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Abstract

In 1964, the great evolutionary biologist, William Hamilton proposed that evo-
lutionary selection would result in a population of individuals in which each acts
to maximize its inclusive �tness, which Hamilton de�ned as a weighted average
of its own survival probability and the survival probabilities of its kin, with
the weights applied to relatives being proportional to their degree of relation-
ship. Hamilton's papers were written almost 10 years before G. R. Price and
John Maynard Smith introduced game theory to biologists. It is therefore not
surprising that he did not model familial interactions as a game. The kind of
interactions that Hamilton studied belong to a special class of games in which
the e�ects of actions are additive. Many economic interactions between relatives
lack this additive structure and it turns out for such interactions, Hamilton's
rule does not apply. This paper introduces a more general principle that does
apply for a broad class of games and explains the relation between this principle
and Hamilton's rule.



1 Does Hamilton's Rule Govern Kin-Selection?

Hamilton's Rule

William Hamilton [7] proposed that evolutionary selection would result in a
population of individuals in which each acts to maximize its inclusive �tness.
Hamilton de�ned an individual's inclusive �tness to be a weighted average of
its own survival probability and the survival probabilities of its kin, with the
weights applied to relatives being proportional to their degree of relationship.1

He stated the following proposition, which has come to be known as Hamilton's

Rule:

\The social behavior of a species evolves in such a way that in
each distinct behavior-evoking situation the individual will seem to
value his neighbors' �tness against his own according to the coe�-
cients of relationship appropriate to that situation." [7], p 19.

Hamilton takes individual �tness as an unde�ned primitive of his theory,
without dwelling in detail on how it is determined. For the purposes of this
paper, we will interpret individual �tness of an organism as the probability
that it survives to maturity. In so doing, we are implicitly assuming that all
individuals who survive to adulthood have the same expected fertility.2

Hamilton's papers were written almost 10 years before G. R. Price and John
Maynard Smith [10] introduced game theory to biologists. It is therefore not
surprising that he did not model familial interactions as a game. Hamilton stud-
ied interactions where players can bene�t each other at a cost to themselves,
and where a player's payo� is the sum of bene�ts received from others, minus
costs incurred in helping others. When Hamilton's analysis is restated in game-
theoretic language, it is apparent that the kind of interactions he studied belong
to a special class of games, which we will call additive games between relatives.
Informally stated, an additive game between relatives is a game in which in-
dividuals can at some \cost" to themselves confer \bene�ts" on their relatives
and where the survival probability of an individual is equal to a constant plus
the sum of bene�ts received from relatives, minus the sum of costs incurred in
helping relatives.3

1The degree of relationship between two individuals is de�ned as the probability that they
share the gene at any particular locus by inheritance through a common ancestor. In families
where there is no inbreeding, the degree of relationship between full siblings is 1/2, between
half siblings it is 1/4, between (full) cousins it is 1/8, between parent and o�spring it is 1/2
and between grandparent and grandchild it is 1/4.

2In caste systems or hierarchical societies in which adults in di�erent social roles have
di�erent fertilities, a more elaborate measure of �tness is required. Bergstrom [1] discusses
some of these issues.

3A more formal description of additive games is found in the Appendix.
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Hamilton Dethroned?

Many interesting economic and social interactions lack the additive structure
assumed by Hamilton. In an additive game, the bene�t one gets from actions of
a relative can not depend on one's own action, nor can the e�ect of one relative's
actions on an individual's well-being depend on the actions of other relatives.

John Maynard Smith [9] proposed that the concept of inclusive �tness could
be extended to games with general payo� functions. He conjectured that,
whether or not the game is additive, equilibrium populations would consist
of players who use strategies that are ESS (evolutionary stable strategies) in
the game with inclusive �tness payo� functions.

Alan Grafen [6] showed with a simple example that, for games between
relatives, the ESS of a game with inclusive �tness payo�s is not in general the
rest point of a reasonable evolutionary dynamic model. Grafen's example is a
symmetric, two-player game (the hawk-dove game) in which the players must
choose one of two discrete pure strategies. He argues that the reason that ESS
under inclusive �tness does not accurately predict evolutionary equilibrium is
that \an individual is more likely to play against his own strategy than he would
if he played the population at random."

Grafen does not o�er a genetic analysis of a sexual diploid species. In-
stead, his dynamic model can be interpreted as a model of asexually reproduc-
ing clones, who produce more copies, the higher the payo� they receive. Mar-
cus Feldman and Luigi Cavalli-Sforza [4], [5] develop explicit genetic models of
the evolutionary dynamics of games between sexual diploid relatives. In these
models, players can play one of two discrete strategies. Feldman and Cavalli-
Sforza show that ESS with inclusive �tness payo�s does not coincide with stable
monomorphic equilibrium of games with multiplicative payo�s, although these
solutions do coincide in the case of additive games.4

Individual Fitness, Inclusive Fitness, and Personal Fitness

W. G. S. Hines and Maynard Smith [8] accepted Grafen's argument and agreed
that for non-additive games between relatives, Hamilton's inclusive �tness should
be replaced by the measure of �tness introduced by Grafen. Hines and Maynard
Smith formalize this measure, which they call \personal �tness," for the case of
symmetric two-player games between asexually-reproducing relatives

In a symmetric two person game, individual �tness (survival probabilities)
is de�ned as follows. If one player plays x and the other plays y, the individual
�tness of the x-player is �(x; y) and the individual �tness of the y-player is
�(y; x). When this game is played between two relatives with coe�cient of
relatedness r, the inclusive �tness payo� of a player who plays x while its
relative plays y is de�ned to be

4They also show that, even with additive payo�s, inclusive �tness analysis does not cor-
rectly identify polymorphic equilibria.
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H(x; y) = �(x; y) + r�(y; x): (1)

Hines and Maynard Smith de�ne the personal �tness payo� as follows:

V (x; y) = r�(x; x) + (1� r)�(x; y): (2)

They describe the distinction between personal �tness and inclusive �tness
as follows.

