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Abstract

In this paper we analyze two house allocation mechanisms each of which is designed to
eliminate inefficiencies in real-life house allocation problems where there are both existing
tenants and newcomers. The Þrst mechanism chooses the unique core allocation of a �sis-
ter� exchange economy which is constructed by assigning each existing tenant her current
house and randomly assigning each newcomer a vacant house. The second mechanism
-top trading cycles mechanism- Þrst chooses an ordering from a given distribution and
next determines the Þnal outcome as follows: Assign Þrst agent her top choice, next agent
her top choice among remaining houses and so on, until someone demands house of an
existing tenant who is still in the line. At that point modify the queue by inserting her at
the top and proceed. Similarly, insert any existing tenant who is not already served at the
top of the queue once her house is demanded. Whenever a loop of existing tenants forms,
assign each of them the house she demands and proceed. Our main result is that the core
based mechanism is equivalent to an extreme case of the top trading cycles mechanism
which orders newcomers before the existing tenants.
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1 Introduction

Motivated by real-life on-campus housing practices Abdulkadiroùglu and Sönmez (1999) intro-
duce house allocation problems with existing tenants: A set of houses should be allocated to
a set of agents by a centralized clearing house. Some of the agents are existing tenants each
of whom already occupies a house and the rest of the agents are newcomers. In addition to
occupied houses, there are vacant houses. Existing tenants are not only entitled to keep their
current houses but also apply for other houses.
The mechanism known as random serial-dictatorship with squatting rights is used in most

real-life applications of these problems.1 This mechanism works as follows:

(a) Each existing tenant decides whether she will enter the housing lottery or keep her current
house. Those who prefer keeping their houses are assigned their houses. All other houses
become available for allocation.

(b) An ordering of agents in the lottery is randomly chosen from a given distribution of
orderings. This distribution may be uniform or it may favor some groups.

(c) Once the agents are ordered, available houses are allocated using the induced serial dic-
tatorship: The Þrst agent receives her top choice, the next agent receives her top choice
among the remaining houses and so on.

While this mechanism is very popular in real-life applications, it suffers from a major de-
Þciency. Since it does not guarantee each existing tenant a house that is as good as her own,
some existing tenants may choose to keep their houses even though they wish to move, and
this may result in loss of potentially large gains from trade. Hence this popular mechanism is
neither individually rational nor Pareto efficient.2 One can Þx this deÞciency via two alternative
approaches:

1. The Þrst approach is based on the key mechanism for an important special case of our
model. Consider the case where there are only existing tenants and occupied houses. This
special case is known as housing markets (Shapley and Scarf, 1974). For each housing
market there is a unique core allocation which also coincides with the unique competitive
allocation (Roth and Postlewaite, 1977). Core, as a mechanism, is strategy-proof (Roth,
1982) and it is the only mechanism that is Pareto efficient, individually rational and
strategy-proof (Ma, 1994). Based on these results, core (or equivalently the competitive
mechanism) is considered the key mechanism for housing markets and hence it is natural
to consider the following mechanism for house allocation problems with existing tenants:

(a) First construct an initial allocation by (i) assigning each existing tenant her own
house and (ii) randomly assigning the vacant houses to newcomers with uniform
distribution, and

(b) next choose the core of the induced housing market to determine the Þnal outcome.
1Some examples include undergraduate housing at Carnegie-Mellon, Duke, Michigan, Northwestern and

Pennsylvania.
2See Chen and Sönmez (2002, 2004) for experimental evidence of this inefficiency.
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This mechanism is individually rational, Pareto efficient and strategy-proof.

2. The second approach is a direct one. First choose an ordering of agents from a given
distribution of orderings and next determine the Þnal outcome using the following �you
request my house-I get your turn (YRMH-IGYT)� algorithm: Assign Þrst agent her top
choice, second agent her top choice among the remaining houses and so on, until someone
demands house of an existing tenant. If at that point the existing tenant is already
served then do not disturb the procedure. Otherwise modify the remainder of the queue
by inserting her at the top and proceed. Similarly, insert any existing tenant who is not
already served at the top of the queue once her house is demanded. If at any point a loop
forms, it is formed by existing tenants and in such cases remove all agents in the loop by
assigning them the houses they demand and proceed.

The key innovation in this mechanism is that an existing tenant whose current house is
requested is upgraded to the top of the queue before her house is assigned. As a result
it is individually rational as it assures every existing tenant a house that is at least as
good as her own. In addition it is also Pareto efficient and strategy-proof. YRMH-IGYT
algorithm reduces Gale�s top trading cycles algorithm for the special case of housing
markets and following Abdulkadiroùglu and Sönmez (1999) we refer above mechanism as
the top trading cycles mechanism.

In this paper we show that there is an important relation between the two mechanisms
described above: The core based mechanism is equivalent to an extreme case of the top-trading
cycles mechanism where newcomers are randomly ordered Þrst and existing tenants are ran-
domly ordered next . This result illustrates that there is a hidden bias in the core based mech-
anism. Recall that in that mechanism an initial allocation is constructed by assigning each
existing tenant her current house and randomly assigning vacant houses to newcomers. This
might be interpreted as granting property rights of vacant houses to newcomers. Therefore
existing tenants who also have claims on vacant houses give up these claims under the core
based mechanism. In that sense the bias in the core based mechanism is quite intuitive.
Our main result has an important corollary for the special case of house allocation prob-

lems (without existing tenants): The popular real-life mechanism random serial dictatorship is
equivalent to core from random endowments. (Here random serial dictatorship randomly or-
ders the agents and assigns the Þrst agent her top choice, the next agent her top choice among
remaining houses and so on whereas core from random endowments randomly chooses an ini-
tial allocation and chooses the core of the induced housing market.) This equivalence result is
originally shown by Abdulkadiroùglu and Sönmez (1998) and it provides important support for
both mechanisms since the two key mechanisms for house allocation problems are equivalent.
The policy implication of our paper is quite different than that of Abdulkadiroùglu and Sönmez
(1998). While core from random endowments is a key mechanism for house allocation problems,
its extension to house allocation problems with existing tenants is extremely biased in favor of
newcomers. In most real-life applications the priority is intended for existing tenants and our
result shows that the core based approach is not the best choice in such cases.3 Encouraged

3One could argue that the setup itself favors existing tenants since they each have a current house that they
could keep assuring a lower bound on their welfare and therefore it is only fair that the chosen mechanism favors
the newcomers for the vacant houses. In our view this normative issue shall be resolved by the central planner.
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by Abdulkadiroùglu and Sönmez (1998), one may be tempted to use the core based mechanism
for house allocation problems with existing tenants. Our paper shows that this approach may
produce an undesired bias which can be avoided via the top trading cycles mechanism.
The rest of the paper is organized as follows: In Section 2 we formally introduce the model

as well as the special case of housing markets and Gale�s top trading cycles algorithm. In
Section 3 we introduce the two mechanisms studied in the paper and analyze the dynamics of
the YRMH-IGYT algorithm. In Section 4 we present our equivalence result and its corollary
in the context of house allocation problems. Finally in Section 5 we conclude.

2 House Allocation with Existing Tenants

A set of houses (or other indivisible goods) should be allocated to a set of agents by a centralized
clearing-house. Some of these agents are existing tenants each of whom already occupies a
house, the rest of the agents are newcomers and there are houses which are vacant. Existing
tenants are not only entitled to keep their current houses but also to apply for other houses if
they wish. The main real-life application we have in mind is on-campus house allocation.
Formally, a house allocation problem with existing tenants (Abdulkadiroùglu and

Sönmez, 1999) is a Þve-tuple hAE, AN ,HO, HV , P i where AE = {a1, a2, . . . , an} is a Þnite set
of existing tenants, AN = {an+1, . . . , an+m} is a Þnite set of newcomers, HO = {ha}a∈AE is a
Þnite set of occupied houses, HV is a Þnite set of vacant houses, and P = (Pa)a∈AE∪AN is a list
of strict preference relations. Let A = AE ∪AN denote the set of all agents and H = HO ∪HV
denote the set of all houses. We assume that |H| = |A| = n +m and thus |HV | = |AN | = m.
Each agent a ∈ A has a strict preference relation Pa on the set of houses H. Let Ra denote the
�at-least-as-good-as� relation associated with Pa. Preferences are Þxed throughout the paper.
A matching µ is an assignment of houses to agents such that each agent is assigned one

house and each house is assigned to a different agent. Formally speaking a matching is a one-
to-one mapping µ : A→ H. For all a ∈ A, we refer µ(a) as the assignment of agent a under µ.
LetM be the set of all matchings. Note that |M| = (n+m)!.
A lottery is a probability distribution over all matchings. Let 4M denote the set of all

lotteries. In order to simplify the exposition we abuse the notation and let µ also denote the
lottery that assigns probability 1 to matching µ.

2.1 Housing Markets

The class of housing markets (Shapley and Scarf, 1974) is an important subclass of our
model where there are only existing tenants and occupied houses.4 Formally a housing market
is a four-tuple hA,H,P, µi where A is a Þnite set of agents, H is a Þnite set of houses, P is
a list of strict preference relations, and µ is a matching which speciÞes the initial allocation.
Throughout the paper we Þx A, H and P so that each matching µ deÞnes a housing market.
Given a housing market µ, the coalition T ⊆ A blocks a matching η ∈M if there exists a

matching ν ∈M such that (i) ν(a) ∈ {h ∈ H : h = µ(a0) for some a0 ∈ T} for all a ∈ T , (ii)
ν(a)Raη(a) for all a ∈ T , and (iii) ν(a)Paη(a) for some a ∈ T . A matching η is in the core of
a housing market µ if it is not blocked by any coalition.

4See Moulin (1995) for an extensive analysis of housing markets.
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The core plays the key role for housing markets. Roth and Postlewaite (1977) show that
there is a unique matching in the core of each housing market which also coincides with the
unique competitive allocation. The core as a mechanism is strategy-proof (Roth, 1982) and
it is the only mechanism that is Pareto efficient, individually rational and strategy-proof (Ma,
1994).

