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Abstract

This paper examines existence of Markov equilibria in the class of dynamic political games
(DPGs). DPGs are dynamic games in which political institutions are endogenously determined
each period. The process of change is both recursive and instrumental: the rules for political aggre-
gation at date t + 1 are decided by the rules at date t, and the resulting institutional choices do not
affect payoffs or technology directly.

Equilibrium existence in dynamic political games requires a resolution to a “political fixed point
problem” in which a current political rule (e.g., majority voting) admits a solution only if all feasible
political rules in the future admit solutions in all states. If the class of political rules is dynamically
consistent, then DPGs are shown to admit political fixed points. This result is used to prove two
equilibrium existence theorems, one of which implies that equilibrium strategies, public and private,
are smooth functions of the economic state. We discuss practical applications that require existence
of smooth equilibria.
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1 Introduction

This paper introduces, and examines equilibrium existence in, a class of dynamic political

games. Dynamic political games (or DPGs) are infinite horizon, stochastic games in which
political institutions are determined endogenously.

Dynamic political games have two defining features. First, the process of institutional
change is recursive: the rules for choosing public decisions in period t + 1 are, themselves,

objects of choice in period t. Second, the process is instrumental: the rules do not affect payoffs
or technology directly. DPGs distinguish between “economic” and “political” states that are

jointly determined each period. The economic states comprise substantive parameters that
affect preferences and technology directly. Whereas, political states are procedural parameters

that characterize the explicit political rule, such as the majority voting rule, for determining
public sector decisions. Decision makers in a DPG can modify existing institutions, not

because the details of political procedures enter into the utility functions, but rather because
institutional changes modify future economic states.

DPGs admit a broad array of institutional changes. We give examples of these that
include changes in the voting rule (majority vs supermajority rules), changes in voting rights

(e.g. larger vs smaller voting franchise), and changes in the scope of the public sector (e.g.,

expansions vs contractions of regulatory authority).

Because the pace of institutional change is captured succinctly by the evolution of political

states, DPGs are natural objects in which to study stability and reform of political institutions.
These issues are taken up in a companion paper, Lagunoff (2004b).1

The present paper, meanwhile, establishes existence of a natural adaptation of Markov
Perfect equilibrium to dynamic political games. According to this adaptation, a Markov

equilibrium is a collection of private and public sector Markov strategies such that (a) the
strategy of each individual in the private sector is optimal for that individual in every state,

and (b) decisions in the public sector are consistent with the prevailing political rule in
every state. Our restriction to Markov equilibria follows a general rule of thumb: changes in

political institutions often occur on an economy-wide scale; in an economy-wide context, the
participants are less apt to coordinate on non payoff-relevant history than they would if they

were in a small group.

A number of interesting issues arise in DPGs that make equilibrium existence more than

a standard technical exercise. Any recursive political model incurs the following “political
fixed point problem.” Unlike in standard social choice problems, political rules here operate

on endogenous objects. A profile of payoffs in this model is a profile of average discounted

1That paper also contains a broader motivation, citing a number historical examples in which political
institutions are modified.
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vectors of the form (1 − δ)ut + δVt+1 where ut is the current stage payoff vector, δ is the
discount factor, and Vt+1 is the vector of continuations. The endogeneity arises because the

continuation Vt+1 is the result of the application of a political rule in period t+1. In turn, this
period t+ 1 political rule is defined on payoff profiles that depend on continuation Vt+2 that,

itself, results from the application of a political rule in period t + 2, and so on... To ensure
that these objects are well defined, the implied map from future (state-contingent) strategies

to current ones must have a “political fixed point.”

Existence of political fixed points, however, is not automatic. If, for example, the current
political rule is a simple majority rule, then the feasible set of outcomes under majority rule

is typically given by the set of Condorcet Winners — the choices which cannot be defeated
by any alternative choice in a majority vote. In this case, however, voting cycles can arise,

and voting cycles present well known problems for existence. While this problem arises in
all recursive models of political aggregation, it is especially troublesome in DPGs because

public decisions here are inherently multi-dimensional: both the current policy and the future
political rule are chosen each period. Consequently, standard “fixes” such as single peakedness

do not work.

Our results emphasize the importance of dynamic consistency for resolving this problem.

Roughly, a political rule is dynamically consistent if it is rationalized by a time separable
social welfare function. We show that if rules are dynamically consistent then under standard

technical conditions (continuity and compactness), DPGs admit political fixed points. This
is proved by showing that the associated “Bellman’s map” has a fixed point in the space of

continuation value functions. An important special case is the class of all voting rules. If stage

game payoffs admit an affine representation then each voting rule is partially rationalized by
the preferences of the same pivotal voter in all states. This affine preference representation is

similar to (and somewhat more restrictive than) the class of Intermediate Preferences intro-
duced by Grandmont (1978) to prove a multi-dimensional Median Voter Theorem. Since the

preferences of the pivotal voter are dynamically consistent, political fixed points exist under
voting rules and affine stage payoffs.

We use these results to establish two equilibrium existence theorems. The first asserts
that (mixed) Markov Perfect equilibria exist when state and action spaces are finite. The

second, and main, theorem establishes sufficient conditions under which equilibria exist that
are smooth functions of the economic state. Both results make critical use of dynamic con-

sistency. The intuition, roughly, is that because dynamically consistent rules are rationalized
by time separable welfare functions, each such rule can be treated as a “player” in the game.

The “trick” is to find the right mapping that transforms the DPG into a standard stochastic
game with private decisions.

The second result also adapts arguments from an elegant result of Horst (2003) who proves

the existence of almost-everywhere differentiable Markov equilibria in standard, stochastic
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games. Horst’s result applies to many economically interesting dynamic environments with
unbounded state space such as environments with capital accumulation. The key assumption

in his result is a “moderate social influence” condition whereby an individual’s own actions
have a relatively greater effect on his marginal dynamic payoff than those of all other indi-

viduals combined. The moderate social influence condition is shown to bound uniformly the
marginal best replies via the Implicit Function Theorem. It serves a similar purpose in the

present result.

Smooth Markov equilibria are useful for practical applications. For example, they provide
one clear justification for Euler equation characterizations in dynamic politico-economic mod-

els. Examples include Klein, Krusell, and Rios-Rull (2002) and Jack and Lagunoff (2003). In
particular, computational techniques developed by Klein, Krusell, and Rios-Rull (2002) char-

acterize the optimal policy functions resulting from median voter and other political rules.
They compute these functions from “generalized Euler equations” that are higher order dif-

ferential equations of future policy functions. These Euler equations are well-defined only if
there exist Markov equilibria that admit higher order derivatives of the economic state.

This paper and its companion follow a growing literature on dynamic, endogenous in-
stitutional change. The list includes Roberts (1998, 1999), Justman and Gradstein (1999),

Acemoglu and Robinson (2000, 2001), Lagunoff (2001), Barbera, Maschler, and Shalev (2001),
Messner and Polborn (2002), Jack and Lagunoff (2003), Gradstein (2003), and Greif and Laitin

(2004). These are dynamic/repeated game models in which some attribute of an aggregation
rule may be chosen each period. The main difference between the present paper and most of

the literature is that the choice of rule here is both recursive and instrumental.2

The paper is organized as follows. In Section 2, we present a less formal version of the
model in order to highlight some issues and problems of in our framework. The general model

is described in Section 3. There, we introduce the class of political rules. Political rules are
natural objects of choice in a recursive model of endogenous institutions. A dynamic political

game combines both the public and private sectors of the environment. An “equilibrium”
combines standard Markov Perfection in private decisions with a political fixed point require-

ment for public decisions. Section 4 examines the political fixed point problem and describes
the existence results more generally. Section 5 offer concluding remarks. Details of some of

the proofs are in the Appendix in Section 6.

2Jack and Lagunoff (2003) is an exception. See the companion paper, Lagunoff (2004b), for a more detailed
discussion of the literature.
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2 Political Fixed Points: An Example

We begin with a simplified, “stripped down” version of the general model. Consider initially

an equilibrium model of period-by-period majority voting with infinitely lived agents. For
now, the institutional environment is fixed.

