asymptotically converge at the same rate.  

     Like section III, in the special case such that 0=tn , the growth rates are equal at any 

time. That is, an economy can grow without population growth. 
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                                                                  Q.E.D. 

 

3. Asymptotically diminishing scale effect 

     Scale effects asymptotically diminish also in the decentralized economy as the following 

proposition 4 shows. 

 

Proposition 4: The scale effect ( )
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and if ( ) 01 >−−
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                                                                  Q.E.D. 

 

4. The optimal patent period 

     For sufficiently large 
ρ

tt MmL = , the growth rate of consumption is higher if γ is smaller, 

i.e. the period of patent δ is longer, because =
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if γ becomes very small, i.e. a very long period of patent, and thus if γm  and 
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zero, the growth rate of consumption, in reverse, becomes lower as γ becomes smaller because 
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lim .  This is due to slow capital 

accumulation.  As the benefit of patent increases, firms are tempted to invest more in At than in 

Kt.  On the other hand, the level of production ( )tα

δtt kfAy −=  is smaller in every period if δ is 

longer.  From this point of view, the shorter period of patent is more favorable for the higher 

level of consumption.  

     Combining the above arguments, therefore, the optimal patent period δ
*
 is given by δ that 

satisfies 
( ) ( )

0
exp
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−∫

∞
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E
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 where *

tc  is the consumption in the case of the optimal 

patent period δ*.  
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V. CONCLUDING REMARKS 

 

     Scale effects have been the central issue in the field of endogenous growth models over 

the last decade.  The early endogenous growth models, e.g. Romer (1986, 1987) or Lucas 

(1988), had the nature of scale effects.  Jones (1995b) presents a different type of endogenous 

growth model that can eliminate scale effects, but the growth rate of population, instead, plays a 

crucial role in this model.  Models that are developed by Young (1998), Peretto (1998), 

Aghion and Howitt (1998), and Dinopoulos and Thompson (1998) eliminate the influence of 

population growth as well as scale effects, but Jones (1999) shows that it crucially depends on a 

very special assumption such that 15 =φ .  Peretto and Smulders (2002) take the fourth 

approach.  They assume that 
ttLA , instead of

tA , and
tK are positively linked and 

ttt
L

KφLA
t

6lim =
∞→

 where 
6φ  is a constant.  Hence 
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=  and 
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k
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t

tt
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t

t

L tt

==
∞→∞→

, 

and thus asymptotically scale effects vanish.  

     The basic strategy of the model in the paper is this fourth approach.  However, the model 

in the paper is fundamentally different from the model in Peretto and Smulders (2002) with 

regard to the mechanism how the relation such that 
ttt

L
KφLA

t

6lim =
∞→

 emerges.  The novelty of 

the paper is that it uncovers a completely different and more natural mechanism that generates a 

fourth type endogenous growth model that has the feature of 
ttt

L
KφLA

t

6lim =
∞→

 and 

asymptotically diminishing scale effects.  The model in the paper, contrary to the model in 

Peretto and Smulders (2002), assumes that uncompensated knowledge spillovers become more 

active when the number of firms increases as the theories of knowledge spillovers predict.  

This reverse of assumption does not make scale effects much worse, if we consider substitution 

between accumulations of capital and knowledge.  An intuitive explanation behind this result 

is that a firm will invest more in Kt than in At if firms that invest in At is less compensated due to 
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more active uncompensated knowledge spillovers. 

     According to the theories of knowledge spillovers, both the theory of MAR and the theory 

of Jacobs, knowledge spillovers are more active if the number of firms is larger.  The paper 

incorporates this feature in the model in which substitution between investing in Kt and in At can 

be tractable.  The model that has these features shows that if the number of firms increases and 

thus knowledge spillovers becomes more active, each firm tends to invest more in Kt rather than 

in At while the economy wide returns on investing in At increases, hence the relation such that 

ttt
L

KφLA
t

6lim =
∞→

 emerges.  This is the key mechanism of the model that results in 

asymptotically diminishing scale effects.  As a result, the model can eliminate both scale 

effects and the influence of population growth. 

     Asymptotically diminishing scale effects indicate that if the number of firms is very small, 

scale effects have significant influence on growth rates, however, if the number of firms 

becomes sufficiently large, scale effects vanish.  This result suggests that in the early history of 

civilizations, scale effects may have been a crucial factor for economic growth, but in modern 

day industrialized economies, scale effects may not have to be seen as an important factor for 

economic growth.  Hence, although the model in the paper does not escape from scale effects 

completely, it escapes from scale effects virtually without influence of population growth. 
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Table: 
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      10,000                 1.00                   0.0061 

     100,000                 1.39                   0.021 

  1,000,000                  1.44                   0.024 

 10,000,000                  1.45                   0.024 

100,000,000                  1.45                   0.024 

                                                                           

Note: 60.α = , 0=tn , 050.θ = , 5.1=ε , 3000=ν  and 03.0=m
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Appendix 

     If technological progress is not Harrod neutral such that 
β
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not possible for a central planner to set the initial consumption level that satisfies the growth 
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Proof:  
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     Combining condition (1) and equation (a1),  
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     On the other hand, by equation (a2),  
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 (Step 3)  Because 
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                                                                  Q.E.D. 