2.2 Gale�s Top Trading Cycles Algorithm

Gale�s top trading cycles algorithm (GTTCA) is an iterative algorithm which is used to
Þnd the unique core allocation of a housing market. This algorithm is one of the two key
algorithms in this paper and it is deÞned as follows:
Round 1: Each agent points to the agent who owns her most preferred house. Since the

number of agents is Þnite, there is at least one cycle (a cycle is either a singleton (a1) who
points to herself or an ordered list (a1, . . . , ak) of agents where a1 points to ak, ak points to
ak−1, . . . , a2 points to a1). In each cycle corresponding trades are performed and all agents in
a cycle are removed together with their assignments. (Note that all of them are assigned their
most preferred houses.) If there are remaining agents then we proceed with the next round.
In general,
Round t: Each remaining agent points to the agent who owns her most preferred house

among those remaining in the market. In each cycle corresponding trades are performed and
all agents in a cycle are removed together with their assignments. If there are remaining agents
then we proceed with the next round.
By the Þniteness of agents, at least one cycle forms at each round so that the algorithm

terminates in at most |A| rounds.

3 Matching and Lottery Mechanisms

Amatching mechanism is a systematic procedure to select a matching for each house alloca-
tion problem with existing tenants. Similarly a lottery mechanism is a systematic procedure
to select a lottery for each problem.

3.1 Core Based Mechanisms

Let M∗ = {µ ∈ M : µ(a) = ha for all a ∈ AE} be the set of matchings which assign each
existing tenant her current house. Note that |M∗| = m!. For given A, H and for each µ ∈M∗

deÞne mechanism ϕµ as follows: For any preference proÞle mechanism ϕµ interprets µ as the
initial allocation and chooses the core of the induced housing market. Since the preferences are
Þxed throughout the paper, we denote the outcome of mechanism ϕµ also with ϕµ dropping
the argument in ϕµ(P ).
Since core is the key mechanism for housing markets, it is natural to consider the following

lottery mechanism for house allocation problems with existing tenants:

1. For each problem, Þrst construct an initial endowment by (i) assigning each existing
tenant her current house and (ii) randomly assigning vacant house to newcomers with
uniform distribution, and
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2. next choose the core of the induced housing market as the Þnal outcome.

Let us refer this mechanism as mechanism Φ. Formally,

Φ =
X
µ∈M∗

1

m!
ϕµ

3.2 Mechanisms Through a Direct Approach

Let f : {1, . . . , n+m}→ A be a bijection and F be the class of all such bijections. We refer each
such bijection as an ordering of agents and denote it as the ordered list (f(1), f(2), . . . , f(n+
m)). For any ordering f ∈ F , its inverse f−1(.) is deÞned as f−1(a) = i if and only if f(i) = a.
For each A∗ ⊂ A, a bijection f : {1, . . . , |A∗|} → A∗ is referred as a sub-order. Here agent
f(1) is the head and agent f(|A∗|) is the tail of the sub-order f .
For a given ordering f ∈ F consider the following �you request my house - I get your

turn (YRMH-IGYT)� algorithm (Abdulkadiroùglu and Sönmez, 1999): For any given ordering
f , assign the Þrst agent her top choice, the second agent her top choice among the remaining
houses, and so on, until an agent a demands house ha0 of an existing tenant a0. If at that point
existing tenant a0 is already served then do not disturb the procedure. Otherwise, modify the
queue by inserting existing tenant a0 to the top so that existing tenant a0 is at the top of the
line, agent a is second in the line and the rest of the line is uninterrupted. Next it is the turn
of existing tenant a0 and there are three possibilities:

1. Existing tenant a0 demands her own house ha0: In this case existing tenant a0 is assigned
her own house ha0; next, once again, it is the turn of agent a and she demands her top
choice among the remaining houses and the procedure continues in a similar way.

2. Existing tenant a0 demands an available house h that is either vacant or that used to
be the house of an existing tenant who is already assigned another house: In this case
existing tenant a0 is assigned the available house h, agent a is assigned house ha0, and the
procedure continues with the next agent in line.

3. Existing tenant a0 demands house ha00 of another existing tenant a00 who is still in the line:
In this case modify the queue by inserting existing tenant a00 at the top so that existing
tenant a00 is at the top of the line, existing tenant a0 is second in the line, agent a is third
in the line and the rest of the line is uninterrupted. Next it is the turn of existing tenant
a00 and the procedure continues in a similar way.

As we proceed, existing tenants may form loop-orders. (A loop-order is either a singleton
(a1) who demands her own house or an ordered list (a1, . . . , ak) of existing tenants where agent
a1 demands the house of agent ak, agent ak demands the house of agent ak−1, . . ., agent a2
demands the house of agent a1.) In such cases, remove all agents in the loop-order by assigning
them the houses they demand and proceed.
For any ordering f ∈ F , let ψf denote the induced matching mechanism through YRMH-

IGYT algorithm. Following Abdulkadiroùglu and Sönmez (1999), we refer this mechanism as
the top trading cycles mechanism. Since the preferences are Þxed, we denote the outcome
of YRMH-IGYT algorithm also with ψf dropping the argument in ψf(P ). In this paper we are
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particularly interested in orderings which place existing tenants at the end of the line giving
priority to newcomers. DeÞne eF = {f ∈ F : f−1(a) < f−1(a0) for all a ∈ AN and a0 ∈ AE}.
Note that | eF| = n!m!. DeÞne mechanism Ψ as

Ψ =
X
f∈ eF

1

m!n!
ψf

That is, an ordering f among those which give priority to newcomers is randomly chosen with
uniform distribution and next the outcome is obtained using YRMH-IGYT algorithm.

3.3 Dynamics of YRMH-IGYT Algorithm

Since YRMH-IGYT algorithm is key to this paper, it is crucial to understand how it works. For
a given ordering f , the serial-dictatorship induced by f allocates the houses as follows: The
Þrst agent receives her top choice, the next agent receives her top choice among the remaining
houses and so on. For a given ordering f ∈ F , construct the effective-order ef ∈ F as
follows: Run YRMH-IGYT algorithm and order agents in the same order their assignments are
Þnalized. When there is a loop-order, order these agents as in the loop-order.
We illustrate the construction of ef with the following example. Later on we use the same

example to illustrate other constructions that are crucial to this paper. Example 1 is rather
involved in order to capture every key aspect of these constructions.

Example 1: Let AE = {a1, a2, a3, a4, a5, a6, a7, a8, a9} be the set of existing tenants, AN =
{a10, a11, a12, a13, a14, a15, a16} be the set of newcomers, H0 = {h1, h2, h3, h4, h5, h6, h7, h8, h9}
be the set of occupied houses, and HV = {h10, h11, h12, h13, h14, h15, h16} be the set of vacant
houses. (Here hi is the current house of existing tenant ai for i ≤ 9.) Let the preference proÞle
P be given as:5

AE ANz }| {
a1 a2 a3 a4 a5 a6 a7 a8 a9
h15 h3 h1 h2 h9 h6 h6 h6 h11
... h4 h3

...
...

... h7 h12
...

...
...

...
...

z }| {
a10 a11 a12 a13 a14 a15 a16
h7 h2 h4 h6 h8 h1 h5

h3 h4 h14 h13
...

...
...

h12 h16
...

...

h10
...

...
Let f = (a13, a15, a11, a14, a12, a16, a10, a1, a2, a3, a4, a5, a6, a7, a8, a9) be the ordering of the

agents. The following series of Þgures illustrates the dynamics of the YRMH-IGYT algorithm.
When an agent�s assignment under ψf is Þnalized, that is indicated with bold arrows and
reported at the right end of the Þgure. The effective-order ef orders the agents in the same
order as their assignments are Þnalized.

                                               h1  h2  h3  h4  h5  h6  h7  h8  h9  h10  h11  h12  h13  h14  h15  h16 
 
 
a13  a15  a11  a14  a12  a16  a10  a1  a2  a3  a4  a5  a6  a7  a8  a9 

 

 

5After the best few houses the rest of the preferences are arbitrary for each agent.
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h6                                                h1  h2  h3  h4  h5  h7  h8  h9  h10  h11  h12  h13  h14  h15  h16 
 
          ψf(a6) = h6 
a6  a13  a15  a11  a14  a12  a16  a10  a1  a2  a3  a4  a5  a7  a8  a9 

 

 
 
                                               h1  h2  h3  h4  h5  h7  h8  h9  h10  h11  h12  h13  h14  h15  h16 
   
          ψf(a13) = h13  
 a13  a15  a11  a14  a12  a16  a10  a1  a2  a3  a4  a5  a7  a8  a9 

 

 
                                         h1  h2  h3  h4  h5  h7  h8  h9  h10  h11  h12  h14  h15  h16 
 
 
 a15  a11  a14  a12  a16  a10  a1  a2  a3  a4  a5  a7  a8  a9 

 
 
 
 
h1                                           h2  h3  h4  h5  h7  h8  h9  h10  h11  h12  h14  h15  h16 
          ψf(a1) = h15 
          ψf(a15) = h1  
a1   a15  a11  a14  a12  a16  a10  a2  a3  a4  a5  a7  a8  a9 

 

                                   h2  h3  h4  h5  h7  h8  h9  h10  h11  h12  h14  h16 
 
 
   a11  a14  a12  a16  a10  a2  a3  a4  a5  a7  a8  a9 

 
 

 
 h2                                     h3  h4  h5  h7  h8  h9  h10  h11  h12  h14  h16 
 
 
 a2    a11  a14  a12  a16  a10  a3  a4  a5  a7  a8  a9 

 
 
 
h3   h2                                     h4  h5  h7  h8  h9  h10  h11  h12  h14  h16 
 
          ψf(a3) = h3 
a3   a2    a11  a14  a12   a16  a10  a4  a5  a7  a8  a9 

 

 
 h2                                     h4  h5  h7  h8  h9  h10  h11  h12  h14  h16 
 
 
 a2    a11  a14  a12  a16  a10  a4  a5  a7  a8  a9 

 