At each date t = 1, 2, . . ., a set I = {1, . . . , n} of individuals must vote to decide a policy
pt at date t. In the general model, pt is an abstract representation of any vector of public

sector decisions. Let P denote the set of all feasible policies. For example, one could have
P = [0, 1] as the set of all flat tax rates. The current state is ωt drawn from a set Ω. In the

flat tax example, ωt could describe the distribution of earnings across individuals. The state
enters directly into each individual’s stage payoff, and it also enters the transition function

that determines the future state. For now, omit (notationally) private sector behavior such
as individuals’ savings decisions.3

A policy strategy ψ is a Markov strategy specifying the policy pt = ψ(ωt) as a function of
state ωt at date t. Given state ωt, individual i’s (i = 1, . . . , n) average discounted dynamic

payoff over policies is expressed in a recursive form by

Ui(ωt; ψ)(pt) ≡ (1 − δ)ui(ωt, pt) + δ
∫
Vi(ωt+1;ψ)dq(ωt+1| ωt, pt) (1)

where δ is the discount factor, ui is the stage game payoff received in each period, q denotes the
stochastic transition function mapping current states and policies into probability distributions

over future states, and Vi is i’s continuation payoff given policy rule ψ.4 If pt is chosen
each period by a simple majority vote, then pairwise comparisons of policy are evaluated

by each individual using his recursive payoff function Ui(ωt;ψ)(·) in (1). By construction,
Ui(ωt; ψ)(ψ(ωt)) = Vi(ωt;ψ). In other words, the continuation payoff is the recursive payoff

function evaluated the policy strategy.

The profile of payoff functions is U(ωt;ψ) = (Ui(ωt;ψ))n
i=1. For each such profile, the out-

come of majority voting is typically represented by the set of Condorcet Winners — outcomes

that survive all pairwise comparisons in a majority vote. Denote this set by C(U(ωt;ψ)).5

For the policy strategy ψ to be consistent with C(U(ωt;ψ)), it must satisfy the “political fixed

point” problem
ψ(ωt) ∈ C(U(ωt;ψ) ), ∀ωt (2)

3Private sector behavior will be introduced in the next Section.
4The transition q is assumed to satisfy the standard measurability assumptions.
5Formally, p ∈ C(U(ωt;ψ)) if for all p̂ 6= p,

|{i : Ui(ωt;ψ)(p̂) > Ui(ωt;ψ)(p)}| ≤ n/2.
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Clearly, (2) defines a fixed point. Condition (2) is also reminiscent of an implementation
property, although it differs from implementation in the critical sense the preference domain

is endogenously determined by the fixed point property. For this reason, it makes no sense to
speak of “truth-telling” constraints in a fixed domain of preference characteristics.

In the current period t, a Condorcet Winner exists if voting is cycle proof. But since voting
takes place each period, the continuation payoff Vi already encodes future voting outcomes,

and so the voting rule at date t is cycle-proof only if Condorcet Winners exist in all future

dates.

Though couched in different terminology, this political fixed point problem has recent an-

tecedents in the politico-economic literature, beginning with the pioneering work of Krusell,
Quadrini, and Ŕıos-Rull (1997).6 They specify a general “political aggregator function” anal-

ogous to our Condorcet operator. One key insight of theirs is that any social choice function,
Condorcet or otherwise, must operate on the profile of endogenous, recursive policy prefer-

ences. In the present context, this profile is U(ωt;ψ).

The political fixed problem is resolved in Krusell, et. al., and in most of the politico-

economic literature that followed, by assuming either that there are only two types of agents,
or that pt is uni-dimensional and stage game preferences have a special form to generate single

peaked recursive preferences.7

Unfortunately, single peakedness will not suffice if both the policy and the political institu-

tion itself are part of the decision problem. We now introduce a parameter θt that determines
the political institution. In this Section, suppose that θt ∈ {θ1, θ2} where θt = θ1 means that

the policy is determined by a majority vote, and θt = θ2 means that the policy is imposed by

a “dictator,” whom we assume to be individual i = 1. The “political state” θt is then distinct
from the payoff-relevant “economic” state ωt. The political state summarizes the political

process by which public decisions are made. In particular, the political state θt determines
the political rule, in this case either majority rule or dictatorship, for choosing both the policy

pt and the subsequent political state, θt+1.

Again, omit the private sector. Now, the public sector decision includes both the choice

of current policy and the choice of institution for the following period. Keeping notation
the same whenever possible, the policy strategy ψ determines policy pt = ψ(ωt, θt) given the

current economic and political state. An institutional strategy µ is a mapping that determines
the future political state θt+1 = µ(ωt, θt). The institutional strategy describes a recursive

process of institutional change. The rule in period t produces the new rule for period t + 1.
The public sector decision each period is a pair (pt, θt+1).

6Their work builds on an older literature on time consistent policy. See Persson and Tabellini (2001) and
Hassler, et. al. (2003) for references.

7A few exceptions to these two standards sets of conditions are mentioned below.
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To save on notation, let st = (ωt, θt) be the composite state. An individual’s payoff now is

Ui(st; ψ, µ)(pt, θt+1) ≡ (1 − δ)ui(ωt, pt) + δ
∫
Vi(st+1; ψ, µ)dq(ωt+1| ωt, pt) (3)

If st = (ωt, θ
1), then the set C(U(st;ψ, µ), st), now indexed by state st, describes the set of

Condorcet Winning public decisions as before. However, if st = (ωt, θ
2), then C(U(st;ψ, µ), st)

describes the public sector decisions that maximize the dictator’s payoff function U1(st;ψ, µ)(·).
The political fixed point problem is restated as

(ψ(st), µ(st)) ∈ C(U(st; ψ, µ), st), ∀st (4)

The fixed point problems (2) and (4) are distinct in several respects. In (2), the map

admits a fixed point in the space of policy strategies. Since the institution — majority voting
— was fixed, the recursive payoff profiles were required to admit Condorcet Winners for each

economic state ω. This is a nontrivial problem by itself. However, the mapping in (4) varies
by institutional state, θt, as well as by economic state ωt, and so we further require that (4)

admits solutions for all political aggregation rules in some feasible set.

This fixed point problem in institutions is reminiscent of “self-selected rules” in the static

social choice models of Koray (2000) and Barbera and Jackson (2000), and also the infinite
regress model of choice of rules by Lagunoff (1992). These all posit social orderings on the

rules themselves based on the outcomes that these rules prescribe. The present model differs
from these in that institutional choice occurs in real time. This makes possible an analysis of

explicit dynamics of change. Additionally, the present model is more concrete, distinguishing

between public and private sector decisions (in the next Section). Once a private sector is
introduced, then (4) must hold for individuals’ private decision rules that best respond to

public sector decisions and to each other in all states.

Notice, finally, that the decision problem is necessarily multi-dimensional. Hence, the

simplest Median Voter Theorems are not useful for solving (4). A few papers examine dynamic
models of voting that specifically allow for multi-dimensional choice spaces (though keeping the

voting mechanism fixed). These include Bernheim and Nataraj (2002), Kalandrakis (2002),
and Banks and Duggan (2003). Here, the political fixed point problem is compounded by

fact that different institutions each have possibly distinct requirements for achieving recursive
consistency. The sequel addresses this problem in fuller generality.

3 The General Model

In general, the feasible set of political institutions can easily include more than merely “pure
dictatorship” and “pure democracy”. Here we introduce the general model. Our specification
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includes private (individual) decisions as well as public ones, and a fairly arbitrary space of
political institutions. Let Θ denote an index set of feasible institutions. Let S = Ω × Θ

denote the composite state space. In what follows, we will find it useful to adopt the standard
convention and drop time subscripts, using instead the notation of primes, e.g., θ′ to denote

subsequent period’s variables, θt+1, and so on. Let | · | denote the cardinality of a set.

3.1 Political Rules

For expositional reasons, we first describe the political institutions that aggregate arbitrary

profiles of payoff functions without reference to the dynamic game. Let vi denote an arbi-
trary function expressing the payoff vi(p, θ

′) over current policy p and next period’s political

state, θ′. One example is the dynamic model of the previous section whereby vi(p, θ
′) =

Ui(s; ψ, µ)(p, θ′). Let V denote the set of all profiles, v = (v1, . . . , vn), of such payoff func-

tions.

A class of political rules corresponds to a state-contingent social choice correspondence,

C : V × S →→ P × Θ,

that associates to each state s and each payoff profile v, a set C(v, s) of public decisions. If
(p, θ′) ∈ C(v, s), then (p, θ′) is a feasible public decision under C. Each particular political

rule in the class C is given by C(·, s). Examples of political rules include:

(i) A Time Consistent Planner The standard benchmark model for dynamic optimal (Ram-
sey) policy formation is of a time consistent government or social planner. The set Θ

is a singleton set {θ} and θ ∈ IRn
+ is a vector that determines the welfare weights in

a planner’s objective. For each s = (ω, θ) ∈ S, let (p, θ′) ∈ C(v, s) if θ′ = θ and p

maximizes
∑

i θi vi(p, θ).

