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Abstract:  We study the existence of undominated elements of acyclic 

and irreflexive relations.  A sufficient condition for the existence is given in 

the general case without any topological assumptions.  Sufficient conditions 

are also given when the relation in question is defined on a compact 

Hausdorff space.  We study the existence of fixed points of acyclic 

correspondences, the existence of stable sets, and the possibility of 

representing the relation by a real valued function. 
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1.  Introduction 

 

Existence of undominated (or maximal) members of acyclic relations has 

interested economists for long.  These kind of relations appear e.g. in 

preference theory (for references, see Alcantud [1]; Bergstrom [2]; Campbell 

and Walker [3]; Walker [4]).  The interpretation of being undominated in such 

applications means that there exists a choice for which there exist no strictly 

better choices.  Since acyclicity seems quite natural in consumer choice theory 

for example, it is clear why such relations interest economists. 

Acyclic relations have applications also in equilibrium theory and in the 

analysis of dynamic systems.  Equilibrium existence results are always some 

kind of fixed point theorems. Existence of fixed points and existence of 

undominated members of a relation are closely related problems, so it is not 

surprising that results in these areas would be potentially useful to 

economists. 

A condition for the existence of undominated members is given in the 

general case without any topological assumptions (Proposition 1).  Such 

conditions are also given when the relation in question is defined on a 

compact Hausdorff space.   We show e.g. (Proposition 3) that if a closed, 

acyclic and irreflexive relation on a compact Hausdorff space has in every 

uncountable closed subset  Z  members that are undominated in Z, then this 

holds actually for every nonempty subset  A, not just for uncountable closed 

subsets.  We have a result about the possibility of representing the relation by 

a real valued function, when each closed subset  Z  has a member that is 

undominated in Z  (Proposition 4).  Existence of fixed points of acyclic 

correspondences and existence of Nash equilibrium are also analyzed 
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(Propositions 7– 10).  Finally, we have a result about the existence of stable 

sets (Proposition 11). 

The assumptions about relations on topological spaces are formulated in 

such a way, that they seem fit to game theoretical applications.  For example, 

given an element  x  we declare the set of elements that are dominated by  x  

closed.  In applications in preference theory, it may often be more natural to 

declare these sets open (see Alcantud [1]).  Anyway, it is fruitful to analyze 

the same problem (existence of undominated members) from different 

perspectives and with different topological assumptions. 

The paper is organized in the following way.  In Section 2, we give 

examples of situations when undominated members do not exist.   Examples 

are simple but reveal something essential about what goes wrong when 

undominated members do not exist.  Notation is introduced in Section 3, and 

there we give an example of a theorem from the existing literature, to 

facilitate comparison with our results.  The main results are presented in 

Section 4  and  5.  Section 5  is more application oriented, including the fixed 

point theorems and the result about stable sets. 

 

2.  Examples 

 

Let us give next two examples of acyclic relations in which undominated 

members do not exist.  

 

Example 1.  Let  X  be the boundary of the closed unit ball in the two-

dimensional plane with center at the origin of the plane.  Define a relation  R  

on  X  such that  xRy, if the distance along  X  from  x  to  y  is  1, when we 
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move from  x  to  y  clockwise.  Since for all  x  there is an  y  such that  xRy, no 

undominated members exist.  Further  R  is acyclic:  there are no points x1,...,xn  

such that  xiRxi+1,  i = 1,..., n – 1, and  x1Rxn.  [You can prove this easily by using 

the fact that  X  has length  2!.]  Clearly, the relation  R  is also irreflexive and 

closed.  In fact, there is a homeomorphism  f : X " X  such that  R  is the graph 

of  f:  y = f(x)  iff  xRy. 

 

So acyclicity and closedness alone do not guarantee the existence of 

undominated members, even when the relation is “single valued”.  But 

maybe the reason is that  X  in Example 1  was not convex?  Consider the 

following example. 