 
 
h4   h2                                     h5  h7  h8  h9  h10  h11  h12  h14  h16 
          ψf(a4) = h2 
          ψf(a2) = h4 
a4   a2    a11  a14  a12   a16  a10  a5  a7  a8  a9 

 

 
 
                                   h5   h7  h8   h9  h10  h11  h12  h14  h16 
 
          ψf(a11) = h16 
 a11   a14  a12   a16  a10  a5  a7  a8   a9 
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                            h5   h7   h8   h9  h10  h11  h12  h14 
 
 
a14  a12   a16   a10  a5   a7  a8   a9 

 
 
 
 
h8                               h5   h7   h9  h10  h11  h12  h14 
          ψf(a8) = h12 
          ψf(a14) = h8 
a8   a14  a12   a16   a10  a5   a7  a9 

 

 
 
                      h5   h7   h9  h10  h11  h14  
 
          ψf(a12) = h14 
a12   a16   a10  a5   a7   a9 

 
 
                 h5   h7   h9    h10    h11 
 
 
a16    a10   a5   a7    a9    

 
 
h5                   h7   h9  h10  h11 
 
 
a5    a16   a10  a7   a9 

 

 

 
 
h9    h5                  h7   h10  h11  
          ψf(a9) = h11 
          ψf(a5) = h9 
a9      a5    a16   a10  a7           ψf(a16) = h5  

 

       h7   h10   
 
 
a10  a7    
 

 

 
h7    h10 
          ψf(a7) = h7 
 
a7    a10 

 

 
h10   
 
          ψf(a10) = h10 
a10     
 

In this example agents� assignments are Þnalized in the following order:

ef = (a6, a13, a1, a15, a3, a4, a2, a11, a8, a14, a12, a9, a5, a16, a7, a10)
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The outcome of the algorithm is

ψf =

µ
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16
h15 h4 h3 h2 h9 h6 h7 h12 h11 h10 h16 h14 h13 h8 h1 h5

¶

Recall that only existing tenants are inserted to the top of the line in the YRMH-IGYT
algorithm. Therefore the relative order of newcomers in an ordering f and its effective-order
ef are the same.

Observation 1: For all f ∈ F and a, a0 ∈ AN we have f−1(a) < f−1(a0)⇐⇒ e−1f (a) < e
−1
f (a

0)

Next consider an ordering f ∈ eF . Here agents f(1), . . . , f(m) are newcomers. Since the
relative order of newcomers are identical in f and ef , the effective-order ef will order agents as
follows: Some existing tenants (possibly none) are followed by f(1), followed by some existing
tenants (possibly none), followed by f(2), . . ., followed by f(m), followed by some existing
tenants (possibly none).
Consider newcomer f(1) who is at the top of ordering f . If she is not at the top of effective-

order ef that means she requested the current house of an existing tenant who might have
requested the current house of another existing tenant and so on. Insertion of existing tenants
will stop once any of these existing tenants (or the newcomer f(1) herself) requests a vacant
house. Therefore one and only one agent among newcomer f(1) and her predecessors in ef will
be assigned a vacant house. Similarly for any k ≤ m, k agents will be assigned vacant houses
among newcomer f(k) and her predecessors in ef . Hence we have the following observation:

Observation 2: Let f ∈ eF and consider the matching ψf . There is one and only one agent
between ef(1) and f(1) in effective-order ef who is assigned a vacant house. Similarly for each
k ≤ m, there is one and only one agent between the immediate successor of f(k − 1) and f(k)
in ef who is assigned a vacant house.

For each f ∈ eF , YRMH-IGYT algorithm assigns houses in one of two possible ways:

1. There is a sub-order (a1, . . . , ak) of agents where

(a) ak is a newcomer, a1, . . . , ak−1 are existing tenants and

(b) a1 receives a vacant house, a2 receives a1�s house, . . . , ak receives ak−1�s house.

We call each such sub-order a serial-order (S).

2. There is a sub-order (a1, . . . , ak) of existing tenants where a1 receives ak�s house, ak
receives ak−1�s house, . . ., a2 receives a1�s house. Recall that we call each such sub-order
a loop-order (L).

Therefore effective-order ef is a sequence L, . . . , L, S1, L, . . . , L, S2, . . . , L, Sm, L, . . . , L of
serial-orders and loop-orders where the tail of serial-order Si is newcomer f(i) for i ≤ m.
Example 1 continued: Following the dynamics of YRMH-IGYT algorithm in Example 1,
effective-order ef is the following sequence of loop-orders and serial-orders.

(a6)|{z}
L1

, (a13)|{z}
S1

, (a1, a15)| {z }
S2

, (a3)|{z}
L2

, (a4, a2)| {z }
L3

, (a11)|{z}
S3

, (a8, a14)| {z }
S4

, (a12)|{z}
S5

, (a9, a5, a16)| {z }
S6

, (a7)|{z}
L4

, (a10)|{z}
S7
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3.4 A SimpliÞcation of Mechanism Ψ

DeÞne F∗ = {f ∈ eF : a < a0 ⇒ f−1(a) < f−1(a0) for all a, a0 ∈ AE}. That is, orderings in F∗
not only order newcomers before existing tenants but also order existing tenants based on their
index. Note that |F∗| = m!. The following lemma states that the outcome of YRMH-IGYT
algorithm is identical for two orderings in eF as long as newcomers are ordered in the same way
under both orderings.

Lemma 1: Let f, g ∈ eF be such that f(i) = g(i) for all i ≤ m. Then ψf = ψg.
Proof : Let f, g ∈ eF be such that f(i) = g(i) for all i ≤ m. Since f(i) = g(i) for all i ≤ m,
YRMH-IGYT algorithm works identical for both orderings until newcomer f(m) (i.e. the last
newcomer) is assigned a house. Therefore for each i ≤ m, agent f(i) is assigned the same
house under ψf and ψg. Next consider the rest of the agents each of whom is an existing
tenant. YRMH-IGYT algorithm is equivalent to GTTCA when there are only existing tenants
(Abdulkadiroùglu and Sönmez, 1999) and therefore each of the remaining agents receive the
unique core assignment of the remaining market under either ordering. Hence ψf = ψg. ♦

Using Lemma 1 we can obtain the following simpler expression for mechanism Ψ:

Ψ =
X
f∈F∗

1

m!
ψf

That is, Þrst randomly order the newcomers with uniform distribution, next order the existing
tenants based on their index and Þnally obtain the outcome using YRMH-IGYT algorithm.

4 Main Result

Our main contribution is that the two lottery mechanisms Φ and Ψ are equivalent. Recall
that both mechanisms select a uniform lottery over m! matchings for each problem. Here is
our proof strategy: For each ordering f ∈ F∗ we construct a matching η(f) ∈M∗ such that
ψf = ϕη(f). Next we show that mapping η : F∗ →M∗ is a bijection by constructing its inverse
mapping. Therefore mapping η is such that f 6= g ⇔ η(f) 6= η(g) for all f, g ∈ F∗ and this in
turn implies that Φ = Ψ.

4.1 Construction of Mapping η

Construction of mapping η : F∗ →M∗ is quite involved and it requires additional notation.
The key challange in this construction is Þnding a mapping which is a bijection (i.e. one-to-one
and onto). Otherwise it would be a straightforward task to construct a mapping ν : F∗ →M∗

such that ψf = ϕν(f) for each f ∈ F∗. For example one such mapping ν can be constructed by
simply

1. Þnding the effective order, loop-orders, serial-orders, and

2. assigning each agent at the tail of a serial-order (who is by deÞnition a newcomer) the
vacant house allocated in the serial-order.

11



When we run GTTCA with this initial allocation, each of the loop-orders and the serial-
orders obtained in the YRMH-IGYT algorithmwill form as a cycle, and hence the same outcome
will be obtained by the two algorithms. However the mapping ν is not one-to-one and thus
two distinct orderings f, g may yield the same initial allocation ν(f) = ν(g). We illustrate this
point with our running example.

Example 1 continued: Recall that for ordering

f = (a13, a15, a11, a14, a12, a16, a10, a1, a2, a3, a4, a5, a6, a7, a8, a9) ,

the effective-order ef is the following sequence of loop-orders and serial-orders:

(a6)|{z}
L1

, (a13)|{z}
S1

, (a1, a15)| {z }
S2

, (a3)|{z}
L2

, (a4, a2)| {z }
L3

, (a11)|{z}
S3

, (a8, a14)| {z }
S4

, (a12)|{z}
S5

, (a9, a5, a16)| {z }
S6

, (a7)|{z}
L4

, (a10)|{z}
S7

Next consider the ordering

g = (a15, a13, a11, a14, a12, a16, a10, a1, a2, a3, a4, a5, a6, a7, a8, a9)

which differs from ordering f in only the order of agents a13 and a15. In this case the effective
order eg is the following sequence of loop-orders and serial-orders

(a1, a15)| {z }
S2

, (a6)|{z}
L1

, (a13)|{z}
S1

, (a3)|{z}
L2

, (a4, a2)| {z }
L3

, (a11)|{z}
S3

, (a8, a14)| {z }
S4

, (a12)|{z}
S5

, (a9, a5, a16)| {z }
S6

, (a7)|{z}
L4

, (a10)|{z}
S7

which consists of the same loop-orders and same serial-orders as effective order ef , although in
a different sequence. Since the serial-orders are the same for the two effective orders, the above
mentioned mapping ν yields

ν(f) = ν(g) =

µ
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16
h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h16 h14 h13 h12 h15 h11

¶
.