(ii) Supermajority rules. The political state identifies the fraction, θ ≥ 1/2 of individuals
required to pass a public decision. A super-majority voting rule therefore determines

which supermajority rule is used in the future: formally Θ ⊂ (.5, 1] and for each s =
(ω, θ), let (p, θ′) ∈ C(v, s) if for all (p̂, θ̂′)

|{i ∈ I : vi(p̂, θ̂
′) > vi(p, θ

′)}| ≤ θn

(iii) Voting rights. The political state θ identifies the subset of individuals who currently

possess the right to vote (the voting franchise). The chosen public decision is the one
that is majority preferred within this restricted group. Each restricted voting franchise

today uses a majority vote to determine what group of individuals has the right to vote
tomorrow: formally, Θ ⊇ 2I , and let (p, θ′) ∈ C(v, s) if for all (p̂, θ̂′),

|{i ∈ θ : vi(p̂, θ̂
′) > vi(p, θ

′)}| ≤ 1

2
|θ|
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(iv) The scope of public sector decisions. The political state identifies the domain of public
decisions. Let θ ⊂ P so that θ denotes the set of feasible policies. Let (p, θ′) ∈ C(v, s)

if p ∈ θ and for all (p̂, θ̂′) satisfying p̂ ∈ θ,

|{i ∈ I : vi(p̂, θ̂
′) > vi(p, θ

′)}| ≤ 1

2
n

Although these are all examples in which the procedure for changing policy is the same as
that which changes institutions, this need not be the case. Consider the following modification

of (ii). The political state is θ = (θa, θb), whereby θa is the supermajority required to determine
policy, while θb is the supermajority required to determine the subsequent rule. Then (p, θ′) ∈
C(v, s) if, for all (p̂, θ̂′), EITHER

|{i ∈ I : vi(p̂, θ̂
′) > vi(p, θ̂

′)}| ≤ θan OR |{i ∈ I : vi(p̂, θ̂
′) > vi(p̂, θ

′)}| ≤ θbn

Hence, the framework allows for provisions, such as those in the U.S. Constitution, that
distinguish rules for changing policy from rules for changing rules.

Call a class of rules C single valued if for each v ∈ V and for each s, there exists a (p, θ′)
pair such that C(v, s) = {(p, θ′)}. In many cases, the political rules of interest are those that

can rationalized by some social welfare criterion. Formally, a class of rules C is (partially)
rationalized by a social welfare function F : IRn × S → IR if F is weakly increasing in each

dimension of IRn and if
C(v, s) = (⊇)argmax

p,θ′
F (v(p, θ′), s)

When C(·) describes a voting rule in every state (e.g., Examples (ii) and (iii) above), then

there are two well known conditions under which the public decisions under C are partially

rationalized by the preferences of at least one pivotal voter. The first is the standard restriction
to single peaked preferences on a one dimensional decisions space.8 The second is the order

restriction property of Rothstein (1990). Similar results can be found in the application of
single crossing properties by Roberts (1977) and by Gans and Smart (1996).

3.2 Dynamic Political Games

Recall that I = {1, . . . , n} is the set of individuals in this society. P is the set of feasible policies
in each period, and S = Ω × Θ is the composite state space. Let s0 = (ω0, θ0) denote the

initial state. We now introduce private sector decisions. Let eit denote i’s private decision at
date t, chosen from a feasible set E. A profile of private decisions is et = (e1t, . . . , ent ). These

decisions may capture any number of activities, including labor effort, savings, or investment
activities. They may also include “non-economic” activities such as religious worship or one’s

participation in a violent revolt.

8See Arrow (1951) and Black (1958).
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To express the dependence of payoffs and technology in private sector decisions, let ui(ωt, et, pt)
denote i’s stage payoff and let q(B| ωt, et, pt) denote the probability that ωt+1 belongs to the

(Borel measurable) subset B ⊆ Ω, given the economic state ωt, the private decision profile
et, and the policy pt. Each individual’s dynamic objective is to maximize average discounted

payoff,

E

[ ∞∑

t=0

δt(1 − δ) ui(ωt, et, pt )

]
. (5)

Define a Dynamic Political Game (DPG) to be the collection

G ≡ 〈(ui)i∈I , q, E, P,Ω, Θ, C, s0〉

The class of dynamic political games (DPGs) constitutes a broad set of problems in which
institutional changes occur endogenously and incrementally. The specification of a DPG

includes an “economic structure” in form of (ui)i∈I , q, E, P and Ω. This part is found in any
standard stochastic game. The addition is the “political structure” given by Θ and C. The

class of political rules is described by operator C. The operator C is defined on the profiles
of dynamic recursive payoffs in each state. In turn, these dynamic payoffs depend on future

strategies (see, for example, Equation (3) in the previous Section) which are defined explicitly

in Section 3.3. The initial state s0 completes the specification.

For tractability, we restrict attention to dynamic political games that satisfy one of the

following two exclusive sets of assumptions.

(A1) Θ is a finite set. P and E are compact, convex subsets of Euclidian spaces, and Ω is a

convex subset of a Euclidian space; the payoff function ui for each i is continuous and
uniformly bounded above by some K > 0; for each (ω, e, p), q(·| ω, e, p) admits a norm

continuous, conditional density f(·| ω, e, p) with respect to a probability measure η.

(A1’) Θ, E, P and Ω are all finite sets.

Unless otherwise stated, all the subsequent results assume that either (A1) or (A1’) holds.

The continuity and boundedness assumptions in (A1) are fairly standard in existence

Theorems of Markov equilibria in stochastic games.9 However, they are not harmless. In
particular, they imply that dynamic payoffs are bounded by K, and, more importantly, that

transitions cannot be deterministic. Dutta and Sundaram (1994) contains a cogent discussion
of the role of these assumptions in existence results.

9See, for example, Mertens and Parthasarathy (1987), Dutta and Sundaram (1994), Amir (1996), Curtat
(1996), and Horst (2003).
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3.3 Strategies and Equilibrium

To make the theory tractable, we restrict attention to Markov strategies. Such strategies only
encode the payoff-relevant states of the game. Consequently, individuals are not required to

coordinate on the history of past play.

Recall that ψ : S → P and µ : S → Θ describe the policy and institutional strategies,

respectively. Together they constitute the public sector strategies. A private sector strategy
for individual i is a function σi : S → Ei that prescribes private action eit = σi(st) in state st.

Let σ = (σ1, . . . , σn). The strategy profile is therefore summarized by the triple

private sector profile︸ ︷︷ ︸ policy strategy︸ ︷︷ ︸ institutional strategy︸ ︷︷ ︸

π ≡ ( σ, ψ, µ )

An individual deviation from π is denoted by, for example, π\σi. For any st = (ωt, θt) the
payoff to citizen i in profile π at date t is defined recursively by:

Vi(st; π) = (1 − δ)ui(ωt, σ(st), ψ(st) ) + δ
∫
Vi(ωt+1, µ(st); π)dq(ωt+1| ωt, σ(st), ψ(st) ) (6)

The function V depends on and varies with arbitrary Markov strategy profiles π = (σ, ψ, µ).

Along an equilibrium path (defined below), the function Vi defines a Bellman’s equation for
citizen i. Given any strategy π, and any state st at date t, an individual’s public payoff

function Ui(st, π) : P × Θ → IR is defined by

Ui(st, π)(pt, θt+1) ≡ (1 − δ)ui(ωt, σ(st), pt) + δ
∫
Vi(ωt+1, θt+1; π)dq(ωt+1| ωt, σ(st), pt ) (7)

Let U(st, π) = (Ui(st, π) )i∈I . We now drop time subscripts and define an equilibrium for any
dynamic political game.

Definition 1 An Equilibrium of a dynamic political game, G, is a profile π = (σ, ψ, µ) of

Markov strategies such that for all states s = (ω, θ),

(a) Private decision rationality: For each citizen i, and each private decision rule, σ̂i,

Vi(s; π) ≥ Vi(s; π\σ̂i ) (8)

(b) Existence of political fixed points: The public decision pair (ψ(s), µ(s) ) satisfies

(ψ(s), µ(s) ) ∈ C (U(s, π), s ) (9)
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Part (a) is the standard Markov Perfection property of a stochastic game. Private sector
actions must be individually optimal in each state. Part (b) asserts the existence of political

fixed points. Public sector decisions are required to be consistent with political rules in the
class C. In keeping with the standard definition of a stochastic game, both types of decisions

are simultaneous. Therefore, an equilibrium of a DPG requires both Markov Perfection from
individuals’ private sector choices and recursive consistency of public sector choices with a

political rule.