\Personal �tness modi�es classical �tness by allowing for the
e�ects that an individual's relatives will have on the number of his
own o�spring to survive, whereas inclusive �tness modi�es classical
�tness by allowing for the e�ects that an individual will have on the
number of his relative's o�spring that survive." [8], p 20.

Stated another way, one's inclusive �tness counts the help that one gives

to relatives, one's personal �tness counts the help that one receives from rel-
atives. To decide which, if either of these measures is appropriate for �nding
evolutionary equilibrium, it seems necessary to specify a dynamic model with
explicit assumptions about the genetics of transmission of behavior.

In a study of the evolution of altruistic ethics for siblings, Bergstrom [3]
describes the payo� function in Equation 2 as the semi-Kantian payo� function.
Expressed as a verbal maxim, the semi-Kantian utility function asks relatives
with coe�cient of relationship r to:

\ Act as you would act to maximize your individual �tness, if
you believed that with probability r, your relative's actions would
mimic your own."5

In contrast, the inclusive �tness payo� function can be expressed as the maxim:

\Act as if you valued your relative's individual �tness r times as
much as you value your own."

Monomorphic Populations of Sexual Diploids

In this paper, we explore the relation between stable monomorphic populations
of sexual diploids and Nash equilibrium (or ESS) for games in which the payo�
functions are respectively, inclusive �tness and personal �tness. Like Cavalli-
Sforza and Feldman, we use explicit genetic models of a diploid species.

Sexual diploids have two genes in each genetic locus, one inherited from each
parent. We assume that in the game it plays with siblings, each player's strategy
is determined by the pair of genes found at a single locus. For the purpose of

5While not all Kantian philosophers would agree, it seems to me that the most people
interpret Kant's categorical imperative to be this rule with r = 1.
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our discussion, the genotype of an individual is speci�ed by the gene pair in
the locus that determines that individual's strategy. We further assume that
mating among surviving adults is random with respect to genotype.

A genotype is said to be homozygous if the two genes in that locus are iden-
tical and heterozygous if they are di�erent. A diploid population is said to be
monomorphic if almost all members of the population are of the same, homozy-
gous genotype. Let A and a be two di�erent genes such that aa genotypes take
action x and AA genotypes take action y. The gene A is said to be dominant

(over gene a) if Aa genotypes take the same action y as AA genotypes. The
gene A is said to be recessive (to gene a) if Aa genotypes take the same action
x as aa genotypes.

A mutant gene A is able to invade the original population, if while it is
rare, the A gene reproduces more rapidly than normal a genes.6 In this paper,
we explore necessary conditions and su�cient conditions for a monomorphic
population to be resistant against invasion by dominant mutant genes.

2 Two-Sibling Symmetric Games

A two-player symmetric game is de�ned by a single payo� function �(�; �). If one
player takes action x and the other takes action y, the payo� to the x-player
is �(x; y) and the payo� to the y-player is �(y; x). For the purposes of this
discussion, \siblings" are individuals who have the same mother and who, with
a given probability s also have the same father. 7

Of course a sexual species in which each pair of parents produced only two
o�spring would be doomed to extinction unless the o�spring were all sure to
survive. But a species in which mothers have a litter of two o�spring each season
and where siblings born in di�erent seasons do not interact would have siblings
engaged in two-player games with each other. The model of two-sibling games
also applies to a species in which some parents have more than two o�spring,
but the only interactions between o�spring take the form of two-player games
between each pair of individuals.

Invasion by Dominant Mutants

Consider a monomorphic population of aa genotypes, who all play strategy
�x. Let A be a dominant mutant gene such that Aa heterozygotes play the
strategy x. If mating is random and A genes are rare, almost all of the A
genes in the population will be carried by Aa heterozygotes (rather than by
AA homozygotes). Moreover, almost all Aa genotypes will mate with normal

6The fact that a mutant gene can enter the population while rare does not imply that it
will eventually become �xed in a monomorphic equilbrium. It may be that the advantage
enjoyed by a rare mutant disappears as the gene becomes more common.

7Many of the results of this section and other related results can be found in Bergstrom [3].
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aa genotypes and each of their o�spring will either be an Aa genotype or aa
genotype.

A mutant gene A can invade a monomorphic population of aa genotypes if
the reproduction rate of A genes exceeds that of normal a genes. The repro-
duction rate of A genes will be greater than (less than) that of a genes if the
probability that an Aa heterozygote child survives to adulthood is greater than
(less than) the probability that than a randomly selected child of genotype aa
survives to adulthood.

If mating is monogamous, an Aa genotype born to one Aa and one aa parent
will be matched with an Aa sibling with probability 1/2 and with an aa sibling
with probability 1/2. Since Aa genotypes use strategy x and aa genotypes use
strategy �x, the survival probability of an Aa is �(x; x) if its sibling is an Aa
genotype and �(x; �x) if its sibling is an aa genotype. Therefore the survival
probability of an o�spring of genotype Aa is V (x; �x) = 1

2
�(x; x) + 1

2
�(x; �x).