We next proceed with additional notation need for the construction of mappning η. Re-
call that for each f ∈ F∗ effective-order ef is a sequence of serial-orders and loop-orders
L, . . . , L, S1, L, . . . , L, S2, . . . , L, Sm, L, . . . , L. Moreover newcomer f(1) is the tail of serial-order
S1, newcomer f(2) is the tail of serial-order S2, . . ., newcomer f(m) is the tail of serial-order
Sm. We partition serial-orders and loop-orders of effective-order ef as follows:
Step 1: Starting with agent ef(1) clear each agent in order until it is the turn of an agent

a for whom her assignment ψf(a) is worse than a house previously assigned to an agent in a
serial-order. Terminate Þrst step right after the last serial-order before agent a. Next proceed
to step 2. If such an agent does not exist then ef consists of a single step.
In general,
Step t: Starting with the next agent clear agents one at a time until it is the turn of an

agent a for whom her assignment ψf(a) is worse than a house previously assigned to an agent
in a serial-order of current step t. Terminate step t after the last serial-order before agent a.
Next proceed to step t+ 1. If such an agent does not exist then ef consists of t steps.

Let ef consist of T steps. For each t ≤ T , let St denote the set of serial-orders of ef at step
t, Lt denote the set of loop-orders of ef at step t and AtN denote the set of newcomers at step
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t. For each t ≤ T , let ASt denote the set of agents in serial-orders of St and ALt denote the set
of agents in loop-orders of Lt. For each t ≤ T , let ψf(St) denote the set of houses assigned to
agents in ASt and ψf(Lt) denote the set of houses assigned to agents in ALt . For any loop-order
L let ψf(L) denote the set of houses assigned to members of L and for any serial-order S let
ψf(S) denote the set of houses assigned to members of S.
Now we iteratively construct sets G1, . . . , GT of houses as follows: First consider houses

which are assigned to agents in serial-orders. For any t ≤ T , include in Gt all houses in ψf(St).
We may include additional houses to G1, . . . , GT−1 as explained below.
Next consider houses which are assigned to agents in loop-orders. We skip loop-orders in

L1. Start with the Þrst loop-order L in L2. If any agent a ∈ L prefers any of the current houses
in G1 to her own assignment ψf(a) then enlarge G1 by including houses in ψf(L). If no such
agent exists, do not change G1 at this point. Similarly consider each loop-order one at a time
in order. For any loop-order Þrst determine which step of ef it belongs. Suppose it is the turn
of loop-order L ∈ Lt. If any agent a in loop-order L prefers any of the current houses in Gt−1
to her own assignment ψf(a) then enlarge Gt−1 by including houses in ψf(L). If no such agent
exists then check whether any agent a in loop-order L prefers any of the current houses in Gt−2

to her own assignment ψf(a). If so then enlarge Gt−2 by including houses in ψf(L). If no such
agent exists then check whether . . .. If no such agent exists then check whether any agent a in
loop-order L prefers any of the current houses in G1 to her own assignment ψf(a). If so then
enlarge G1 by including houses in ψf(L). If no such agent exists then do not change any of
Gt−1, . . . , G1 at this point and proceed with the next loop-order.6

Remark 1: Consider any t ∈ {1, . . . , T}. Pick any loop-order L in ef . We have ψf(L) ⊆ Gt if
and only if (i) there exists an agent a in loop-order L and a house h ∈ Gt such that hPaψf(a),
and (ii) for any agent a0 in loop-order L, for any r ∈ {t + 1, . . . , T}, and for any h0 ∈ Gr we
have ψf(a0)Pa0h0.
For t > 1, let S∗t ⊆ St be the set of serial-orders at step t where at least one member of the

serial-order prefers a house in Gt−1 to her assignment under ψf . That is

S∗t = {S ∈ St : hPaψf(a) for some house h ∈ Gt−1 and some agent a in serial-order S}
For each t > 1, S∗t is non-empty by construction of step t of ef together with construction of
Gt−1. Finally for t > 1, let A∗tN be the set of newcomers each of whom is the tail of a serial-order
in S∗t.7
We are ready to construct mapping η : F∗ →M∗. For each f ∈ F∗:
6Construction of sets G1, . . . , GT makes it possible to �link� the newcomers in the same step so that their

assignments are Þnalized simultaneously under the GTTCA. Moreover the construction assures that newcomers
in Step t leave GTTCA before newcomers in Step s for t < s. Therefore it will be possible to recover the relative
ordering of two newcomers in the original ordering used by the YRMH-IGYT algorithm, provided that the two
newcomers belong to serial-orders of different steps.

7As we have already indicated the construction of steps of ef and sets G1, . . . , GT make it possible to recover
the relative ordering of two newcomers in different steps. Depending on which serial-orders join to form cycles
in the GTTCA, recovering the relative ordering of some of the newcomers in the same cycle (who are necessarily
in the same step) will also be possible. However this will not uniquely determine

1. the relative ordering of newcomers in Step 1, or

2. the relative ranking of newcomers in A∗tN for t > 1.

In the construction of matching η(f), the indices of these newcomers will be utilized for this purpose.
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1. Find effective-order ef . Find loop-orders, serial-orders and steps of ef as well as sets {Gt},
{S∗t} and {A∗tN}.

2. For each existing tenant a ∈ AE, let η(f)(a) = ha. That is, each existing tenant is
assigned her current house under η(f).

3. Next we handle newcomers in step 1 of ef . The number of vacant houses assigned at step
1 is equal to the number of newcomers at step 1. Let G1V be the set of vacant houses
assigned at step 1 of ef . Assign the Þrst newcomer in ef the smallest indexed house in
G1V , the second newcomer in ef the second smallest indexed house in G

1
V , . . ., the last

newcomer in step 1 of ef the biggest indexed house in G1V under matching η(f).

4. Finally we handle newcomers in step t of ef for t > 1.

Recall that (i) each newcomer at step t is the tail of a serial-order and (ii) in each serial-
order only the head agent is assigned a vacant house. Newcomers in A∗tN will be treated
differently than newcomers in AtN \A∗tN .

(a) Newcomers in A∗tN : Recall that A
∗t
N is the set of newcomers each of whom is the tail

of a serial-order in S∗t. For each serial-order S ∈ S∗t, Þnd the vacant house that is
assigned in the next serial-order of ef unless S is the last serial-order of step t. If
S ∈ S∗t is the last serial-order of step t then Þnd the vacant house that is assigned
in the Þrst serial-order of step t. Let G∗tV be the resulting set of vacant houses.
Order newcomers in A∗tN based on their order in ef . Under matching η(f) the Þrst
newcomer in A∗tN receives the smallest indexed house in G

∗t
V , the second newcomer in

A∗tN receives the second smallest indexed house in G
∗t
V and so on.

(b) Newcomers inAtN\A∗tN : Under η(f) each such newcomer who is not the last newcomer
of step t receives the vacant house that is assigned in the next serial-order. If the
newcomer is the last newcomer of step t then she receives the vacant house that is
assigned in the Þrst serial-order of step t.

As we already emphasized, the set of newcomers A∗tN plays a key role in construction of
matching η(f). Under η(f) each agent in a serial-order S ∈ St is assigned a house h ∈ ψf(St).
Moreover when GTTCA is executed for housing market η(f), (i) serial-orders in St will form
one or more cycles among themselves and (ii) each of these cycles will contain at least one
newcomer in A∗tN . Here the second point ensures that each serial-order in St becomes part of
a cycle and leaves the market after at least one of the serial orders in St−1. In Section 4.2
we execute GTTCA in such a way that cycles that include newcomers are removed from the
market simultaneously. That assures that agents in ASt−1 leave the market before agents in
ASt for any t > 1. This point is key for construction of inverse mapping g in Section 4.2.
Remark 2: Pick any t > 1. Execute GTTCA for housing market η(f) as explained in Section
4.2. No agent in ASt leaves the market before each agent in ASt−1 does.
Next we illustrate partition of ef into its steps, construction of setsG1, . . . , GT , S∗1, . . . ,S∗T ,

A∗1N , . . . , A
∗T
N and construction of mapping η with our running example.

Example 1 continued: In order to construct η(f) we Þrst partition ef into its steps. Clear
each agent one at a time following the order in ef . We can skip the agents until the end of the
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Þrst serial-order S1. Consider agent a1. We have ψf(a1) = h15 which is the top choice of agent
a1. So skip to agent a15. We have ψf(a15) = h1 which is the top choice of agent a15. So skip to
agent a3. We have

ψf(a15)| {z }
=h1

Pa3 ψ
f(a3)| {z }
=h3

and moreover agent a15 is a member of serial-order S2. Therefore Step 1 ends right after the
last serial-order before agent a3, namely serial-order S2 = (a1, a15).
We can skip the agents until the end of the Þrst serial-order of Step 2. Consider agent a8.

We have ψf(a8) = h12 and for agent a8 only house h6 is better. However house h6 is assigned to
agent a6 who is a member of a loop-order. So skip to agent a14. We have ψf(a14) = h8 which is
the top choice of agent a14. So skip to agent a12. We have ψf(a12) = h14 and for agent a12 only
house h4 is better. However house h4 is assigned to agent a4 who is a member of a loop-order.
So skip to agent a9. We have ψf(a9) = h11 which is the top choice of agent a9. So skip to agent
a5. We have ψf(a5) = h9 which is the top choice of agent a5. So skip to agent a16. We have
ψf(a16) = h5 which is the top choice of agent a16. So skip to agent a7. We have ψf(a7) = h7
and for agent a7 only house h6 is better. However house h6 is assigned to agent a6 who is a
member of a loop-order. So skip to agent a10. We have

ψf(a8)| {z }
=h12

Pa10 ψ
f(a10)| {z }
=h10

and moreover agent a8 is a member of serial-order S4 which is in Step 2. Therefore Step 2 ends
right after the last serial-order before agent a10, namely the serial-order S6 = (a9, a5, a16).
Agent a10 was the last agent in ef so effective-order ef has 3 steps:

(a6)|{z}
L1

, (a13)|{z}
S1

, (a1, a15)| {z }
S2

Step 1

¯̄̄̄
¯̄ (a3)|{z}

L2

, (a4, a2)| {z }
L3

, (a11)|{z}
S3

, (a8, a14)| {z }
S4

, (a12)|{z}
S5

, (a9, a5, a16)| {z }
S6

Step 2

¯̄̄̄
¯̄ (a7)|{z}

L4

, (a10)|{z}
S7

Step 3

Therefore A1N = {a13, a15}, A2N = {a11, a14, a12, a16} and A3N = {a10}.
Next, we construct sets of houses G1, G2 and G3:
First consider houses that are assigned to members of serial-orders. Serial-orders of Step 1

are S1, S2 and houses assigned in these serial-orders are h13, h15, h1. Therefore {h13, h15, h1} ⊆
G1. Serial-orders of Step 2 are S3, S4, S5, S6 and houses assigned in these serial-orders are h16,
h12, h8, h14, h11, h9, h5. Therefore {h16, h12, h8, h14, h11, h9, h5} ⊆ G2. The only serial-order of
Step 3 is S7 and the only house that is assigned in that serial-order is h10. Therefore {h10} ⊆ G3.
Next consider houses which are assigned to agents in loop-orders. Skip loop-order L1 which

is in Step 1. Consider loop-order L2 = (a3) which is in Step 2. We have

h1Pa3 ψ
f(a3)| {z }
=h3

and h1 ∈ G1

Hence we include house h3 to G1 since it is the only house assigned in loop-order L2. Thus
{h3} ⊆ G1. Next consider loop-order L3 = (a4, a2) which is also in Step 2. We have

h3Pa2 ψ
f(a2)| {z }
=h4

and h3 ∈ G1
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Hence we include houses h4, h2 to G1 since they are the houses assigned in loop-order L3. Thus
{h4, h2} ⊆ G1. Finally consider loop-order L4 = (a7) which is in step 3. There is no house
h ∈ G2 such that

hPa7 ψ
f(a7)| {z }
=h7

so h7 6∈ G2. There is no house h ∈ G1 such that
hPa7 ψ

f(a7)| {z }
=h7

so h7 6∈ G1 either. L4 is the last loop-order so G1, G2 and G3 are Þnalized as:
G1 = {h13, h15, h1, h3, h2, h4}, G2 = {h16, h12, h8, h14, h11, h9, h5}, G3 = {h10}

Next we construct sets S∗2 and S∗3 of serial-orders and sets A∗2N , A∗3N of newcomers.
We have S∗2 = {S3, S5} since

� a11 is a member of S3, h2 ∈ G1, h2Pa11 ψf(a11)| {z }
=h4

,

� a12 is a member of S5, h4 ∈ G1, h4Pa12 ψf(a12)| {z }
=h2

,

� and no member of S4 or S6 prefer any house in G1 to their assignment under ψf .

We have S∗3 = {S7} since

� a10 is a member of S7, h12 ∈ G2, h12Pa10 ψf(a10)| {z }
=h10

.

Therefore A∗2N consists of the tails of serial-orders S3, S5 and A∗3N consists of the tail of
serial-order S7. Hence A∗2N = {a11, a12} and A∗3N = {a10}.
We are ready to construct matching η(f):

1. For each existing tenant aj ∈ AE we have η(f)(aj) = hj. That is η(f)(aj) = hj for j ≤ 9.
2. Next consider the newcomers:

(a) Newcomers in Step 1 of ef :
G1V = {h13, h15} is the set of vacant houses assigned at Step 1 and A1N = {a13, a15}.
Since a13 is ordered before a15 in ef , newcomer a13 is assigned the smaller indexed
house inG1V and a15 is assigned the bigger indexed house inG

1
V under η(f). Therefore

η(f)(a13) = h13 and η(f)(a15) = h15.

(b) Newcomers in Step 2 of ef :

i. Newcomers in A∗2N = {a11, a12} :
The two serial-orders in S∗2 are S3 and S5. We have G∗2V = {h11, h12} because
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� h12 is the vacant house that is assigned in S4 which is the next serial-order
after S3 and

� h11 is the vacant house that is assigned in S6 which is the next serial-order
after S5.

Since a11 is ordered before a12 in ef , newcomer a11 is assigned the smaller indexed
house in G∗2V and a12 is assigned the bigger indexed house in G∗2V under η(f).
Therefore η(f)(a11) = h11 and η(f)(a12) = h12.

ii. Newcomers in A2N\A∗2N = {a14, a16}:
Since newcomer a14 is a member of serial-order S4, her assignment under η(f)
is the vacant house that is assigned in the next serial-order S5. Therefore
η(f)(a14) = h14. Newcomer a16 is a member of serial-order S6 which is the last
serial-order of Step 2. Therefore her assignment under η(f) is the vacant house
that is assigned in the Þrst serial-order S3 of Step 2. Hence η(f)(a16) = h16.

(c) Newcomers in Step 3 of ef :

i. Newcomers in A∗3N = {a10}:
The only vacant house that is assigned in Step 3 is h10. Therefore G∗3V = {h10}
and η(f)(a10) = h10.

There are no remaining agents and therefore

η(f) =

µ
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16
h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

¶

We next show that for any f ∈ F∗, the outcome of the YRMH-IGYT algorithm is the same
as the core of the housing market induced by initial allocation η(f).

Lemma 2: For any f ∈ F∗ we have ϕη(f) = ψf .
Proof : Let f ∈ F∗. By deÞnition ϕη(f) is the core allocation of housing market η(f).
We Þrst show that ϕη(f)(a) = ψf(a) for each agent a in the Þrst step of ef . Once agents

in step 1 are handled, iteration of the same logic implies the desired conclusion. Let step 1 of
ef be in the following structure: L11, L

1
2, . . . , L

1
`1
, S11 , L

1
`1+1

, . . . , L1`2 , S
1
2 , . . . , L

1
`k
, S1k. So there are

`k loop-orders and k serial-orders in step 1 of ef . Recall that (i) all agents in a loop-order are
existing tenants, (ii) every existing tenant a ∈ AE is assigned her current house ha under η(f)
and (iii) each agent in a loop-order receives her top choice among the houses those are assigned
to members of her loop-order. Consider agents in loop-order L11. By deÞnition of a loop-order
each member of L11 is assigned the current house of a member of loop-order L

1
1 under matching

ψf . Since ef is a serial-dictatorship and since L11 is a loop-order, each agent in L
1
1 receives her

top choice among all houses under ψf . Moreover by construction each agent in L11 is assigned
her current house under matching η(f). Therefore each member of L11 should be assigned her
top choice under matching ϕη(f) or otherwise members of L11 will block ϕ

η(f) contradicting ϕη(f)

is the core allocation for housing market η(f). Hence ϕη(f)(a) = ψf(a) for each agent a in
loop-order L11. Fix the assignments of these agents under ϕ

η(f).
Next consider agents in loop-order L12. By deÞnition of a loop-order each member of L

1
2

is assigned the current house of a member of loop-order L12 under matching ψ
f . Since ef is a
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serial-dictatorship and since L12 is a loop-order, each agent in L
1
2 receives her top choice among

all remaining houses (i.e. houses in H \ψf(L11)) under ψf . By construction each agent in L12 is
assigned her current house under η(f) and therefore under matching ϕη(f) each member of L12
should be assigned her top choice among all remaining houses or otherwise members of L12 will
block ϕη(f). Hence ϕη(f)(a) = ψf(a) for each agent a in loop-order L12 as well. Proceeding in
a similar way we shall have ϕη(f)(a) = ψf(a) for any agent a who is a member of a loop-order
preceding serial-order S11 . Fix assignments of these agents under ϕ

η(f) as well.

For the moment skip serial-order S11 and proceed with the next loop-order L
1
`1+1

. By de-
Þnition of a loop-order each member of L1`1+1 is assigned the current house of a member of
loop-order L1`1+1 under matching ψ

f . By construction of the steps of effective-order ef , each
agent in L1`1+1 prefers her assignment under ψ

f to each house in ψf(S11). This together with ef
being a serial-dictatorship and L1`1+1 being a loop-order imply that each agent in L

1
`1+1

receives
her top choice among all houses in H \∪`1r=1ψf(L1r) (i.e. all houses whose recipients are not Þxed
so far under ϕη(f)) under matching ψf . By construction each agent in L1`1+1 is assigned her
current house under η(f) and therefore under ϕη(f) each member of L1`1+1 should be assigned
her top choice among all houses in H \ ∪`1r=1ψf(L1r) or otherwise members of L1`1+1 will block
ϕη(f). Hence ϕη(f)(a) = ψf(a) for each agent a in loop-order L1`1+1 as well. Fix the assignments
of these agents as well under ϕη(f). Note that we are able to use the same argument as before
once we observe that any member of a loop-order at step 1 prefers her assignment under ψf to
any house that is assigned to members of serial-orders at step 1 even if the serial-order precedes
the loop-order agent belongs. Proceeding in a similar way we shall have ϕη(f)(a) = ψf(a) for
any agent a who is a member of a loop-order at step 1. Fix the assignments of these agents
under ϕη(f) as well.

Next consider all agents in serial-orders S11 , . . . , S
1
k at step 1. By deÞnition of a serial-order,

under matching ψf each agent in AS1 is assigned either the current house of an existing tenant
in AS1 or a vacant house (that is clearly assigned at step 1). By construction of the steps of
ef , each agent in AS1 prefers her assignment under ψf to each of the houses in ψf(S1). This,
together with ef being a serial-dictatorship imply that each agent in AS1 receives her top choice
among all houses in H \ψf(L1) (i.e. all houses whose recipients are not Þxed so far under ϕη(f)
under matching ψf). By construction houses in ψf(S1) are given to members of AS1 under
matching η(f). In particular vacant houses are given to newcomers at step 1 and occupied
houses are given to their current owners each of whom is also in AS1. Therefore each agent in
AS1 should receive her top choice in H \ ψf(L1) under ϕη(f) or otherwise members of AS1 will
block. Hence ϕη(f)(a) = ψf(a) for any agent a ∈ AS1 . Fix the assignments of these agents
under ϕη(f) as well.