Since this equilibrium concept departs from Nash equilibrium, it deserves further comment.
One could make a reasonable case that, instead of modelling political rules in reduced form as

social choice rules (e.g., Condorcet Winners to represent majority voting), all political rules
should be explicitly modelled as a part of a noncooperative game. The argument goes that

endogenous institutions can arise as Nash equilibrium outcomes of a standard stochastic game.
The issue then becomes: which game? While there are agreed upon canonical social choice

representations of voting, there are fewer in non-cooperative games.10 Hence, the trade-off is
one of “explicitness” versus “representativeness.” The approach taken here favors the latter.11

4 Equilibrium Existence and Political Fixed Points

There are two main problems in establishing equilibrium existence. First, there is the “stan-

dard” existence problem in all stochastic games. This problem amounts to finding a solution
to Part (a) in the equilibrium definition. For even if there were no public decisions (or if C

was constant in all states), known existence results generally employ restrictive conditions on
feasible choice sets, preferences, and transition technology. Second, one must address the po-

litical fixed point problem as expressed in Part (b) of the equilibrium definition. The problem
of finding political fixed points was outlined in Section 2. Both problems must be solved in

order for a DPG to admit equilibria. However, while the standard existence problem applies
to all stochastic games, the political fixed problem is specific to dynamic political games. We

address the specific problem first.

4.1 Dynamically Consistent Rules

Recall that most of the common political rules of interest are those that are rationalized or
partially rationalized by social welfare functions. Among these, the most obvious ones satisfy

10Arguably, the closest to a canonical model among non-cooperative games is the endogenous candidate
model of Besley and Coate (1997) and Osborne and Slivinsky (1996). Even in their model, however, there are
reasonable, alternative specifications of how candidates could emerge.

11It should also be noted that existence Theorems in this paper apply to purely noncooperative games as a
special case.
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a dynamic consistency requirement. Dynamic consistency, long taken for granted in decision
models, presumes that future decision makers’ points of view coincide with that of the present

decision maker if the latter were to called upon to make the decision in that future period.
A large literature has emerged recently to evaluate dynamically inconsistent decision-making

from an individual’s perspective. Nevertheless, most dynamic models of government policy
maintain assumptions of dynamically consistency.12

For our purposes, the following definition will be used in the analysis. Consider any time

separable payoff functions of the form, v(p, θ′) = (1 − δ)v1(p) + δ
∫
ω′ v2(ω′, θ′)dη. (Clearly,

dynamic payoffs in the present model satisfy this requirement). A class of political rules, C,

will be said to be dynamically consistent if it is partially rationalized by a continuous social
welfare function F that satisfies: in every state s = (ω, θ),

F
(
(1 − δ)v1(p) + δ

∫

ω′
v2(ω′, θ′)dη, s

)
= (1 − δ)F

(
v1(p), θ

)
+ δ

∫

ω′
F

(
v2(ω′, θ′), θ

)
dη

This definition embodies two critical properties. First, F is time and state separable and

linearly homogeneous in the discount weights (1−δ, δ).13 Second, F does not vary directly with
the economic state, i.e, F (·, s) = F (·, θ). Consequently, each political state θ is uniquely

associated with a political rule. Both properties are needed to guarantee that the rate of
intertemporal substitution between the current period payoff and next period coincides with

the rate of substitution between any other pair of successive payoff-dates. Example (i) in

the previous Section is clearly dynamically consistent. However, Examples (ii)-(iv) are only
dynamically consistent in particular circumstances. The results below provide greater detail

about the nature of these circumstances.

The following result asserts that dynamic consistency of the political rule is sufficient for

existence of political fixed points.

Theorem 1 Suppose in a dynamic political game G, either Assumption (A1) or (A1’) holds,

and the class C is dynamically consistent. Then for any profile, σ, of private sector decision
rules, the game admits political fixed points.

The proof below shows first that political fixed points correspond to fixed points in value
function space of the associated “Bellman’s equation.” A solution to the Bellman’s equation

exists iff there is a political fixed point. A Contraction Mapping argument then completes the
proof.

12The two exceptions I am aware of are Krusell, Kuruscu, and Smith (2002) and Lagunoff (2004a).
13Broader definitions of dynamic consistency do not require linear homogeneity in the discount factor. The

results here may also be amenable to a more general definition, but at a cost in transparency.
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Proof Let W : S → [0, K]n be a profile of bounded, measurable continuation payoff functions.
We call a continuation function W feasible if W = V (·, π) for some strategy profile, π. Let W
denote the set of feasible continuations. By a slight abuse of our previous notation, we define
the recursive public payoff with an arbitrary continuation W in (7) to

Ui(s; σ,W )(p, θ′) = (1 − δ)ui(ω, σ(s), p) + δ
∫
Wi(ω

′, θ′)dq(ω′| ω, σ(s), p ) (10)

We prove first that political fixed points are associated with the fixed points (in value
function space) of the associated Bellman’s mapping. Specifically, let G be a dynamic political

game in which rule C is partially rationalized by a continuous function F . For each σ ∈ Σ,
suppose that Ŵ is a fixed point of the “Bellman’s” operator B : W → W defined by

(BW )(s) = U(s; σ,W )(ψ(s), µ(s)) (11)

where (ψ(s), µ(s)) solves

max
p,θ′

F (U(s; σ,W )(p, θ′), s) (12)

Fix σ and let Ŵ be a fixed point of the Bellman’s operator defined in (11). Then we show
that the pair (ψ̂, µ̂) that solves (12) for W = Ŵ , and the pair constitutes a political fixed

point. Let (ψ̂, µ̂) denote the solution to (12) under Ŵ , i.e,

F
(
Ŵ (s), s

)
= F

(
U(s; σ, Ŵ )(ψ̂(s), µ̂(s)), s

)
, ∀s

By our earlier (abuse of) notation, U(s; σ, Ŵ ) = U(s; σ, ψ̂, µ̂). If C is either partially or fully
rationalized by F , then (ψ̂, µ̂) ∈ C(U(s; σ, ψ̂, µ̂), s), and so (ψ̂, µ̂) is a political fixed point.

Next, we prove that if C is fully rationalized by F , then the converse holds: namely, for
every political fixed point (ψ̂, µ̂), the corresponding value Ŵ of the Bellman’s operator is a

fixed point of (11). Suppose then that C is fully rationalized by F and let (ψ̂, µ̂) be a political

fixed point. Then

(ψ̂, µ̂) ∈ C(U(s; σ, ψ̂, µ̂), s) = argmax
p,θ′

F
(
U(s; σ, V (·; σ, ψ̂, µ̂))(p, θ′), s

)

By definition, V (·; σ, ψ̂, µ̂) is a fixed point of the Bellman operator.

We prove the remainder of the result as follows. Fix an arbitrary σ and let W be any
bounded continuation profile, and by our abuse of notation, write U(s, σ,W ). Since C is

dynamically consistent, the Bellman’s operator defined in (11) is, in this case, given by

(BW )(s) = max
p,θ′

F (U(s, σ,W )(p, θ′), θ)

= max
p,θ′

{
(1 − δ)F (u(ω, σ(ω, θ), p), θ) + δ

∫
F (W (ω′, θ′), θ) dq(ω′|ω′, σ(ω, θ), p)

}

(13)
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Notice that under either (A1) or (A1’), (BW ) in nonempty valued. It is easy to very that
B satisfies two sufficient conditions, discounting and monotonicity, in a well known result

of Blackwell (1965), implying that B is a contraction. Applying the Contraction Mapping
Theorem, B has a fixed point, Ŵ . By our previous argument relating fixed points in value

space with those in strategy space, the conclusion follows.

Although dynamic consistent rules solve the political fixed point problem, most common

rules are not dynamically consistent without further restrictions. Significantly, the Condorcet

rule in Section 2, for example, is only dynamically consistent when its policies coincide with
those of a median voter whose identity does not vary across states. What guarantees such a

condition? We find that a simple restriction on stage game payoffs — a restriction similar to
Grandmont’s (1978) Intermediate Preference Assumption — suffices for any voting rule to be

dynamic consistent.