If mating is not monogamous, then two children who share the same mother
might not have the same father. If the mutant gene is not sex-linked, then 1/2
of the children of genotype Aa are born to an Aa mother and an aa father
and 1/2 are born to an aa mother and an Aa father. If the mother is of type
Aa, then the probability that a child of Aa has an Aa sibling is 1/2. But if
the father is of type Aa, then the probability that the child is paired with a
sibling of type Aa is only s=2 where s is the probability that the two siblings
share the same father. The probability, therefore, that a child of genotype Aa
is paired with a sibling of genotype Aa is therefore 1=4 + s=4. The probability
that a child of the rare mutant genotype Aa survives to adulthood is therefore
V (x; �x) = r�(x; x) + (1 � r)�(x; �x), where r = 1=4 + s=4 is the \coe�cient of
relationship between siblings". (In the special case of monogamy, s = 1 and
r = 1=2.)

The function V (�; �) is seen to be the same as Grafen's personal �tness func-
tion. Let S be the set of possible strategies for a sibling. If for some strategy
x 2 S, V (x; �x) > V (�x; �x) then a monomorphic population of aa genotypes who
take action �x could be invaded by a dominant mutant gene A such that Aa
genotypes take action x. It follows that a necessary condition for a monomor-
phic population of �x-strategists to resist invasion by dominant mutants is that
V (x; �x) � V (�x; �x) for all x 2 S. Similar reasoning shows that a su�cient
condition for a monomorphic population of �x-strategists to resist invasion by
dominant mutants is that for all x 2 S, if x 6= �x then V (x; �x) < V (�x; �x).

We are now able to identify those monomorphic equilibria that resist invasion
by dominant mutant genes with symmetric Nash equilibria for the game with
personal �tness function V (�; �).

Proposition 1. For siblings playing a symmetric two-player game, a necessary
condition for a monomorphic population of �x-strategists to resist invasion by
dominant mutants is that �x is a symmetric Nash equilibrium for the two-player
game with the personal �tness payo� function V (�; �). A su�cient condition is
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that �x is a strict symmetric Nash equilibrium8 for the game with payo� function
V .

Maynard Smith's notion of ESS re�nes the notion of symmetric Nash equilib-
rium by adding an additional restriction that applies \in case of ties". According
to Maynard Smith, an ESS for the payo� function V is a symmetric Nash equilib-
rium �x for V such that if V (x; �x) = V (�x; �x) for x 6= �x, then V (x; x) < V (�x; x).
This condition for tie-breaking is appropriate for two-player games played in
asexually reproducing populations with random encounters, but Bergstrom [3]
argues that for games between sexual diploid siblings, the ESS re�nement is
not appropriate. Bergstrom shows that for the case of diploid siblings playing
symmetric games, the correct tie-breaking condition is: if V (x; �x) = V (�x; �x) for
x 6= �x, then V (x; x) < V (�x; �x).

3 N-Sibling Symmetric Games

An n-player game is de�ned to be symmetric if (i) the payo� to any player is
invariant to permutations in the actions of other players. (ii) players all have
identical payo� functions de�ned on their own actions and the actions of other
players.

In a symmetric game in which only two strategies x and �x are being used,
the payo� to any player is determined by the player's own strategy and the
number of other players who use each of the two strategies x and �x. We de�ne
the function �(x; �x; k) to be the payo� to an individual who takes action x while
k of its siblings take action x and the remaining N �k of its siblings take action
�x. Thus

�(x; �x; k) = �1(x;

k timesz }| {
x; : : : ; x;

N�k�1 timesz }| {
�x; : : : ; �x ) (3)

Two useful examples of N-sibling symmetric games are the following.:

Example: Joint labor with shared output

A group of human siblings work together, either as hunter-gatherers, or as
peasant farmers and divide their joint output equally among themselves. Let the
total amount of output depend on the work e�ort of each sibling, and assume
that work-e�ort is costly to perform.

This sibling interaction can be modelled as an N -player symmetric game.
Where xi if the amount of work done by player i, total output is given by a
\production function" f(

PN
i=1

xi) and the cost to player i of xi units of work

8A symmetric Nash equilibrium for a two-player symmetric game with payo� function F is
de�ned to be a strategy �x such that for all x 2 S, F (x; �x) � F (�x; �x). A strict symmetric Nash
equilibrium for this game is a strategy �x such that for all x 2 S, if x 6= �x then F (x; �x) < F (�x; �x).
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e�ort is c(xi). Since output is shared equally among the players, the payo� to
the ith player is

�i(x1; : : : ; xN ) =
1

N
f(

NX
i=1

xi)� c(xi): (4)

For this game,

�(x; �x; k) =
1

N
f((k + 1)x+ (N � k � 1)�x)� c(x): (5)

Example: Depleting a common resource

A litter of baby mammals compete for their mother's milk, or a batch of cater-
pillar siblings all chew on the same plant. In these examples, there is a �xed
amount of resource to be divided. Exercising claims on this food requires costly
e�ort. The fraction of the total resource that is obtained by any one of the
siblings depends on its own e�ort relative to the amount of e�ort expended by
its siblings.

Let xi be the cost of exerting xi units of e�ort in food-claiming, and let the
share of the available resources received by player i be given by f(xi)=

Pn
j=1

f(xj),
where f(�) is a positive-valued, monotone increasing function. When the strate-
gies of the n siblings are given by (x1; : : : ; xN ), the payo� to sibling i is

�i(x1; : : : ; xN ) =
f(xi)PN

j=1
f(xj)

� xi: (6)

For this game,

�(x; �x; k) =
f(x)

kf(x) + (N � k � 1)f(�x)
� x (7)

Invasion by Dominant Mutant Genes

We have seen that in two-player symmetric games, individuals in a stable
monomorphic population must be playing Nash-equilibrium strategies for the
game with personal �tness payo�s. Perhaps surprisingly, even where the game
between siblings involves more than two players, a stable monorphic equilib-
rium must be a Nash equilibrium for a symmetric two-player game. The two
\players" in this game are best thought of as genes{the normal gene a and a
rival mutant gene A.9

Consider a monomorphic population of aa genotypes, all of whom use strat-
egy �x. Let A be a dominant mutant gene such that Aa heterozygotes play the
strategy x. As in the case of two-player games, if mating is random and A
genes are rare, almost all of the A genes in the population will be carried by

9Shades of Dawkins.
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Aa heterozygotes rather than by AA homozygotes, and most all Aa genotypes
will mate with normal aa genotypes. The o�spring of an aa and an Aa will
either be of genotype Aa and use strategy x or of genotype aa siblings and use
strategy �x. The survival probability of an Aa genotype depends on the number
of its siblings who are of each of these two genotypes.