Once ϕη(f)(a) is Þxed for any agent a in step 1, we can iterate the same arguments (by
handling the loop-orders Þrst and all the serial-orders next) for agents in step 2 of ef and so
on. This completes the proof of Lemma 2. ♦

Corollary 1: Let f ∈ F∗ and let L be any loop-order of ef . Loop order L forms a cycle via
GTTCA for housing market η(f).

Proof : Directly follows from the proof of Lemma 2. ♦
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4.2 Construction of Inverse Mapping g

Let µ ∈M∗. Execute GTTCA. Note that it does not matter in what order cycles are removed
from the market. That is because any cycle remains a cycle as long as its members are in the
market. We Þrst iteratively construct sets H1, . . . , HU of houses and sets C1, . . . , CU of cycles
as follows:

1. Remove any cycle that exclusively consists of existing tenants. In the process new cycles
may form. Remove any new cycle that exclusively consists of existing tenants as well.
Proceed until each remaining cycle contains at least one newcomer.

2. (a) Remove all remaining cycles (each of which contains at least one newcomer) simul-
taneously. Let C1 be the set of these cycles. Order the agents in these cycles so that
the last agent in each cycle is a newcomer.8 Start constructing H1 by including all
houses that are assigned to members of cycles in C1. At this point new cycles that
include newcomers may form. Do not remove them yet.

(b) Remove any newly formed cycle that exclusively consists of existing tenants. Include
in H1 all houses that are assigned to members of these cycles. Proceed until each
remaining cycle contains at least one newcomer.

In general,

t. (a) Remove all remaining cycles (each of which contains at least one newcomer) simul-
taneously. Let Ct−1 be the set of these cycles. Order agents in these cycles so that
the last agent in each cycle is a newcomer. Start constructing Ht−1 by including all
houses that are assigned to members of cycles in Ct−1. At this point new cycles that
include newcomers may form. Do not remove them yet.

(b) Remove any newly formed cycle that exclusively consists of existing tenants. Include
in Ht−1 all houses that are assigned to members of these cycles. Proceed until each
remaining cycle contains at least one newcomer.

The process ends when no agent remains. For each t ≤ U , let ACt denote the set of agents
in cycles of Ct and let ϕµ(Ct) denote the set of houses assigned to members of ACt. For any
cycle C let ϕµ(C) denote the set of houses assigned to members of C.

Next construct sets eA2N , . . . , eAUN of newcomers as follows: For any t > 1, consider C ∈ Ct.
By construction there is at least one newcomer in cycle C. A cycle with k newcomers can be
divided into k serial-orders where each serial-order starts with an agent who receives a vacant
house under ϕµ and ends with a newcomer. Let newcomer a be a member of cycle C ∈ Ct. In
order to determine whether newcomer a belongs eAtN (i) divide cycle C into its serial orders, (ii)
Þnd the serial-order S newcomer a belongs to and (iii) check whether there exists any agent a0

in serial-order S such that hPa0ϕµ(a0) for some h ∈ Ht−1. We have a ∈ eAtN if and only if such
an agent a0 exists.
For any t > 1, each cycle C ∈ Ct hosts a newcomer who is also a member of eAtN . Otherwise

cycle C could have been removed before. For notational convenience re-organize each cycle
C ∈ Ct for any t > 1 so that the last member of C belongs to eAtN .

8Note that cycle (a1, a2, a3, . . . , ak) is the same cycle with each of the following cycles: (a2, a3, . . . , ak, a1),
(a3, a4, . . . , ak, a1, a2), . . ., (ak, a1, a2, . . . , ak−1).
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We are now ready to construct inverse mapping g :M∗ → F∗. For any µ ∈M∗:

1. Construct sets {Ct}, {Ht}, { eAtN}. Make sure that for t > 1 cycles are re-organized so
that the last agent in each cycle C ∈ Ct is a member of eAtN .

2. For any t, order the newcomers in ACt before the newcomers in ACt+1 .

3. Order the newcomers in AC1 based on the index of their endowment in µ starting with
the agent who has the house with the smallest index.

4. For any step t > 1 order the newcomers in ACt as follows:

(a) First order the newcomers in eAtN based on the index of their endowment in µ starting
with the agent who has the house with the smallest index. Let eAtN = {�at1, . . . , �at`}
and without loss of generality suppose house µ(�at1) has the smallest index, house
µ(�at2) has the second smallest index and so on so forth. Therefore we order agents
in eAtN as (�at1, . . . , �at`) among themselves.

(b) In order to complete the sub-order we will insert the remaining newcomers in ACt
between agents in eAtN . The treatment for agent �at1 will be slightly different so start
with newcomer �at2. Find the cycle newcomer �a

t
2 belongs. Find the closest newcomer

a0 who precedes newcomer �at2 in the cycle. If a
0 ∈ eAtN then she is already handled

and skip to agent �at3. If a
0 6∈ eAtN then order her right in front of �at2 and Þnd the

closest newcomer a00 who precedes newcomer a0 in the cycle. If a00 ∈ eAtN then she is
already handled and skip to agent �at3. If a

00 6∈ eAtN then order her right in front of
newcomer a0 and proceed in a similar way until encountering a newcomer �a ∈ eAtN .
Newcomer �a is already handled so skip to agent �at3.
Repeat this procedure for each of the agents �at3, . . . , �a

t
`.

Finally consider newcomer �at1 and Þnd the cycle she belongs. Find the closest new-
comer a0 who precedes newcomer �at1 in the cycle. If a

0 ∈ eAtN then she is already
handled and terminate the procedure. If a0 6∈ eAtN then order her at the very end
of the sub-order (that orders newcomers in ACt) and Þnd the closest newcomer a00

who precedes newcomer a0 in the cycle. If a00 ∈ eAtN then she is already handled and
terminate the procedure. If a0 6∈ eAtN then order her right in front of newcomer a0
and proceed in a similar way until encountering a newcomer �a ∈ eAtN . Newcomer �a
is already handled so terminate the procedure.

This orders newcomers in ACt among themselves in a unique way.

5. Order the existing tenants after newcomers based on their index starting with the existing
tenant with the smallest index.9

9Abdulkadiroùglu and Sönmez (1998) study a special case of our model where there are no existing tenants.
For this case construction of mapping g simpliÞes as follows:

(a) When AE = ∅, construction of sets of houses H1, . . . ,HU simpliÞes considerably: Here Ht is simply the
set of houses that can be removed in Round t of GTTCA.

(b) When AE = ∅, construction of sets of agents eA2N , . . . , eAUN also simpliÞes considerably: eAtN simply consists
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Next we illustrate construction of sets H1, . . . , HU , C1, . . . , CU , eA2N , . . . , eAUN as well as con-
struction of mapping g with our running example.

Example 1 continued: Let

µ = η(f) =

µ
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16
h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

¶
We Þrst construct sets of houses {Ht} and sets of cycles {Ct} as we execute GTTCA. For each
market, cycles that shall be immediately removed is indicated with bold arrows and cycles that
shall remain for the remaining market is indicated with light arrows.

          
                      a1-h1           a2-h2      a3-h3      a4-h4       a5-h5 
  . . . . . 
 
           a16-h16                 a6-h6 
                .    .  
  
                       
                a15-h15 .    .  a7-h7 
 
                                   

 .    .   
          a14-h14              a8-h8 
 
  . . . . .   
                        a13-h13    a12-h12    a11-h11    a10-h10     a9-h9   

There are two cycles (a1, a15) and (a6) for the initial market. Among the two, the former
hosts newcomer a15 so remove only cycle (a6) and set ϕµ(a6) = h6.

                      a1-h1         a2-h2      a3-h3      a4-h4       a5-h5
. . . . . 

  
           a16-h16     
                .     
  
                       
                a15-h15 .                   .  a7-h7 
 
                                   

 .    .   
          a14-h14              a8-h8 
 
  . . . . .   
                        a13-h13    a12-h12    a11-h11    a10-h10     a9-h9   
 
 

In the remaining market there are three cycles (a1, a15), (a13) and (a7). Among the three
the Þrst one hosts newcomer a15 and second one hosts newcomer a13 so remove only cycle (a7)
and set ϕµ(a7) = h7.

of agents each of whom prefers some house in Ht−1 to her assignment under ϕµ. This is because each
serial-order is a singleton for this case.

Mapping g reduces to an analogous mapping in Abdulkadiroùglu and Sönmez (1998) under these simpliÞcations.
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                      a1-h1         a2-h2      a3-h3      a4-h4       a5-h5
. . . . . 

  
           a16-h16     
                .     
  
                       
                a15-h15 .                    
 
                                   

 .    .   
          a14-h14              a8-h8 
 
  . . . . .   
                        a13-h13    a12-h12    a11-h11    a10-h10     a9-h9   
 
 

No new cycle forms in the remaining market and each of the two present cycles hosts a
newcomer. Remove both cycles (a1, a15) and (a13) from the market simultaneously and let C1
be the set of these cycles. Set ϕµ(a1) = h15, ϕµ(a15) = h1, ϕµ(a13) = h13 and include houses
h15, h1, h13 in H1. At this point we have C1 = {(a1, a15), (a13)} and {h15, h1, h13} ⊆ H1. Note
that while set C1 is already determined, set H1 may grow as we proceed.

           
                      
                                       a2-h2      a3-h3      a4-h4       a5-h5 

 . . . . 
  
           a16-h16     
                .     
  
                       
                     
 
                                   

 .    .   
          a14-h14              a8-h8 
 
    . . . .   
             a12-h12    a11-h11    a10-h10     a9-h9   

In the remaining market there is only one cycle (a3) and it does not host a newcomer.
Remove it from the market, set ϕµ(a3) = h3 and include house h3 in H1. At this point we have
{h15, h1, h13, h3} ⊆ H1.

                            a2-h2                     a4-h4       a5-h5
 .  . . 

  
           a16-h16     
                .     
  