Formally, C is a class of voting rules if there is a nonempty collection D ⊆ 2I×2I satisfying:

for each v, θ, and (p, θ′), (p, θ′) ∈ C(v, θ) iff ∀(p̂, θ̂′), ∃(D1, D2) ∈ D such that,

vi(p, θ
′) > vi(p̂, θ̂

′), ∀i ∈ D1

and vi(p, θ
′) ≥ vi(p̂, θ̂

′), ∀i ∈ D2

Informally, D denotes the ordered sets consisting of strictly and weakly decisive coalitions

of individuals. These coalitions define the sets of individuals that have veto power over all
public decisions. Politically feasible decisions require the consent of each member of some

decisive coalition. This definition is fairly standard although there are a number of, mostly
equivalent, definitions. (See Austen-Smith and Banks (1999) ).

Theorem 2 Suppose that G is a dynamic political game in which either Assumption (A1) or
(A1’) holds. Suppose that C is a class of voting rules and that the stage game payoffs admit

the affine preference representation,

ui(ω, e, p) = k(i)h(ω, e, p) + g(ω, e, p) (14)

all i, where k is an increasing, real valued function. Then C is dynamically consistent.

It is a simple exercise to show that recursive preferences admit an affine representation

if stage game payoffs do. Moreover, the ordering on I as given by k(·) is preserved across
all states. Hence, these preferences satisfy the order restriction property of Rothstein (1990).

Rothstein’s Theorem can therefore be applied to show that C is partially rationalized by
at least one individual’s recursive payoff function. The details of the argument are in the
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Appendix. Combining Theorems 1 and 2, if G is a DPG in which (14) is satisfied and C is a
class of voting rules, then G admits a political fixed point.

Even with the restriction to affine preferences, a strong case can be made that many of
the political rules observed in the world today are not voting rules and, in fact, are dynam-

ically inconsistent. Two sources of dynamic inconsistency are of particular interest. First,
dynamically inconsistent choices arise because the political rules vary with economic states

such as the income distribution. Wealth-weighted “voting” rules satisfy this property. A pure

example of this is the wealth-is-power rule examined by Jordan (2002). In its simplest form,
policies are entirely determined by those with the most aggregate wealth.

(v) Wealth-is-Power Let Θ be a degenerate singleton {θ}. For each state s = (ω, θ), let the

economic state determine distribution of wealth, i.e, ω = (ω1, . . . , ωn). The Wealth-is-

Power rule is given by: (p, θ) ∈ C(v, s) if for all (p̂, θ),
∑

i∈M

ωi <
∑

i/∈M

ωi

where M = {i ∈ I : vi(p̂, θ) > vi(p, θ)}.

Jordan (2002) shows that outcomes of the wealth-is-power rule correspond to the core of

a certain cooperative game. He characterizes the set of wealth distributions that generate
nonempty core, or in our context, generate political fixed points. It is easy to see that under

certain types of technological shocks, dynamic inconsistencies can occur. Reversals over time
in the aggregate wealth of two mutually exclusive groups of individuals create conflicts between

the present and future incarnations of the political aggregation process.

A second form of dynamic inconsistency arises because the political rules are not separable.
An example is a weighted Rawlsian social choice rule under which society wishes to maximize

the welfare of the person whose weighted payoff makes him least well off.

(vi) The Rawlsian Rule Let Θ be a finite subset of {θ ∈ IRn
+ :

∑
k θk = 1}. For all states

s = (ω, θ),
C(v, s) = argmax

(p,θ′)
min

i
{θ1v1, . . . , θnvn}

Even if the economic state is degenerate, i.e., Ω = {ω}, it is not generally true under the
weighted Rawlsian rule that the least well off individual also has the least well off continuation

payoff next period. Hence, the rate of substitution between today and period t + 1 differs
possibly from rate of substitution between t+ 1 and t+ 2.

Clearly, each of these rules may induce dynamically inconsistent public sector decisions.
It less clear whether, and to what extent, they pose difficulties in the political fixed point
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problem. Of the two, wealth-weighted voting seems more problematic. Jordan (2002) shows,
for instance, that fairly extreme wealth distributions are required to avoid cycles in the wealth-

is-power rule even in static problems and with affine preferences. For now, we leave this for
future research and proceed to the general existence problem.

4.2 Extension to Mixed Strategies: A Finite Existence Theorem

Unfortunately, even if the DPG admits political fixed points, a solution to the general existence

problem is not guaranteed. The simplest way to resolve the existence issue is to assume that
all sets, E, P , Ω and Θ are finite (i.e., Assumption (A1’) ). Then the analysis must be

extended to allow for mixed strategies. The extension is fairly straightforward. Note that
since the political rule C makes a joint determination of p and θ′, it must be extended to the

set ∆(P × Θ) of correlated distributions.

First, represent the public sector strategies for p and θ′ as a pair ψ∗ and µ∗ such that

µ∗ : S → ∆(θ) where µ∗(θ′|s) is the probability of θ′ given s, and ψ∗ : S × Θ → ∆(P ) where
ψ∗(p|s, θ′) denotes the conditional probability of p given s and the realized θ′. Given s, the

associate mixed action in ∆(P ×Θ) is expressed as (ψ∗×µ∗)(s). Next, let σ∗
i (ei|s) denote the

conditional probability of private decision ei given s. A profile of mixed Markov strategies is

then defined by π∗ = (σ∗, ψ∗ × µ∗). The payoff (6) is extended to mixed Markov strategies in
the following way:

Vi(s; π
∗) = E

[
(1 − δ)ui(ω, e, p ) + δ

∑

ω′
Vi(ω

′, θ′; π)q(ω′| ω, e, p )
∣∣∣ (ψ∗ × µ∗)(s), σ∗(s)

]

(15)

Theorem 3 Suppose in any dynamic political game satisfying (A1’) the class C of political
rules is dynamically consistent. Then there exists an equilibrium π∗ = (σ∗, ψ∗ × µ∗) in mixed

Markov strategies.

In the particular case of a voting rule, equilibria exist if stage game preferences admit

affine representations. The argument is straightforward. Since F is dynamically consistent,
then for any political state θ, we can treat the social welfare function F (·, θ) in state θ as a

“player” in a standard dynamic game. This player has a set of feasible pure actions equal to
P ×Θ if θ is the current rule, and is equal to the empty set ∅ if θ is not. This player then has

dynamic preferences (in pure strategies) given by,

(1 − δ)F (u(ω, e, p), θ) + δ
∑

ω′
F (V (ω′, θ′; π), θ) f(ω′|ω, e, p)
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Viewed in this way, the DPG can be transformed into a standard, finite stochastic game
with n + |Θ| players. At this point, the Theorem 3 is just an application of a standard

result, namely, that stochastic games with finite actions sets and finite states admit in mixed
strategies Markov Perfect equilibria. We therefore omit remainder of the proof.

4.3 A Smooth Existence Theorem

While the finite existence theorem is useful in many contexts, it is limited in a number of

ways. First, it does not apply to many economically relevant environments. In many such
environments, the natural economic states are capital stocks which may be unboundedly

infinite.

Second, practical applications demand more structure. In most dynamic models of policy,

equilibria are characterized by their Euler equations. These Euler equations are more elaborate
than those in single agent problems. Roughly, Euler equations in DPGs have extra terms due

the intertemporal effects that other agents’ future policy functions have on a decision maker’s
policy decision in the current period. These extra terms involve higher order differential

equations of future policy functions.14 Euler equation characterizations in dynamic political
models are found in Klein, Krusell, and Rios-Rull (2002) and Jack and Lagunoff (2003). The

latter examines a particular class of DPG in which voting rights are endogenously determined.

The former examine a politico-economic model of government fiscal policy. Klein, Krusell,
and Rios-Rull also develop computationally tractable techniques for obtaining optimal policies

from “Generalized” Euler equations in their model.15

For these reasons, it is highly desirable to find conditions on DPGs for which smooth

Markov equilibria exist. Until recently, not much was known about smooth Markov equilibria
even in standard stochastic games. An elegant result of Horst (2003) asserts existence of

Lipschitz-continuous (hence, almost everywhere smooth) Markov Perfect equilibria in dynamic
games. His result makes use of a “moderate social influence” (MSI) assumption whereby the

interactions between players are sufficiently weak. The MSI assumption apparently originates
from a restriction on payoffs in a local interaction model of Horst and Scheinkman (2002). The

idea, roughly, is that one’s own actions have a relatively greater effect on one’s own marginal
dynamic payoff than those of all other individuals combined. MSI overcomes a common

problem in dynamic games. Generally, continuity of each player’s “Bellman’s” operator fails
because it conflicts with conditions required for compactness of the function space to which

the operator applies. One can recover continuity of the Bellman operator if there are uniform,

14See Basar and Olsder (1999) for a general formulation.
15Strictly speaking, politico-economic models are hybrids in the sense that the price mechanism in these

models endogenously constrains one’s feasible actions, and so out-of-equilibrium behavior is not defined. Nev-
ertheless, their techniques are likely adaptable to dynamic game environments if smooth Markov equilibria
exist.
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Lipschitzian bounds on the players’ marginal best replies in each state in the dynamic game.
The MSI assumption establishes existence of such bounds.