Let us de�ne p(k) to be the probability that an Aa genotype o�spring has
exactly k siblings of genotypeAa. The probability distribution p(k) is a binomial
random variable such that p(k) is the probability of k successes in n binomial
trials where r (the degree of relationship between siblings) is the probability of
success on a single trial.

Recall that �(x; �x; k) is the payo� to an individual who takes action x while
k of its siblings also take action x and the remaining siblings take action �x.
The survival probability of a randomly selected o�spring of genotype Aa is then
given by:

V (x; �x) =

k=N�1X

k=1

p(k)�(x; �x; k): (8)

The function V (�; �), extends Hines and Maynard Smith's de�nition of per-
sonal �tness from symmetric two-sibling games to symmetric n-sibling games.
By the same argument used to prove Proposition 1, we establish the following
result:

Proposition 10. For siblings playing a symmetric n-player game, a necessary
condition for a monomorphic population of �x-strategists to resist invasion by
dominant mutants is that �x is a symmetric Nash equilibrium for the two-player
game with the personal �tness payo� function V (�; �) de�ned in Equation 8.
A su�cient condition is that �x is a strict symmetric Nash equilibrium for this
game.

4 Hamilton's Rule Partially Restored

Cavalli-Sforza and Feldman [4], Grafen [6], and Bergstrom and Oded Stark [2]
have shown examples of games with a �nite number of discrete strategies for
which Nash equilibria with personal �tness payo�s do not coincide with Nash
equilibria for the corresponding inclusive �tness payo�s. These authors �nd
other examples in which the Nash equilibria for the two di�erent payo� func-
tions are the same. Grafen examined a hawk-dove game in which individuals
are genetically instructed to use speci�c mixed strategies. In this case, the
strategy space becomes a simplex, and payo� functions are di�erentiable (in
fact, bilinear) functions of individual strategies. Grafen found that in this case,
the inclusive �tness approach \amazingly happens to give the correct answer."
Hines and Maynard Smith extended Grafen's treatment to the general class of
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symmetric two-relative games, in which there is a �nite set of possible pure
strategies and where individual strategy sets are the simplex of all possible
mixed strategies.10 They discovered that for such games, a Nash equilibrium
with inclusive �tness payo�s must also be a Nash equilibrium with personal
�tness payo�s, but the converse is not true.

Given these tantalizing hints, it seems useful to explore the general relation
between Nash equilibrium for games with inclusive �tness functions and Nash
equilibrium for games with personal �tness payo� functions.

The inclusive �tness function for symmetric two-player games is usefully
generalized to symmetric n-player games by de�ningH(x; y) which measures the
inclusive �tness of an individual that plays strategy x, while all of its siblings
play strategy y. Because the game played between siblings is assumed to be
symmetric, no generality is lost if we let player 1 play x and the other players
play y. Thus we have:

H(x; y) = �1(x; y; : : : ; y) + r
X

j 6=i

�j(x; y; : : : ; y) (9)

= �1(x; y; : : : ; y) + r(n� 1)�1(y; x; y : : : ; y) (10)

where the step from Equation 9 to Equation 10 follows from the symmetry of
the game.

The Case of Di�erentiable Payo� Functions

If the individual payo� functions �i(x1; : : : ; xn) are di�erentiable, then the per-
sonal �tness function V (x; y) and the inclusive �tness function H(x; y) are also
di�erentiable. For a game with payo� function F (x; y) a necessary condition
for �x to be an interior symmetric Nash equilibrium is that F1(�x; �x) = 0, where
F1(x; y) is de�ned the gradient of F with respect to x.

For the di�erentiable case, the association between Nash equilibria of games
with payo� functions V andH is revealed by the fact that the �rst-order calculus
condition for an interior symmetric Nash equilibrium for a game with payo�
function V are precisely the same as the corresponding condition for a game
with payo� function H . However, as we will show, the second-order conditions
are not identical, and it is in general possible to have an �x that is a symmetric
Nash equilibrium for V but not for H and vice versa.

For any function F (x1; : : : ; xn), let Fi(x1; : : : ; xn) denote the gradient of F
with respect to its ith argument and let Fij(x1; : : : ; xn) denote the \Hessian"
matrix of second-order partials. A proof of the following lemma is found in the
Appendix.

10They also study the case where individuals can choose only pure strategies. They refer to
this as the case where \only pure strategies breed true."
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Lemma 1. For a symmetric n-sibling game, if the individual payo� functions
�i are di�erentiable, then V1(�x; �x) = 0 if and only if H1(�x; �x) = 0.

A function F (�) is said to be a concave function if for all x and x0 in the
domain of F , and for all � 2 [0; 1], F (�x + (1� �)x0) � �F (x) + (1� �)F (x0).
Using a well-known result from game theory on the existence of Nash equilibrium
and a standard result from calculus on maxima of concave functions, we can
claim the following.