 

Example 2.  Let  X = [0, 1].  Let  a # (1/2, 1)  be irrational.  Let  R  be a 

relation on  X  such that  xRy, if  y = 1 – a + x, when  x $ a, and  xRy, if y = x - a, 

when  a $ x.  Graphically,  R  consists of two disjoint line segments, one above 

the diagonal and the other below.  Then  R  is closed and irreflexive.  Since for 

all  x  there is an  y  such  xRy, no undominated members exist.  R  is also 

acyclic.  To see this, suppose there is a cycle  {x0,...,xn}:  xiRxi+1, i = 0,...,n – 1, and  

x0 = xn.  We may assume w.l.o.g. that the cycle is minimal in the sense that  xi % 

xj  when  i,j < n. Clearly  x0 + ... + xn-1 = x1 + ...  + xn  =df S.  Let  B  be the subset 

of the indices  i < n  such that  xi < a,  M  the subset of the indices  i < n  such 

that  xi = a, and  T  the subset of the indices  i < n such that  a < xi.  Both  B  and  

T  must be nonempty, and denote their cardinalities by  b  and  t.  M  is either 

empty or contains only one member.  Suppose first  M  is empty.  Then  S = 

&i#Bxi + &i#Txi = &i#B(xi + 1 – a) + &i#T(xi - a) = &i#Bxi + b(1 – a) + &i#Txi - ta.  Hence  

b = a(b + t), which is impossible since  t, b > 0  and  a  is irrational.  If  M  
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contains one element, say    j, that is,  xj = a,  then either  xj+1 = 0  or  xj+1 = 1.  

We get that S = &i#Bxi + &i#Txi + a = &i#B(xi + 1 – a) + xj+1 + &i#T(xi - a) = &i#Bxi + 

b(1 – a) + &i#Txi - ta + xj+1.  Hence  a(b + t) = b + xi+1, a contradiction since  xj+1 = 0  

or  xj+1 = 1. 

 

So convexity of  X  does not guarantee the existence of undominated 

members of  R, although  R  is acyclic, irreflexive and closed.  In fact, we show 

in Proposition 1, that if  X is countable and Hausdorff compact, then there 

exist undominated members if  R  is closed, acyclic and irreflexive.  As a 

countable set, X  cannot be convex.  It cannot even be connected since it is 

Hausdorff and countable.   

Examples 1  and 2  have one common feature.  Starting from any point  x  

in  X, we can construct infinite sequences  {xn},  x0 = x, such that  xnRxn+1  but  

xiRxn+1  does not hold for any  i < n.  We call these kind of sequences irreducible.  

The existence of such irreducible sequences from any initial value  x  in fact 

precludes the possibility that there are undominated members.  We show a 

partial converse in Proposition 1.  Suppose there is some initial value  x  such 

that none of the sequences described above is irreducible.  Then there are 

undominated members, if  R  is acyclic and irreflexive, and if every member is 

in relation to at most finitely many other members.  In this result, no 

topological assumptions are needed.  
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3.  Preliminaries 

 

Let  X  be a nonempty set, and  R  a binary relation on X, so  R  is a 

subset of  X ' X.  The set  X  is called the field of  R.  We may denote  (x, y) # R  

by  xRy  as usual.  A finite subset   {x0,...,xn} ( X  such that  xiRxi+1  for  i = 0,..., 

n-1, is called a path in R.  If it is clear what relation  R  is in question, we may 

simply say that   {x0,...,xn} is a path.   R  is acyclic, if  x0 % xn  for every path  

{x0,...,xn} ( X  containing at least two different members.  R  is irreflexive, if  

xRx  does not hold for any  x.  R  is transitive, if  xRy  and  yRz  imply  xRz, for 

all  x, y, z # X.  The transitive closure of a relation  R, denoted by  RTr, is defined 

by  xRTry  iff there is path  {x0,...,xn}  such that  x = x0  and  y = xn.   

Given a relation on  X and a nonempty subset  Y  of  X, a member  y # Y  

is undominated in  Y, if there is no  y’ # Y  such that  yRy’  and  y % y’.  If y  is 

undominated in  X, we say simply that  y  is undominated.  We may also say in 

this case that  R  has (resp. has not) undominated members.  

An infinite subset  {xn} = {x0,...,xn,...} ( X  such that xiRxi+1,  xi % xi+1, for  i = 

0, 1, ..., is called a dominance sequence.  Note that if  R  is irreflexive, the 

requirements xi % xi+1  are automatically satisfied.  If  R  is irreflexive and 

acyclic, also  xi % xn  holds for all  i  and  n, i % n,  for any dominance sequence  

{xn}. 