                       
                     
 
                                   

 .    .   
          a14-h14              a8-h8 
 
    . . . .   
                      a12-h12    a11-h11    a10-h10     a9-h9   

In the remaining market there is only one cycle (a2, a4) which exclusively consists of existing
tenants. Remove it from the market, set ϕµ(a2) = h4, ϕµ(a4) = h2 and include houses h4, h2
in H1. At this point we have {h15, h1, h13, h3, h4, h2} ⊆ H1.
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                      a5-h5
      . 
  
           a16-h16     
                .     
  
                       
                                     
 
                                   

 .    .   
       a14-h14                  a8-h8 
 
   . . . .   
                          a12-h12     a11-h11   a10-h10     a9-h9   

In the remaining market there are two cycles (a11, a9, a5, a16), (a12, a8, a14) each of which
includes a newcomer. Remove them from the market simultaneously and let C2 be the set
of these cycles. Set ϕµ(a9) = h11, ϕµ(a5) = h9, ϕµ(a16) = h5, ϕµ(a11) = h16, ϕµ(a8) = h12,
ϕµ(a14) = h8, ϕµ(a12) = h14, and include houses h16, h11, h9, h5, h12, h8, h14 in H2. At this
point we have C2 = {(a11, a9, a5, a16), (a12, a8, a14)} and {h16, h11, h9, h5, h12, h8, h14} ⊆ H2.

  .  
                                                      a10-h10           

In the remaining market there is only one cycle (a10) which hosts newcomer a10. Remove it
from the market and let C3 = {(a10)}. Set ϕµ(a10) = h10 and include house h10 in H3. Since
there are no remaining agents we have

C1 = {(a1, a15), (a13)}, C2 = {(a11, a9, a5, a16), (a12, a8, a14)}, C3 = {(a10)},
H1 = {h15, h1, h13, h3, h4, h2}, H2 = {h16, h11, h9, h5, h12, h8, h14} H3 = {h10}.

Next we Þnd eA2N and eA3N . First consider cycle (a11, a9, a5, a16) ∈ C2 which can be divided
into two serial-orders a11 and (a9, a5, a16). Agent a11, a member of serial-order (a11), prefers
h2 ∈ H1 to her assignment ϕµ(a11) = h16. Therefore the tail of this serial order, namely
newcomer a11, is a member of eA2N . No-one in serial-order (a9, a5, a16) prefers a house in H1 to
her own assignment under ϕµ. Therefore the tail of this serial-order, namely newcomer a16, is
not a member of eA2N .
Next consider cycle (a12, a8, a14) ∈ C2 which can be divided into two serial-orders (a12)

and (a8, a14). Agent a12, a member of serial-order (a12), prefers h4 ∈ H1 to her assignment
ϕµ(a12) = h14. Therefore the tail of this serial order, namely newcomer a12, is a member ofeA2N . No-one in serial-order (a8, a14) prefers a house in H1 to her own assignment under ϕµ.
Therefore the tail of this serial-order, namely newcomer a14, is not a member of eA2N .
Finally consider cycle (a10) ∈ C3. Agent a10, a member of serial-order (a10), prefers h12 ∈ H2

to her assignment ϕµ(a10) = h10. Therefore the tail of this serial order, namely newcomer a10,
is a member of eA3N . Hence eA2 = {a11, a12} and eA3 = {a10}.
We are now ready to construct ordering g(µ).

1. We Þrst reorganize cycle (a11, a9, a5, a16) as (a9, a5, a16, a11) and cycle (a12, a8, a14) as
(a8, a14, a12) so that the last agent in both cycles is a member of eA2N .
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2. Newcomers in AC1 (i.e. agents a15, a13) are ordered before newcomers in AC2 (i.e. agents
a11, a16, a14, a12) who are ordered before the newcomer in AC3 (i.e agent a10).

3. Under µ, newcomer a13 has the smaller indexed house h13 and newcomer a15 has the
bigger indexed house h15. Therefore newcomers in AC1 are ordered as (a13, a15).

4. Among newcomers in AC2 , Þrst consider agents a11, a12 who are members of eA2N . Under µ,
newcomer a11 has the smaller indexed house h11 and newcomer a12 has the bigger indexed
house h12. Therefore agents in eA2N are ordered as (a11, a12). Newcomer a12 belongs
to cycle (a8, a14, a12). The closest newcomer that precedes a12 is newcomer a14. Since
a14 6∈ eA2N , order her right in front of newcomer a12. So far agents a11, a12, a14 are ordered
as (a11, a14, a12). There is no other newcomer in cycle (a8, a14, a12) so skip to newcomer a11
who belongs to cycle (a9, a5, a16, a11). The closest newcomer that precedes a11 is newcomer
a16. Since a16 6∈ eA2N , order her at the end of the sub-order that orders newcomers in AC2.
That takes care of newcomers in AC2 and they are ordered as (a11, a14, a12, a16).

Since a10 is the only newcomer in AC3, she is ordered last among the newcomers.

5. Finally we order existing tenants after the newcomers based on their index.

Therefore we have g(µ) = (a13, a15, a11, a14, a12, a16, a10, a1, a2, a3, a4, a5, a6, a7, a8, a9). Note
that, since µ = η(f) we have g(µ) = f .

4.3 g is inverse mapping of η

We are going to show that g(η(f)) = f via three lemmata. Let f ∈ F∗, and construct ef ,
{St}, {Lt},{Gt}, {A∗tN} and η(f). For matching η(f), construct {Ct},{Ht}, { eAtN} and g(η(f)).
Lemma 3: For any t, each serial-order S ∈ St is part of a cycle C ∈ Ct. Conversely for any t,
any cycle C ∈ Ct can be reorganized as C = (S1, . . . , Sk) such that Si ∈ St for all i ∈ {1, . . . , k}.
Proof : We are going to prove the lemma iteratively for each t. Fix t. Some of the loop-orders
in step t of ef may have already formed cycles and left the market via GTTCA before agents in
serial-orders of St−1. The remaining ones will form cycles by Corollary 1 and leave the market
after agents in serial-orders of St−1 form one or more cycles and leave the market. By Remark
2 serial-orders in St will not leave the market via GTTCA before serial-orders in St−1. Once
all loop-orders in step t of ef leave the market, serial-orders in St will form one or more cycles
among themselves and leave the market via GTTCA. That is because (i) by construction of step

t of ef , for any a ∈ ASt and any house h ∈ H
/³³

∪
r<t
ψf(Sr)

´
∪ ψf(Lt)

´
we have ψf(a)Pah,

and (ii) by construction of η(f), for any a ∈ ASt we have η(f)(a)=ψf(a0) for some a0 ∈ ASt.
Moreover, by Remark 2 no agent in ∪

r>t
ASr leaves the market before each agent in ASt does.

These together with construction of Ct complete the proof of Lemma 3. ♦
Corollary 2: Execute GTTCA for housing market η(f). Any cycle that exclusively consists
of existing tenants is a loop-order in ef .

Proof : Each loop-order in ef forms a cycle via GTTCA by Corollary 1. Each remaining agent
is a member of a serial-order of ef and by Lemma 3 she leaves the market together with all
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members of her serial-order (which includes a newcomer) as a part of a cycle via GTTCA. This
implies the desired conclusion. ♦
Lemma 4 : Ht = Gt for all t.
Proof : For each t we have ψf(St) ⊆ Gt by construction of Gt. Similarly for each t we have
ϕη(f)(Ct) ⊆ Ht by construction of Ht. Moreover by Lemma 2 we have ϕη(f) = ψf and by
Lemma 3 we have ACt = ASt for all t. Therefore ϕη(f)(Ct) = ψf(St) for all t.
Claim 1: Gt ⊆ Ht for all t.
Proof of Claim 1 : Fix t. We will show that Gt\ψf(St) ⊆ Ht. By construction of Gt, set

Gt\ψf(St) consists of houses allocated in loop-orders of ef each of which belongs to a step
s > t. Consider each of these loop-orders following their order in ef . Let L be the Þrst loop-
order such that ψf(L) ⊆ Gt\ψf(St). By Corollary 1, L will form a cycle via GTTCA and
leave the market. By Remark 1(i), there exists a house h ∈ Gt and an agent a in L such that
hPaψ

f(a). Since L is the Þrst loop-order with ψf(L) ⊆ Gt\ψf(St), by construction of Gt we
have h ∈ ψf(St). Therefore since we have ACt = ASt as well as ϕη(f) = ψf and since all cycles
in Ct leave the market simultaneously via GTTCA, loop-order L forms a cycle via GTTCA and
leaves the market after each of the cycles in Ct. Moreover by Remark 1(ii), any agent a00 in L
prefers ψf(a00) to any house in Gs for any s > t. This together with ACs = ASs for all s and
ϕη(f) = ψf imply that L forms a cycle via GTTCA and leaves the market before any cycle in Cs
for any s > t. Therefore by construction of Ht we have ψf(L) ⊆ Ht. Next let L0 be the second
loop-order in ef such that ψf(L0) ⊆ Gt\ψf(St). By Remark 1(i), there exists a house h0 ∈ Gt
and an agent a0 in L0 such that h0Pa0ψf(a0). By construction of Gt we have h ∈ ψf(St)∪ψf(L).
Therefore since we have ACt = ASt as well as ϕη(f) = ψf and since L leaves the market after
all cycles in Ct all of which leave the market simultaneously, loop-order L0 forms a cycle via
GTTCA and leaves the market after each of the cycles in Ct. Moreover by Remark 1(ii), any
agent a00 in L0 prefers ψf(a00) to any house in Gs for any s > t. This together with ACs = ASs
for all s and ϕη(f) = ψf imply that L0 forms a cycle via GTTCA and leaves the market before
any cycle in Cs for any s > t. Therefore by construction of Ht we have ψf(L0) ⊆ Ht. Following
in a similar way we obtain Gt\ψf(St) ⊆ Ht. Moreover since ψf(St) = ϕη(f)(Ct) ⊆ Ht we have
Gt ⊆ Ht completing the proof of Claim 1.