Lemma 2. If the personal �tness function V (x; y) is a concave function of x,
then there exists a symmetric Nash equilibrium strategy �x for the game with
payo� function V (x; y). A point �x in the interior of the strategy space is a
symmetric Nash equilibrium if and only if V1(�x; �x) = 0. A parallel statement
applies to the inclusive �tness function H(x; y).

Lemmas 1 and 2 enable us to prove the following.

Proposition 2. For a symmetric n-sibling game with di�erentiable payo� func-
tions, (i) if the personal �tness payo� function V (x; y) is a concave function of
x, then an interior symmetric Nash equilibrium for the game with inclusive �t-
ness payo�s H(x; y) is also a Nash equilibrium for a game with personal �tness
payo�s V (x; y). (ii) if the inclusive �tness payo� function H(x; y) is a con-
cave function of x, then an interior symmetric Nash equilibrium for the game
with personal �tness payo�s V (x; y) is also a Nash equilibrium for a game with
inclusive �tness payo�s, H(x; y).

Proof:

If (x; x) is an interior symmetric Nash equilibrium forH(�; �), thenH1(x; x) =
0. By Lemma 1, this implies that V1(x; x) = 0. Since V (�; �) is assumed to be
a concave function, it follows that (x; x) satis�es both the �rst and second-
order su�ciency conditions for a Nash equilibrium. This proves assertion (i). A
parallel argument establishes assertion (ii) of Proposition 2.

|

Corollary. (Hines and Maynard Smith) For a symmetric game in which there
are a �nite number of pure strategies and where the strategy space consists of
the simplex of mixed strategies, an interior symmetric Nash equilibrium for the
game with personal �tness payo�s V (�; �) is a Nash equilibrium for the game
with inclusive �tness payo�s H(�; �), but not conversely.

Proof:

In the case where the strategy space is the simplex of mixed strategies over
a �nite set of pure strategies, the payo� function for a two player game is a
bilinear function �(p; q) = p0Aq for some matrix A. Inclusive �tness is given by
H(p; q) = p0Aq+ rq0Ap, which is a linear function of p and hence also a concave
function of p. It follows from Proposition 2(ii) that a Nash equilibrium for the
game with personal �tness payo�s is also a Nash equilibrium for the game with
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inclusive �tness payo�s. The function V (p; q) = rp0Ap+ (1� r)q0Ap, however,
is not linear in p and is a concave function only if the matrix A is negative semi-
de�nite (on the simplex). Thus examples can be found of Nash equilibria for
personal �tness payo�s that are not Nash equilibria for inclusive �tness payo�s.
|

A di�erentiable function is concave if and only if its Hessian matrix of second-
order partial derivatives is negative semi-de�nite. Examining these second-order
partials enables us to see how it can happen that the Nash equilibria for personal
�tness and inclusive �tness payo�s are di�erent.

Direct calculation gives us the following expressions for the second-order
cross partials of V and H :

Lemma 3. For a symmetric n-sibling game, with twice-di�erentiable individual
payo� functions,

H11(�x; �x) = �11(�x : : : ; �x) + r�22(�x : : : ; �x) (11)

V11(�x; �x) =

n�1X
k=0

p(k)
�
�11(�x; : : : ; �x) + 2k�12(�x; : : : ; �x)

+k2�22(�x; : : : ; �x)
�

(12)

For two-player games, these expressions take a particularly simple form:

Lemma 4. For a symmetric 2-sibling game, with twice-di�erentiable individual
payo� functions,

H11(�x; �x) = �11(�x; �x) + r�22(�x; �x) (13)

V11(�x; �x) = �11(�x; �x) + 2r�12(�x; �x) + r�22(�x; �x) (14)

= H11(�x; �x) + 2r�12(�x; �x) (15)

From Lemma 4, we see that the following is true:

Proposition 3. For a symmetric 2-sibling game, if for all x, �12(x; x) is neg-
ative semi-de�nite, then every inclusive-�tness Nash equilibrium is a personal-
�tness Nash equilibrium and if for all x, �12(x; x) is positive semi-de�nite, then
every personal-�tness Nash equilibrium is an inclusive �tness Nash equilibrium.

Possibly Useful Additional Results

For completeness, we note the following results which may turn out to be useful.
If the functions �i(x1; : : : ; xn) are concave functions not only of i's own

strategy xi, but concave over the Cartesian product of all players' strategies,
then both V and H will also be concave functions. Accordingly we have the
following:

11



Lemma 5. For a symmetric n-sibling game, if the individual payo� functions
�i(x1; : : : ; xn) are concave functions, then the personal �tness function V (x; y)
and the inclusive �tness function H(x; y) are both concave functions.

Proposition 5. For a symmetric n-sibling game, if the individual payo� func-
tions �i(x1; : : : ; xn) are concave functions for each i, then the Nash equilibria
for the game with personal �tness payo�s are the same as Nash equilibria for
the game with personal �tness payo�s.

5 Two-Sibling Asymmetric Games

Games between relatives of di�erent ages or di�erent sexes often have a strongly
asymmetric payo� function. For example, older siblings may be able to bully
their younger siblings and deprive them of resources, or they may help their
parents with the upbringing of their juniors. In species where siblings are born in
di�erent years and never interact directly, the amount of resources that an older
child takes from its mother may a�ect her health and the survival probability
of later-born children, while the actions taken by later-born siblings have no
e�ects on their older siblings.

An individual's strategy in an asymmetric game will typically be a function
that maps each possible familial role into the action that an individual will take
if cast in this role. For example, an individual may be genetically instructed
to take one action if �nds itself to be the older sibling and a di�erent action
if it �nds itself to be the younger sibling. This leads to an interesting mod-
eling decision about the appropriate way to model the genetic transmission of
strategies.