We combine elements of Horst’s result, including the MSI assumption, with earlier results
on political fixed points to show that dynamic political games with dynamically consistent

rules admit equilibria that are almost everywhere smooth in the economic state, ω.

To make sense of formal assumptions below, we adopt the following definitions and nota-

tional conventions. First, endow the class of (smooth) C∞ functions, H : IR` → IRk, with the

topology of C∞-uniform convergence on compacta. Formally, Hm → H in this topology if,
for any compact set Y ⊂ IR`, {Hm} converges to H C∞-uniformly on Y (i.e., for each r and

each rth partial derivative, ||DrHm −DrH||r → 0 on Y ).16 The function H is C∞-uniformly
bounded if it is smooth and there is some some finite number L > 0 that uniformly bounds

H and bounds all its higher order derivatives in sup norm.

Next, define a real valued function, g : IR` → IR to be α-concave with α > 0 if g(x)+ 1
2
α||x||2

is concave.17 Notice that α = 0 corresponds to the standard definition of concavity. When α >
0, then α-concavity is obviously a stronger curvature condition. α-concavity is used elsewhere

in the literature to bound higher order derivatives via the Implicit Function Theorem. It is
used here for a similar purpose.

Finally, given some ε > 0, we let Eε and P ε denote interior neighborhoods of E and P ,
respectively, such that any point e ∈ Eε or p ∈ P ε is ε in distance away from the respective

boundaries in E and P .

In addition to Assumption (A1), the following assumptions on the dynamic political game

will be used.

(A2) (Concavity) There is an αi > 0 such that for each ω, ui is αi-concave in the private and

policy decision pair, (ei, p) pair.

(A3) (Uniform Bounds) There is an L > 0 such that for each i, the payoff function ui is smooth
and C∞-uniformly bounded by L > K (recall that K is the bound on ui). There is also

an M > 0 such that for each ω′ and each ω, the conditional density f(ω′| ω, ·), as a
function of decisions (e, p), is assumed to be C∞-uniformly bounded by M .

16The sup norm, || · ||r on the rth derivative DrH : IR` → IRkr` is defined by

||DrH ||r = sup
x′

sup
j1,...,jr

|| ∂rH

∂xj1 · · ·∂xjr

(x′)||.

In this notation, || · ||0 is the standard sup norm on H .
17An equivalent definition is: g is α-concave if the matrix D2g+αI , with I denoting the identity matrix, is

negative semi-definite.
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(A4) (Moderate Social Influence) There exists a 0 < γ < 1 such that for all i, and all
s = (ω, θ),

(1 − δ)L+ δKM

αi
≤ γ(1 − δ).

(A5) (Interiority) There exists an ε > 0 such that for each i, each e−i, and each pair of

economic states ω and ω′, both ui(ω, e−i, ·), and f(ω′|ω, ·) achieve their upper bounds

on Eε × P ε.

Assumptions (A2) and (A3) are used to bound the marginal best replies uniformly over all

states and continuations. Assumption (A4) is the Moderate Social Influence (MSI) assumption
adapted from Horst (2003) and Horst and Scheinkman (2002). Assumption (A5) ensures

interior solutions in best replies.

Theorem 4 Let G be any dynamic political game satisfying (A1)-(A5). Suppose the class of

political rules C is dynamically consistent and rationalized by a smooth function F on IRn.
Then G admits an equilibrium, π = (σ, ψ, µ∗), in which σ and ψ are pure Markov strategies

and µ∗ is a mixed Markov strategy, all of which are almost everywhere smooth in the economic
state ω.

The Proof below has two main steps. First, we establish existence of a smooth Markov
equilibrium for the game restricted to only private decisions. With this restriction, the game

conforms to an ordinary stochastic game. To an extent (though not completely), this step
adapts many of the arguments from Horst’s proof. In particular, we adapt the methodology

of showing that the dynamic game reduces to a series of one-shot auxiliary games all of which
have smooth Nash equilibria in the economic state.18 The smoothness requires both the MSI

assumption and an older result of Montrucchio (1987) who shows that dynamic, single agent
decision problems have solutions that are Lipschitzian functions of the state.

Horst first applies a fixed point argument for bounded state spaces. These fixed points are
Markov equilibria of the game with bounded states. He then extends the result by taking a

uniform limit of fixed points as the bound is relaxed. The present argument, however, takes
a direct approach by applying the fixed point argument directly on the full state space.

However, the truly distinctive step of our proof is to show that any dynamic political game

with a dynamically consistent class C maps into an ordinary stochastic game. By using the set
of rules to augment the set of players, public sector decisions may be transformed into private

decisions taken by these additional players. Assumptions (A1)-(A5) in the original game are

18This same methodology is common in other stochastic game equilibrium existence results. See, for example,
Mertens and Parthasarathy (1987), Dutta and Sundaram (1994), Amir (1996), and Curtat (1996).
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shown to apply to the new stochastic game. It is not obvious that this transformation can be
done if political rules are dynamically inconsistent.

Proof of Theorem 4 The steps outlined informally above are formalized here.

Step 1. The Restriction to Private Decisions

We first prove an existence Theorem without public decisions. That is, consider the stan-
dard dynamic game with only private decisions, ei. In what follows, we exclude the public

decision component from notation altogether. That is, we first assume that stage game payoffs

are given by ui(ω, e) while the density is given by f(ω′| ω, e). Let Ḡ = 〈(ui)i∈I ,Ω, q, E, ω0; 〉
denote the game with only private decisions. Restating the result, we first wish to prove

Theorem A Let Ḡ denote a dynamic game with only private decisions. Suppose Ḡ satisfies
(A1)-(A5). Then the game has a Markov Perfect equilibrium σ that is smooth on Ω.

The Proof of Theorem A constitutes the remainder of Step 1. Let X denote the set of all
uniformly bounded, Lipschitz continuous functions, x : Ω → [0, K)n with uniform Lipschitz

bound given by L. Standard results show that X is compact in the topology of uniform
convergence on compacta (see, for example, Mas Colell (1985, Theorem K.2.2). For each such

function x ∈ X , define a one shot game by the payoffs,

Hi(ω, e, x) = (1 − δ)ui(ω, e) + δ
∫
xi(ω

′)f(ω′| ω, e)dη (16)

for each i. Then let H = (Hi)
n
i=1 be the vector valued function with components defined by

(16).

Lemma 1 For each state ω and each continuation value x ∈ X , the one shot game defined
by payoff profile, H(ω, ·, x), has a unique pure strategy Nash equilibrium profile,

(σ̄1(ω, x), . . . , σ̄n(ω, x) )

of private decisions. The profile σ̄ is smooth with uniformly bounded first derivatives in ω,
and is uniformly bounded and continuous in x.

The proof of this and all subsequent Lemmatta are contained in the Appendix. Using

Lemma 1, let σ̄ be the map that defines the unique Nash equilibrium σ̄(ω, x) for the one shot
game with payoffs, Hi(ω, e, x), i = 1, . . . , n.

Lemma 2 The equilibrium payoff function Hi(·, σ̄(·), x) is smooth with a uniformly bounded
first derivative in ω, and with the uniform bound applying across all x.
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Now define the operator, T defined on X n by

(Tx)i(ω) = Hi(ω, σ̄(ω, x), x)

for each i = 1, . . . , n, or, in other words,

(Tx)(ω) = (H1(ω, σ̄(ω, x), x), . . . , Hn(ω, σ̄(ω, x), x) ) (17)

Clearly, from Lemma 2, the function (Tx)(·) is smooth in ω with uniformly bounded first
derivative in ω over all ω and x. This implies, in particular, that Tx has uniform Lipschitz

bound. Consequently, Tx ∈ X n for all V ∈ X n.

Lemma 3 T is a continuous operator.