If  R  is a relation on a nonempty set  X, and  Y  is a nonempty subset of  

X, define the restriction of  R  to  Y  by  R|Y = R ) Y ' Y.  The field of the relation 

R|Y  is  Y.   Then  R|Y  has no undominated members, if and only if  R  has no 

undominated members in  Y.  

Given a nonempty  Y ( X, let  RY = {x # X |  xRy  for some  y # Y}, and  

YR = {x # X |  yRx  for some  y # Y}.  RY  is called the inverse image of  Y, and  
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YR  is called the image of  Y.  RX  is the domain of  R, and  XR  is the range of  R.  

If  R  is irreflexive, it has undominated members if and only if the domain is 

not the whole  X, and in this case  X \ RX  is the set of undominated 

members.  So undominated members of an irreflexive  R  exist precisely when 

the domain of  R  is a proper subset of the field of  R. 

If  X  is a topological space,  R  is  closed  if  R  is a closed subset of the 

product space  X ' X  which is equipped with the product topology.  The 

following is part of Theorem 4  by Alcantud (see Alcantud [1]  for the whole 

theorem, and related earlier results). 

 

Theorem.  Let  R  be an irreflexive and acyclic relation on  X.  There are 

undominated members, iff  X  has topology such that  X  is compact and  R{x}  is open 

for each  x # X. 

 

It is well-known that if  X  is a compact Hausdorff space and  R  is 

closed, then  YR  and  RY  are closed for any nonempty closed subset  Y  of  X.  

In particular, this holds for singletons  {x}. Further, the correspondence   x " 

{x}R  defined on the domain of  R  is upper semicontinuous in this case.  That is, 

the subset  {x |  {x}R ( O}  is open for any open  O ( X.  Since the function  f : 

X ' X " X ' X,  f((x, y)) = (y, x)  is a homeomorphism, the inverse of  R,  R-1 = 

{(y, x) |  (x, y) # R}  is a closed if  R  is closed  Then the correspondence  y " 

{y}R-1 = R{y}  is also upper semicontinuous. 
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4.  Existence of Undominated Members 

 

In this section a relation  R  on  X  will always be acyclic and irreflexive, 

unless otherwise explicitly stated. 

We will first give conditions for the existence of undominated members 

without topological assumptions. 

Given a relation  R  on a set  X, a dominance sequence  {xn}  is called 

reducible, if there is  m > 0  such that  xiRxm+1 holds for some  i < m.  If a 

dominance sequence is not reducible, then it is irreducible.  Since  R  is acyclic, 

irreducibility means that  xkRxn  if and only if  n = k + 1.   

 

Proposition 1. Let  X  be a nonempty set and  R a nonempty relation on  X  

such that  {x}R  is finite for every  x # X. There exists undominated members in  X, 

iff there exists  x0 # X  such that every dominance sequence starting from  x0  is 

reducible. 

 

Proof.  Necessity.  Suppose  x0  is undominated.  Then the set of 

dominance sequences starting from  x0  is empty, and therefore every 

dominance sequence starting from  x0  is reducible. 

Sufficiency.  Suppose no undominated members exists, and let  x0  be 

such that every dominance sequence starting from  x0  is reducible.  Let  T  be 

the tree with root  x0  whose nodes are all paths  {x0,...,xn}  such that  xiRxk  if 

and only if  k = i + 1, where  i = 0,..., n – 1.  If  {xn}  is any dominance sequence 

starting from  x0, then by reducibility there exists a least index   k > 0  such 

that  xiRxk+1  for some  i < k.  Hence all initial segments  {x0,...,xm}  of  {xn}  with 
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at most  k + 1  members are nodes of  T.  So if there exists a node with  m  

members, then there exist nodes with   k = 1,..,m – 1  members.  

We claim first that there exists a natural number  M  such that all nodes 

of  T  have at most  M  members.  Suppose to the contrary that that for every  

M, there exists a node with more than  M  members.  Then for every  M > 1, 

there exists a node with exactly  M  members.  Now  T  is a finite splitting tree:  

every node has at most a finite number of successor nodes.  This follows 

because  {x}R  is finite for every  x # X.  Then it follows by the König’s 

Lemma, that  T  has an infinite branch.  That means that there is a dominance 

sequence  {xn}  starting from  x0  such that every initial segment  {x0,...,xm}  is a 

node of  T.  But this means  {xn}  is irreducible, a contradiction.  