One possible model assumes that the function that determines ones action,
given one's familial role, is controlled by the genes in a single genetic locus.
At the opposite extreme is a model in which it is assumed that the action one
takes if one is a younger sibling and the action one takes if one is an older
sibling are controlled by genes in two distinct genetic loci and that these loci
are \unlinked" in the sense that the assortment of genes at these two loci are
statistically independent. Intermediate between these two polar models are
genetic models of linkage disequilibrium, such that \behavior if younger" and
\behavior if older" are controlled by two distinct genetic loci, but the contents
of these loci are correlated, rather than statistically independent.

Quite remarkably, we �nd that if behavior in di�erent familial roles is deter-
mined by separate, unlinked genetic loci, then the Nash equilibrium for games
with inclusive �tness payo�s coincide with stable monomorphic equilibria. How-
ever, if the function that maps familial roles into actions is determined by a
single genetic locus, then stable monomorphic equilibrium, in general, coincides
with Nash equilibrium for a generalization of personal �tness payo�s rather than
inclusive �tness payo�s.
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Payo� Functions for Asymmetric Games

For a two-player asymmetric game, let x1 be the action taken by the relative
cast in role 1 and x2 be the strategy taken by the relative cast in role 2. Let
�1(x1; x2) denote the individual �tness of relative 1 and �2(x1; x2) denote the
individual �tness of relative 2. A strategy for an asymmetric game is a vector
x = (x1; x2) specifying the action x1 that will be taken if the individual is cast
in role 1 and the action x2 that will be taken if an individual is cast in role 2.

Inclusive �tness of relative 1 is de�ned to be

H1(x1; x2) = �1(x1; x2) + r�2(x1; x2) (16)

and inclusive �tness of relative 2 is

H2(x1; x2) = r�1(x1; x2) + �2(x1; x2): (17)

It is useful to de�ne a symmetric inclusive �tness function that can be viewed
as the payo� function for a symmetric game between genes, whose strategies
specify what an individual will do if cast in each of the two familial roles. For
any two strategies, x = (x1; x2) and y = (y1; y2), de�ne

~H(x; y) = H1(x1; y2) +H2(y1; x2): (18)

Hines and Maynard Smith de�ned personal �tness only for two-player sym-

metric games. We propose an extension of this de�nition to the case of two-
player asymmetric games. Let x = (x1; x2) and y = (y1; y2) denote strategies
for an asymmetric game. De�ne the function ~V (x; y) as follows:

~V (x; y) = r
�
�1(x1; x2) + �2(x1; x2)

�
+ (1� r)

�
�1(x1; y2) + �2(y1; x2)

�
) (19)

\Personal �tness" seems an awkward term for this payo� function, since ~V (x; y)
is better thought of as a payo� to a gene, rather than to a person. Therefore I
have chosen to call ~V (�; �) function, the semi-Kantian payo� function.

Strategy Controlled by a Single Genetic Locus

Suppose that the genes in a single genetic locus determine an individual's actions
in each of two familial roles. Consider a monomorphic population of genotype
aa. An aa genotype will take the action �x1 if it happens to be an older sibling
and the action �x2 if it happens to be a younger sibling. Suppose that there is a
dominant mutant gene A, such that an Aa heterozygote takes the action x1 if it
happens to be an older sibling and the action x2 if it happens to be a younger
sibling. If the mutant gene is rare, almost all Aa genotypes will have one parent
of genotype Aa and one parent of genotype aa. The A gene will be able to
invade the population if the survival probability of an Aa genotype born to one

13



normal and one heterozygote parent is greater than the survival probability of
a normal aa genotype.

On average, half of the Aa genotypes are born as older members of a sibling
pair and half are born as younger members. An Aa genotype cast as the older
sibling will take action x1. With probability r, its younger sibling will also be an
Aa genotype and take action x2. With probability 1� r, its younger sibling will
be an aa genotype and take action �x2. Therefore the survival probability of an
older sibling of genotype Aa is r�1(x1; x2)+(1� r)�1(x1; �x2). An Aa genotype
cast as the younger sibling will take action x2. With probability r, its older
sibling will also be an Aa genotype and take action x1. With probability 1� r,
its older sibling will be an aa genotype and take action �x1. Therefore the survival
probability of a younger sibling of genotype Aa is r�2(x1; x2)+(1�r)�2(�x1; x2).
Since Aa genotypes are equally likely to be cast as older or younger siblings,
the survival probability of a randomly selected Aa genotype is

1

2

�
r�1(x1; x2) + (1� r)�1(x1; �x2)

�
+

1

2

�
r�2(x1; x2) + (1� r)�2(�x1; x2)

�

=
1

2

�
r
�
�1(x1; x2) + �2(x1; x2)

�
+ (1� r)

�
�1(x1; �x2) + �2(�x1; x2)

��

=
1

2
~V (x; �x) (20)

The survival probability of a randomly selected aa genotype is simply

~V (�x; �x) =
1

2

�
�1(�x1; �x2) + �2(�x1; �x2)

�
: (21)

Therefore a dominant mutant gene can invade a population of �x strategists if
carriers of the mutant gene use a strategy x such that ~V (x; �x) > ~V (�x; �x) and they
cannot invade if ~V (x; �x) < ~V (�x; �x). These facts allow us to state the following
proposition, which generalizes Proposition 1 to the case of asymmetric 2-sibling
games.

Proposition 3. In an asymmetric 2-sibling game, if a single genetic locus deter-
mines an individual's actions in each of the two possible roles, then a necessary
condition for a monomorphic population of �x-strategists to resist invasion by
dominant mutants is that �x is a symmetric Nash equilibrium for the two-player
game with the semi-Kantian �tness function ~V (�; �) de�ned in Equation 19. A
su�cient condition is that �x is a strict symmetric Nash equilibrium for this
game.