Using Lemma 3, T maps continuously from the compact set X n into X n. By Schauder’s
Fixed Point Theorem (see, for example, Aliprantis and Border (1999) ), T has a fixed point,

x∗:
x∗ = Tx∗.

Therefore, the profile, σ∗ defined by σ∗ ≡ σ̄(·, x∗) is a smooth Markov Perfect equilibrium of
the dynamic political game without public decisions.

Step 2. The Extension to Public Decisions

Fix a dynamic political game G satisfying (A1)-(A5) with C dynamically consistent. We

now define a simple transformation of the full game, G, with public decisions to one with only
private decisions. Call this transformed game Ḡ and let Ḡ = 〈(ūj)j∈J , f, Ē,Ω, ω0〉.

The transformed game is defined as follows. Suppose, without loss of generality that Θ

and I are disjoint sets, and let J = I ∪Θ. There are |J |× |Θ| players, each doubly indexed by
jθ, with j ∈ J and θ ∈ Θ. The interpretation of index jθ is that of Player j whose political

“type” (state) is θ. Formally, if τ = |Θ| then there are (n+ τ)τ players. The private decision
space for Player jθ is

Ējθ =





E if j ∈ I

P × ∆(Θ) if j ∈ Θ

Notationally, let ēI = (ējθ)j∈I denoting the profile of private actions of the “original”

players. Then for each j ∈ Θ, ējθ = (p̄jθ, βjθ), where βjθ is the (possibly) mixed strategy that
assigns probability βjθ(θ

′) to θ′ by Player jθ.
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By the dynamic consistency of C, each player jθ’s stage payoff ūjθ may be defined by:

ūjθ(ω, ē) =





uj(ω, ēI, p̄θθ) if j ∈ I

F (u(ω, ēI, p̄θθ), j) if j ∈ Θ

Without loss of generality, we can express a player’s stage game payoff as ūjθ(ω, ēI, p̄θθ).
Fix a vector β = (βθθ)θ∈Θ. Treating β as a part of the state, i.e, (ω, β), it is straightforward

to verify that the assumptions (A1)-(A5) are satisfied for the private decisions game Ḡ if they
are satisfied in the underlying game G.

Now define x̄ : Ω × ∆(Θ) → [0, K]J by

x̄jθ(ω, β) =
∑

θ′∈Θ

xjθ′(ω)βθθ(θ
′)

Observe that x̄ is uniformly bounded and Lipschitz continuous on Ω × ∆(Θ) with uniform

bound of, as before, L. It is also linear in β. Therefore, we can write the dynamic payoff
function H from Theorem A as

Hjθ(ω, β, ēI, p̄θθ, x̄) ≡ (1 − δ)ūjθ(ω, ēI , p̄θθ) + δ
∫
x̄jθ(ω

′, β)f(ω′|ω, ēI, p̄θθ)dη

By Lemma 1, the payoff Hjθ(ω, β, ·, x̄) has a unique pure strategy Nash equilibrium,
(σ̄(ω, β, x̄), ψ̄(ω, β, x̄) ) in “state” (ω, β, x̄) where σ̄jθ(ω, β, x̄) = ējθ is the private decision

of jθ when j ∈ I, and ψ̄jθ(ω, β, x̄) = p̄jθ is the “private” decision when j ∈ Θ. Moreover, as
in the Lemma 2 Proof (see the Appendix), the pair (σ̄, ψ̄) is smooth in ω and in β.

Next define
µ̄jθ(ω, ēI, p̄θθ, x̄) = argmax

β
Hjθ(ω, β, ēI, p̄θθ, x̄)

Notice that H is linear in β, and is a smooth and C∞-uniformly bounded function of (ω, ē)

(see Proof of Lemma 1 in the Appendix). Consequently, µ̄ is upperhemicontinuous and almost
everywhere smooth in ē and ω, and so by Kakutani’s Theorem, the map

(ω, ēI, p̄θθ, β, x̄) 7→ ( (σ̄jθ(ω, β, x̄))j∈I , (ψ̄jθ(ω, β, x̄))j∈Θ, (µ̄jθ(ω, ēI, p̄θθ, x̄))j∈Θ )θ∈Θ

has a fixed point
(σ̄∗

jθ(ω, x̄))j∈I, (ψ̄
∗
jθ(ω, x̄))j∈Θ, (µ̄

∗
jθ(ω, x̄))j∈Θ )θ∈Θ

which is almost everywhere smooth in Ω. Let σ̄∗(ω, x̄) ≡ (σ̄∗
jθ(ω, x̄))j∈I,θ∈Θ, ψ̄∗(ω, x̄) ≡

(ψ̄∗
jθ(ω, x̄))j∈Θ,θ∈Θ, and µ̄∗(ω, x̄) ≡ (µ̄∗

jθ(ω, x̄))j∈Θ,θ∈Θ.
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The remainder of the argument now mimics that of Theorem A. Specifically, there exists
a fixed point x̄∗ of an operator T defined by

(T x̄)jθ(ω) = Hjθ(ω, σ̄
∗(ω, x̄), ψ̄∗(ω, x̄), µ̄∗(ω, x̄), x̄)

Applying the same argument as in Theorem A, a Markovian equilibrium exists which is given
by

(σ∗, ψ∗, µ∗) = (σ̄∗(·, x̄∗), ψ̄∗(·, x̄∗), µ̄∗(·, x̄∗) )

This equilibrium is smooth in ω. We conclude the proof.

5 Conclusion

This paper introduces a class of stochastic games, called dynamic political games, in which

political institutions are instrumental objects of choice each period. In dynamic political
games, public sector decisions are determined by rules that aggregate profiles of dynamic

recursive preferences of individuals. The public sector decisions include parameters of future
political rules. Hence, rules used in date t + 1 are a part of the decision determined by rules

in date t.

We specify an equilibrium concept requiring that political aggregation be recursively con-

sistent. Although this concept differs somewhat from Nash equilibrium, we argue that it is a
more canonical starting point for an analysis of dynamically endogenous institutions.

In this framework, Markov equilibria exist if all sets are finite, or if certain “smooth

uniformity” conditions are satisfied. Under the last types of conditions, we obtain a smooth
existence result: Markov equilibria exist that are smooth functions of the economic state.

The last result is of particular interest to applied political economists who characterize
dynamic equilibria by their Euler equations. Since Euler equations in dynamic games contain

higher order differentials of policy functions, existence of smooth equilibria, at least locally, is
important.

To obtain the existence results we show that DPGs must confront a difficult “political fixed
point problem” that arises in virtually any model of dynamic political aggregation. Because

a political rule must operate on dynamic preferences which, themselves, depend endogenously
on future strategies and rules, aggregation is well defined now only if it is well defined in all

future states and for all future rules. Along with standard technical conditions, dynamically
consistent rules evidently solve this problem.

Unfortunately, many historically relevant political institutions — wealth-weighted voting
for instance — are not dynamically consistent. Moreover, even simple rules such as voting
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rules are consistent in only under restrictive conditions such as preferences that admit affine
representations. It is an open question whether, and to what extent dynamically inconsistent

classes of rules admit political fixed points. We leave this issue for future research.

6 Appendix

Proof of Theorem 2 Fix an arbitrary behavior profile π. Then, at each date t, for each
state st,

Vi(st; π) = E

[ ∞∑

τ=t

δτ−t(1 − δ)[ui(ωτ , σ(sτ ), ψ(sτ )) ]
∣∣∣st

]

= E

[ ∞∑

τ=t

δτ−t(1 − δ)[k(i)h(ωτ , σ(sτ ), ψ(sτ)) + g(ωτ , σ(sτ ), ψ(sτ )) ]
∣∣∣st

]

= (1 − δ)

{
k(i)E

[ ∞∑

τ=t

δτ−t[h(ωτ , σ(sτ ), ψ(sτ )) ]
∣∣∣st

]
+ E

[ ∞∑

τ=t

δτ−t[g(ωτ , σ(sτ ), ψ(sτ )) ]
∣∣∣st

]}

≡ k(i)H(st) +G(st)

Clearly, the continuation profile V (·, π) has an affine representation of the same form as

stage payoffs in (14) for each π. Therefore,

Ui(s, π)(p, θ′) = (1 − δ)ui(ω, σ(s), p) + δ
∫
Vi(ω

′, θ′; π)dq(ω′|ω, σ(s), p)

= (1 − δ)(h(ω, σ(s), p)k(i) + g(ω, σ(s), p) )

+δ
∫

[k(i)H(ω′, θ′) +G(ω′, θ′)]dq(ω′|ω, σ(s), p)

(18)

The profile U(s, π) has also has an affine representation. Because k is strictly increasing,
the collection of profiles, U(s, π)(·), in which Ui(s, π)(·) satisfies (18) for each i is order re-

stricted in the sense of Rothstein (1990), with respect to linear order on i induced by k (i.e.,
i � j iff k(i) > k(j)). Rothstein’s Theorem therefore implies that there exists at least one indi-

vidual m such that C is partially rationalized by the recursive preference function Um. That is,
Rothstein’s Theorem implies the existence of some m ∈ I such that F (U(s, π), s) = Um(s, π).