Claim 2: Ht ⊆ Gt for all t.
Proof of Claim 2 : Fix t. We will show that Ht\ϕη(f)(Ct) ⊆ Gt. By construction of Ht,

the set Ht\ϕη(f)(Ct) consists of the houses allocated to existing tenants who form cycles via
GTTCA and leave the market after the cycles in Ct and before the cycles in Ct+1. Consider
each of these cycles one at a time following the order they leave the market via GTTCA (and
arbitrarily order the cycles which form simultaneously). Let C be the Þrst such cycle. By
Corollary 2, C is a loop-order in ef . Since C forms and leaves the market only after the
cycles in Ct, there exists an agent a in C and a house h ∈ ϕη(f)(Ct) = ψf(St) ⊆ Gt such that
hPaϕ

η(f)(a). Moreover since C forms and leaves the market before the cycles in Ct+1, we have
ϕη(f)(a00)Pa00h00 for any agent a00 in C and for any house h00 ∈ Hs for any s > t. Therefore since
Gs ⊆ Hs for all s by Claim 1, we have ϕη(f)(a00)Pa00h00 for any agent a00 in C and any house
h00 ∈ Gs for any s > t. Hence by Remark 1 we have ϕη(f)(C) ⊆ Gt. Next consider the second
such cycle C 0. By Corollary 2, C 0 is a loop-order in ef . Since C 0 forms and leaves the market
only after the cycles in Ct and not before cycle C, there exists an agent a0 in C 0 and a house
h0 ∈ ϕη(f)(Ct)∪ϕη(f)(C) = ψf(St)∪ϕη(f)(C) ⊆ Gt such that h0Pa0ϕη(f)(a0). Since C 0 forms and
leaves the market before the cycles in Ct+1, we have ϕη(f)(a00)Pa00h00 for any agent a00 in C 0 and for
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any house h00 ∈ Hs ⊇ Gs for any s > t. Hence by Remark 1 we have ϕη(f)(C 0) ⊆ Gt. Following
in a similar way, we obtain Ht\ϕη(f)(Ct) ⊆ Gt.Moreover since ϕη(f)(Ct) = ψf(St) ⊆ Gt we have
Ht ⊆ Gt completing the proofs of Claim 2 and Lemma 4. ♦

DeÞne H1
V = H

1 ∩HV . For each t > 1 deÞne eHt
V = {h ∈ Ht ∩HV : h = η(f)(a) for some

newcomer a ∈ eAtN}
Corollary 3: eAtN = A∗tN and eHt

V=G
∗t
V for any t > 1 .

Proof : Immediately follows from Lemma 2, Lemma 3, Lemma 4 and construction of setseAtN , A∗tN , eHt
V ,G

∗t
V for any t. ♦

Lemma 5: g(η(f)) = f.
Proof : We will show that each agent�s order is the same under f and g(η(f)). We proceed by
induction.

1. Let a ∈ A1N = AS1 ∩ AN = AC1 ∩AN be a newcomer with f(i) = a for some order i. By
construction of η(f), house η(f)(a) is the i�th smallest indexed house in G1V . Moreover
H1
V = G

1
V by Lemma 4. Therefore η(f)(a) is also the i�th smallest indexed house in H

1
V .

Since mapping g orders newcomers in AC1 before other newcomers and since this order
is based on the index of their endowments under η(f), agent a should be ordered i�th by
ordering g(η(f)) as well.

2. Assume that for each step r ∈ {2, ..., t − 1} of ef and for any agent a ∈ ArN , agent a�s
order is the same under f and g(η(f)).

We will show that for each a ∈ AtN = ASt ∩ AN = ACt ∩ AN , agent a�s order should be
same under f and g(η(f)).

Recall that A∗tN = eAtN by Corollary 3. First we show that agents in A∗tN are ordered the
same among themselves under f and g(η(f)). Fix a∗ ∈ A∗tN and let ordering f order her i�th
among agents in A∗tN . By construction of η(f), house η(f)(a

∗) is the i�th smallest indexed
house in G∗tV . Moreover by Corollary 3 we have eHt

V = G
∗t
V . Therefore house η(f)(a

∗) is the
i�th smallest indexed house in eHt

V . Since mapping g orders newcomers in eAtN based on
the index of their endowments under η(f), agent a∗ should be ordered i�th among agents
in eAtN = A∗tN by ordering g(η(f)) as well. Next we show that the remaining newcomers in
AtN are ordered the same under f and g(η(f)). We have two cases to consider:

Case 1 : i > 1. Let newcomer a∗∗ ∈ A∗tN be such that a∗∗ is ordered (i− 1)�th among
newcomers in A∗tN under f as well as g(η(f)). Consider the newcomers who are ordered
between newcomers a∗∗ and a∗ under f . First consider newcomer a ∈ AtN\A∗tN who is
ordered right before a∗ under f. Let S∗ be the serial-order newcomer a∗ belongs in ef .
By construction of η(f) house η(f)(a) is the vacant house allocated in S∗ under ψf and
by Lemma 3 serial-order S∗ is a part of a cycle C ∈ Ct. These together with ϕη(f) = ψf
imply that newcomer a also belongs to cycle C and she is ordered right before S∗ in
cycle C. Since a ∈ AtN\A∗tN = AtN\ eAtN , she is also ordered right before newcomer a∗
under g(η(f)) by construction of mapping g. Next consider newcomer a0 ∈ AtN\A∗tN who
is ordered right before newcomer a under f . Let S be the serial-order newcomer a belongs
in ef . By construction of η(f) house η(f)(a0) is the vacant house allocated in S under
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ψf . Since newcomer a belongs to cycle C, serial-order S is part of cycle C by Lemma 3.
These together with ϕη(f) = ψf imply that newcomer a0 also belongs to cycle C and she
is ordered right before S in cycle C. Since a0 ∈ AtN\A∗tN = AtN\ eAtN , she is ordered right
before newcomer a under g(η(f)). Following in a similar way, we show that newcomers
between a∗∗ and a∗ under f are ordered the same among themselves under f and g(η(f)).

Case 2 : i = 1. By construction of A∗tN , newcomer a
∗ is ordered Þrst among agents in AtN

under f . Let S∗ be the serial order newcomer a∗ belongs in ef . Let newcomer a∗∗ ∈ A∗tN
be the agent who is ordered last among newcomers in A∗tN under f and g(η(f)). Consider
newcomers in AtN who are ordered after newcomer a

∗∗ under f. Let newcomer a ∈ AtN\A∗tN
be the last agent under f among newcomers in AtN . By construction of η(f) house η(f)(a)
is the vacant house allocated in S∗ under ψf and by Lemma 3 serial-order S∗ is a part of
a cycle C ∈ Ct. These together with ϕη(f) = ψf imply that newcomer a also belongs to
cycle C and she is ordered right before S∗ in cycle C. Since a ∈ AtN\A∗tN = AtN\ eAtN , she
is also ordered last among newcomers in AtN under g(η(f)) by construction of mapping
g. Next consider newcomer a0 ∈ AtN\A∗tN who is ordered right before newcomer a under
f . Let S be the serial-order newcomer a belongs in ef . By construction of η(f) house
η(f)(a0) is the vacant house allocated in S under ψf . Since newcomer a belongs to cycle
C, serial-order S is part of cycle C by Lemma 3. These together with ϕη(f) = ψf imply
that newcomer a0 also belongs to cycle C and she is ordered right before S in cycle C.
Since a0 ∈ AtN\A∗tN = AtN\ eAtN , she is ordered right before newcomer a under g(η(f)) as
well. Following in a similar way we show that newcomers after a∗∗ in step t of ef are
ordered the same among themselves under f and g(η(f)).

This covers all newcomers in AtN and shows that they are ordered the same under f and
g(η(f)).

This shows that newcomers are ordered the same under f and g(η(f)). Finally existing
tenants are ordered after the newcomers based on their index under both f and g(η(f)). This
concludes the proof of Lemma 5. ♦

4.4 Proof of the Main Result

We are now ready to prove our main result.

Theorem 1: Lottery mechanisms Φ and Ψ are equivalent.

Proof : We have

Φ =
X
µ∈M∗

1

m!
ϕµ and Ψ =

X
f∈F∗

1

m!
ψf

Both mechanisms select a uniform lottery over m! matchings for each problem. Fix a problem.
For each ordering f ∈ F∗ construct matching η(f) ∈M∗. By Lemma 2 we have ψf = ϕη(f)

and by Lemma 5 mapping η is invertible. Hence Φ = Ψ. ♦
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4.5 Implications for the House Allocation Problems

A house allocation problem (Hylland and Zeckhauser, 1977) is a special case of our model
where there are only newcomers and vacant houses.10 A popular real-life mechanism in this
context is random serial-dictatorship: Randomly order the agents and assign the Þrst agent
her top choice, the second agent her top choice among the remaining houses and so on. Another
natural mechanism is core from random endowments: Randomly allocate the houses to
agents, interpret it as an initial endowment, and choose the core (or equivalently competitive
allocation) of the induced housing market. Abdulkadiroùglu and Sönmez (1998) show that the
two mechanisms are equivalent and we obtain their result as an immediate corollary to Theorem
1.

Corollary 4: The random serial dictatorship is equivalent to core from random endowments
for house allocation problems.

Proof : YRMH-IGYT algorithm reduces to a serial-dictatorship when there are no existing
tenants. This together with Theorem 1 imply the desired result. ♦

5 Conclusion

In this paper we show that there is an important relation between two intuitive house alloca-
tion mechanisms which are designed to avoid inefficiencies in those situations where there are
existing tenants and newcomers. Since the core (or equivalently the competitive mechanism)
is the undisputed mechanism in the context of housing markets, it is tempting to extend this
mechanism via constructing an initial allocation by assigning existing tenants their current
houses and randomly assigning vacant houses to newcomers. However this extended mecha-
nism grants initial property rights of vacant houses to newcomers and therefore its equivalence
to �newcomer favoring� top trading cycles algorithm is quite intuitive. We believe our result
provides additional support for the top trading cycles mechanism by showing that its main
competitor is a very biased special case.
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