Separate, Unlinked Genes

Suppose that the genes that determine a child's behavior if it is born as an older
sibling and the genes that control its behavior if it is born as a younger sibling
are found in two distinct genetic loci. Assume further that these loci are not
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\linked," so that mutations at one locus are uncorrelated with mutations at the
other. Consider a monomorphic population in which normal individuals are of
genotype aa in the locus that controls behavior if they are the older sibling and
of genotype bb in the locus that controls behavior if they are the younger sibling.
These individuals are said to be of genotype aabb. They take action �x1 if born
as the older sibling and �x2 if as the younger sibling.

Consider a mutant gene A such that individuals who are of genotype Aa
at the locus controlling behavior-if-older take action x1. Since mutations at
either locus are rare and mutations at the two loci are uncorrelated, almost all
individuals carrying the mutant A gene will be of genotype Aabb. Moreover,
almost all carriers of the A gene will be born to one parent of genotype aabb and
one parent who is of genotype Aabb. Individuals of genotype Aabb the mutant
action x1 if they are born as older siblings and the normal action �x2 if born as
younger siblings.

On average, half of the o�spring of genotype Aabb will be older siblings and
half will be younger siblings. An older sibling of genotype Aabb will take action
x1 and its younger sibling, whether of genotype Aabb or of genotype aabb, will
take action �x2. Therefore the survival probability of an older sibling of genotype
Aabb is �(x1; �x2). A younger sibling of genotype Aabb will take action �x2. With
probability 1/2, its older sibling will be of genotype Aabb and take action x1 and
with probability 1/2, its older sibling will be of genotype aabb and take action
�x2. Therefore the survival probability of a younger sibling of genotype Aabb is
1

2
�(x1; �x2) +

1

2
�(�x1; �x2). Since Aabb genotypes are equally likely to be born as

older siblings and as younger siblings, the survival probability of a randomly
selected Aabb genotype is:

1

2
�1(x1; �x2) +

1

4
�2(x1; �x2) +

1

4
�2(�x1; �x2) (22)

The survival probability of a randomly selected aa genotype is

1

2

�
�1(�x1; �x2) + �2(�x1; �x2)

�
: (23)

Therefore a dominant mutant gene A can invade a monomorphic population of
aabb genotypes if

1

2
�1(x1; �x2) +

1

4
�2(x1; �x2) +

1

4
�2(�x1; �x2) >

1

2

�
�1(�x1; �x2) + �2(�x1; �x2)

�
: (24)

Inequality 24 is equivalent to:

1

2
�1(x1; �x2) +

1

4
�2(x1; �x2) >

1

2
�1(�x1; �x2) +

1

4
�2(�x1; �x2); (25)

which in turn is equivalent to:
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H1(x1; �x2) > H1(�x1; �x2): (26)

It follows that a necessary condition for a monomorphic population of aabb
genotypes to resist invasion by a dominant mutant gene that makes older siblings
use a strategy x1 is that H1(x1; �x2) � H1(�x1; �x2) for all possible strategies
x1. Similar reasoning shows that a su�cient condition for a monomorphic
population of aabb genotypes to resist such an invasion is that H1(x1; �x2) <
H1(�x1; �x2) for all possible strategies x1.

A parallel line of reasoning applies to a dominant mutant B gene such that
aaBb genotypes take action x2 rather than the normal action, �x2. Putting these
results together, we have:

Proposition 4. In an asymmetric 2-sibling game, if the genes that determine a
child's behavior when it is born as an older sibling and the genes that control its
behavior when it is born as a younger sibling are found in two distinct genetic
loci, then a monomorphic population in which older siblings take action �x1 and
younger siblings take action �x2 resists invasion by dominant mutants only if
(�x1; �x2) is a Nash equilibrium for the asymmetric game in which player 1 has
the inclusive �tness payo� H1(�; �) and player 2 has the inclusive �tness payo�
H2(�; �). A su�cient condition for this population to resist invasion is that
(�x1; �x2) is a strict Nash equilibrium for this game.

A pair of actions (�x1; �x2) is seen to be a Nash equilibrium for the asymmet-
ric game with payo� functions H1(�; �) and H2(�; �) if and only if the strategy
�x = (�x1; �x2) is a symmetric Nash equilbrium for the symmetric game in which
the payo� function is given by ~H(x; y) = H1(x1; y2) + H2(y1; x2). Therefore
Proposition 4 has the following corollary.

Corollary. In an asymmetric 2-sibling game, if the genes that determine a
child's behavior in its two possible roles are found in two distinct genetic loci,
then a monomorphic population in which older siblings take action �x1 and
younger siblings take action �x2 resists invasion by dominant mutants only if
�x = (�x1; �x2) is a symmetric Nash equilibrium for the symmetric payo� func-
tion ~H(x; y). A su�cient condition for this population to resist invasion is that
(�x1; �x2) is a strict symmetric Nash equilibrium for this game.

Strategic complementarity and substitutability

In a two-player asymmetric game, two strategies x = (x1; x2) and y = (y1; y2)
are said to be strategic complements if the expected total payo� to the two
players when they \coordinate" by randomly choosing one of the two strategies
and both playing it exceeds the expected total payo� when they \diversify" by
randomly assigning one of the strategies to one player and the other strategy
to the other player. Strategies are said to be strategic substitutes if the total
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payo� is higher if the players diversify than if they coordinate. A more formal
statement of this de�nition is:

De�nition. De�ne ~�(x1; x2) = �1(x1; x2)+�2(x1; x2). For any two strategies
x = (x1; x2) and y = (y1; y2), let

C(x; y) = ~�(x1; x2) + ~�(y1; y2)� ~�(x1; y2)� ~�(y1; x2): (27)

The strategies x = (x1; x2) and y = (y1; y2) are said to be strategic complements
if C(x; y) � 0 and strategic substitutes if C(x; y) � 0.