Notice that F satisfies the requirements of dynamic consistency. Moreover, by either Assump-

tion (A1) or Assumption (A1’),

argmax
p,θ′

Um(s, π)(p, θ′)
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has a solution, and so C is nonempty valued. We conclude the proof.

Proof of Lemma 1

Observe, first, that by Assumptions (A1)-(A3), for each i, Hi is a smooth and C∞-uniformly
bounded function of (ω, e) (in the relative topology), with uniform bound given by

(1 − δ)L+ δKM (19)

Clearly, this bound is independent of x since x is itself uniformly bounded by c. Consequently,
Hi is uniform bounded on its entire domain.

Next, we show that for each state ω, Hi is ᾱi-concave in ei where ᾱi = (1−δ)αi−δKM > 0.
To show this, we must show that for each ω, D2

ei
Hi(ω, ē x) + ᾱiI is negative semi definite.

To this end, fix ω. Observe that by α-concavity on stage utility functions ui (Assumption
(A2)), and uniform boundedness of the conditional densities, f (Assumption (A3)), we have

for every pair of profiles, ē and e,

eT
i ·D2

ei
Hi(ω, ē x) · ei,

≤ eT
i ·

[
D2

ei
(1 − δ)ui(ω, ē) + δK

∫
D2

ei
f(ω′

∣∣∣ ω, ē) dη
]
· ei

≤ −αi(1 − δ)||ei||2 + δKM ||ei||2

= −ᾱi||ei||2

Since, by the Moderate Social Influence condition (Assumption (A4)), ᾱi > 0, it follows
that Hi is ᾱ-concave. Consequently, by compactness of E (Assumption (A1)), and by the

smoothness and strict concavity of Hi in ei, the best response

gi(ω, e−i, x) ≡ arg max
ei∈E

Hi(ω, e, x)

for each i is nonempty and single valued.

Consider the best response function, gi. By the Assumption (A5), gi(ω, e−i, x) defines a

critical point, i.e.,
Dei

Hi(ω, gi(ω, e−i, x), e−i, x) = 0.

Then by strict concavity of Hi, the Implicit Function Theorem implies that gi is a locally

smooth function in a neighborhood of (ω, e−i) (in the relative topology). In this neighborhood,
the Implicit Function Theorem implies

Dgi = −[D2
ei
Hi]

−1 · [Dω,e−i
Dei

Hi]
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Given the C∞-uniform bound on Hi given by (19), the ᾱi-concavity of Hi implies that there
is a uniform bound on Dgi given by 1

ᾱi
[(1 − δ)L+ δKM ]. Finally, since the choice of (ω, e−i)

was arbitrary, every such point is a regular point and so gi is smooth with uniformly bounded
first derivative.

We now show that there is a unique Nash equilibrium, σ̄(ω, x) of the game with payoffs,
H(ω, ·, x). Fixing ω and x, consider the best response map

e 7→ (g1(ω, e−1, x), . . . gn(ω, e−n, x) ) .

By the arguments above, the conditions for Brouwer’s Theorem are met and so this map has
a fixed point. Since all best responses are interior — as shown above — the fixed point must

be an interior point in En. To verify that this fixed point is unique, it suffices to show that
the best response difference map

e 7→ e− (g1(ω, e−1, x), . . . gn(ω, e−n, x) ) (20)

has no critical points. It suffices then to show that the Jacobian of this map at differentiable
points is nonsingular. In turn, the Jacobian is nonsingular if it has a dominant diagonal. The

Jacobian has a dominant diagonal if

||De−i
gi||1 < 1, ∀i, (21)

at points (ω, e−i, x) of the best response map, gi. To verify (21), consider the best response

map, gi. Then we have:

||De−i
gi||1 = || − [D2

ei
Hi]

−1 · [De−i
Dei

Hi]||2

≤ 1

ᾱi
||(1 − δ)De−i

Dei
ui + δDe−i

Dei

∫
Vi(ω

′)f(ω′
∣∣∣ ω, e)dη||2

≤ 1

ᾱi
[(1 − δ)L + δKM ]

< 1

(22)

The first equality is the Implicit Function Theorem,19 the first inequality follows from the de-
finition of ᾱ-concavity, the second follows from the Uniform Bounds Assumption (Assumption

(A3)), and the last follows from the MSI condition (Assumption(A4)).

19if ei is one dimensional, then the sup norm picks out one such term,

∂gi

∂ej
= (

∂2Hi

∂e2i
)−1 ∂2Hi

∂ej∂ei
, ∀j 6= i
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Next, we show that the profile σ̄ is smooth with uniformly bounded first derivatives in
ω with the bound uniform across all x as well. Observe that the nonsingularity of (20)

implies that the unique Nash equilibrium σ̄(ω, x) is implicitly defined by the Implicit Function
Theorem (IFT). In turn, the IFT also implies that Dωσ̄ is smooth and defined by

Dωσ̄ = [Deg]
−1[Dωg]

Note that the inverse [Deg]
−1 exists and is uniformly bounded over all ω and all x by the

dominance diagonal condition, (22). Consequently, Dωσ̄ exists everywhere and is uniformly

bounded over all ω and x.

Finally, we now prove that σ is Lipschitz continuous in x with uniform Lipschitz constant.

This follows from a result of Montrucchio (1987, Theorem 3.1). In particular, their result
implies that for each i, each ω, and any pair x, x′,

||gi(ω, ·, x) − gi(ω, ·, x′)||0 < γ||x− x′||0 (23)

where γ is the MSI bound in Assumption (A4). Using the difference map in (20) to define
the fixed points, the Implicit Function Theorem again implies that (23) applies to the fixed

point, σ̄, as well to the best response map g.

Proof of Lemma 2 By definition,

Hi(ω, σ̄(ω, x), x) = (1 − δ)ui(ω, σ̄(ω, x) ) + δ
∫
Vi(ω

′)f(ω′| ω, σ̄(ω, x) )dη

The smoothness therefore follows from the smooth of H in ω directly and from the smooth-
ness of σ̄(ω, x) in ω established in Lemma 1. The uniform boundedness of first derivatives

in ω follows from the C∞-uniform boundedness of H and the uniform boundedness of first

derivatives of σ̄ established in Lemma 1.

Proof Lemma 3 Let {x`} be a sequence such that x` ∈ X for all ` and x` → x ∈ X with the

convergence uniform on each compact set Y ⊂ Ω as `→ ∞. By Lemma 2, we also know that
by Lipschitz continuity of σ̄ in x, ||σ̄(·, x`)− σ̄(·, x)|| → 0 uniformly in ω. Consequently, by the

smoothness properties of ui for each i and of f we can fix ε > 0 and let ¯̀satisfy for all ` ≥ ¯̀, all
ω′ and all i, ||ui(·, σ̄(·, x`) )−ui(·, σ̄(·, x) )||0 < ε, and |f(ω′

∣∣∣ω, σ̄(ω, x) )−f(ω′
∣∣∣ω, σ̄(ω, x`) )| < ε.

Now by Lemma 5.2 in Horst (2003), given ε > 0, for all i, and for all ` ≥ ¯̀,

||
∫
xi(ω

′)f(ω′
∣∣∣·, σ̄(·, x) )dη −

∫
x`

i(ω
′)f(ω′

∣∣∣·, σ̄(·, x`) )dη||0 < ε

With these results we see that:
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||(Tx`)i(·) − (Tx)i(·)||0

= ||Hi(·, σ̄(·, x`), x`) −Hi(·, σ̄(·, x), x)||0

≤ (1 − δ)||ui(·, σ̄(·, x`) ) − ui(·, σ̄(·, x) )||0

+ δ||
∫
xi(ω

′)f(ω′
∣∣∣·, σ̄(·, x) )dη −

∫
x`

i(ω
′)f(ω′

∣∣∣·, σ̄(·, x`) )dη||0

< (1 − δ)ε + δε = ε

Hence T is continuous.
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