In the case of di�erentiable payo� functions, strategic complementarity and
substitutability are related in a simple way to the cross-partial derivatives of
the payo� functions.

Lemma 6. Let the set S of possible strategies be a convex set and let the
function ~�(x1; x2) be twice continuously di�erentiable. Then the matrix of
cross partials ~�12(x1; x2) is positive semi-de�nite for all (x1; x2) 2 S if and
only if every pair of strategies in S are strategic complements, and negative
semi-de�nite for all (x1; x2) 2 S if and only if every pair of strategies in S are
strategic substitutes.

For games in which there is strategic complementarity or strategic substi-
tutability, there is a nice, crisp relationship between Nash equilibrium for the
game with the semi-Kantian payo� function ~V (�; �), and Nash equilibrium for the
corresponding asymmetric game with inclusive �tness payo� function ~H(�; �).

Straightforward calculation shows the following:

Lemma 7. for any pair of strategies, x = (x1; x2) and �x = (�x1; �x2),

~V (x; �x)� ~V (�x; �x) = ~H(x; �x)� ~H(�x; �x) + rC(x; �x): (28)

The following result is almost immediate from Lemma 7.

Proposition 5. In an asymmetric two-sibling game: If every pair of strategies
are strategic complements, then a Nash equilibrium for the game with inclusive
�tness payo�s is also a Nash equilibrium for the corresponding game with a
semi-Kantian payo� function. If every pair of strategies are strategic substitutes,
then a Nash equilibrium for the game with semi-Kantian payo�s is also a Nash
equilibrium for the game with inclusive �tness payo�s.

In an additive game between siblings, C(x; y) = 0 for all x = (x1; x2) and
y = (y1; y2), so that all strategies are strategic complements, as well as strategic
substitutes. This implies the following Corollary to Proposition 5.

Corollary. In an additive, asymmetric two-sibling game, a Nash equilibrium
for inclusive �tness payo�s is a Nash equilibrium for semi-Kantian payo�s.
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Appendix

A Additive Games Between Relatives

The class of additive games between relatives is de�ned as follows. There is a
population of individuals such that each individual i interacts with a �nite set
Si of relatives, bearing speci�c familial relationships to that individual, grand-
parent, parent, sibling, aunt, uncle, cousin and so on.11

For each individual i and each of i's relatives j, there is a set Aij of possible
actions that i could take toward j. De�ne a function ci(�) such that ci(aij) is
the \cost" to i of taking action aij towards j. Also, for each of i's relatives
j 2 Si, de�ne a function bji(�) so that bji(aji) is the \bene�t" conferred on i
by the action aji taken by j toward i. Let ai be the vector of all actions taken
by i toward its relatives and let (a1; : : : ; an) be a list of the vectors of actions
taken by all individuals toward their relatives. The probability that individual
i survives to reproductive age is the sum of bene�ts that i receives from its
relatives minus the cost of i's own action. This can be expressed as:

�i(a1; : : : ; an) =
X

j2Si

bji(aji)�
X

j2Si

ci(aij): (29)

In a population of individuals playing additive games with their relatives,
the inclusive �tness Hi of individual i is de�ned by the equation:

H i(a1; : : : ; an) = �i(a1; : : : ; an) +
X
j2Si

rij�
j(a1; : : : ; an) (30)

where rij is the degree of relationship between individuals i and j and where
�i(a1; : : : ; an) is de�ned by Equation 29.

B Proof of Lemma 1

From Equation 8, it follows that

V1(�x; �x) =

N�1X

k=1

p(k)�1(x; �x; k): (31)

The gradient of �(x; �x; k) with respect to x is:

�1(x; �x; k) =
@�1(x;

k timesz }| {
x; : : : ; x;

n�k�1 timesz }| {
�x; : : : ; �x )

@x
(32)

11A single individual will typically bear di�erent familial relationships to several other peo-
ple. For example Arthur can simultaneously be Betty's brother, Fred's son, and Curious
George's uncle.
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= �1

1(x;

k timesz }| {
x; : : : ; x;

N�k�1 timesz }| {
�x; : : : ; �x )+k�1

2(x;

k timesz }| {
x; : : : ; x;

n�k�1 timesz }| {
�x; : : : ; �x ) (33)

Equation 34, below, follows from Equations 31 and 33. Equation 35 then
follows from the fact that for the probability distribution p(k),

Pn�1

k=0
p(k) = 1

and
Pn�1

k=0
p(k)k = (n� 1)r.

V1(�x; �x) =
n�1X

k=0

p(k)�1

1
(�x;

n�1 timesz }| {
�x; : : : ; �x ) +

n�1X

k=0

p(k)k�1

2
(�x;

n�1 timesz }| {
�x; : : : ; �x ) (34)

= �1

1(�x;

n�1 timesz }| {
�x; : : : ; �x ) + (n� 1)r�1

2(�x;

n�1 timesz }| {
�x; : : : ; �x ) (35)

Di�erentiating Equation 10, we �nd that

H1(x; y) = �1

1
(x; y; : : : ; y) + r(n� 1)�2

1
(x; y; : : : ; y) (36)

Therefore

H1(�x; �x) = �1

1
(�x; �x; : : : ; �x) + (n� 1)r�1

2
(�x; �x; : : : ; �x) (37)

= V1(�x; �x): (38)

|
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