So every node of  T  has at most  M  members.  The root  x0  has finitely 

many successors because  {x0}R  is finite.  The subtree  T(x)  of  T  whose root is  

x # {x0}R, is such that all its nodes have at most  M – 1  members.  Then it 

follows by induction that  T  has only a finitely many nodes.  Since all nodes 

have only finitely many members, it follows that the subset  Y = {x # X |  x  is 

a member of some node of  T}  is finite.  We show next that if  {x0,...,xm}  is any 

path starting from  x0, then every member of this path is a member of some 

node of  T  as well.   

So let  {x0,...,xm}  be a path starting from  x0.  Let  {x0,...,xk}  be the greatest 

initial segment of this path that is a node of T.  That is,  xiRxn  if and only if   n 

= i + 1, where  i = 0,..,k – 1.  Such a greatest initial segment clearly exists.  

Suppose  k < m, so in particular, the path  {x0,...,xk, xk+1}  is not a node of  T.  Let  

i  be the least index such that  xiRxk+1.  Then the member  xk+1  belongs to the 

node  {x0,...,xi, xk+1}.  If the path  {x0,...,xi, xk+1, xk+2}  is not a node of  T, then this 

happens only because there exists  j $ i  such that  xjRxk+2.  So let  j  be the least 
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such index, and note that then  xk+2  belongs to the node  {x0,...,xj, xk+2}.  

Continuing in this fashion we get that every member  x  of the path  {x0,...,xm}  

belongs to some node of  T.  Since  {x0,...,xm}  was chosen arbitrarily, it follows 

that the subset  Y = {x # X |  x  is a member of some node of  T}  is the set of all 

members of  X  that belong to some path  {x0,...,xm}  starting from  x0.  

If  y # Y  is dominated, then there exists  y’ # Y  such that  yRy’.  To see 

this, note that if  yRx, then there exists a path starting from  x0  that contains  y  

and ends to  x.  Since  Y  is finite and  R  is acyclic, not all members of  Y  can 

be dominated, a contradiction with the initial assumption that there are no 

undominated members.                                                              Q.E.D.  

 

Now we turn to the case where  X  is a topological space. 

 

Lemma 1.  If  R  is a nonempty and closed relation on a  compact Hausdorff 

space  X  with no undominated members, then there is a minimal nonempty closed  Y 

( X  such that every  y # Y  is dominated in  Y. 

 

Proof.  Partially order by set inclusion the set  C  of all nonempty closed 

subsets  Z  of  X, such that all members of  Z  are dominated in  Z.  C  is 

nonempty, since by assumption  X # C.  Let  T  be a maximal totally ordered 

subset of  C.  Then  T  exists by the Hausdorff Maximality Principle.  Let  Y  be 

the intersection of the members of  T.  Then  Y  is nonempty and closed, since 

every  Z # T  is nonempty and closed and  X  is a compact Hausdorff space. 

Since every  z # Z  is dominated in  Z, we have  Z ( RZ  for all  Z # T.  Choose  

y # Y.  Since  y  is dominated in  Z,  {y}R ) Z  is nonempty and closed for any  
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Z # T.  Therefore  {y}R ) Y  is nonempty and closed, and  y  is dominated in  

Y.  Since  y  was chosen arbitrarily, we are done.                                Q.E.D.  

 

Recall that a nonempty closed subset  Y  of a metric space is called 

perfect, if  Y  contains no points that are isolated in  Y, i.e.  there is no  y # Y  

such that for some open neighbourhood  V(y)  of  y,  Y ) V(y) = {y}.  Perfect 

subsets are uncountable.   

 

Lemma 2. Let  R  be a nonempty and closed relation on a  compact Hausdorff 

space  X  with no undominated members, and let  Y ( X  be as in Lemma 1.  Then  Y  

is homeomorphic to a compact perfect metric space, and  Y = R|YY = YR|Y. 

 

Proof.  By Lemma 1, R|Y  has no undominated members, and therefore Y 

= R|YY.  Since  R|Y  is viewed as a relation on  Y, we have YR|Y ( Y.  Let  Z = 

YR|Y, and note that  Z  consists of all those members of  Y  that dominate some 

member of  Y.  Since every  z # Z  is dominated by some  y # Y, we must have  

y # Z.  Since  Y  is minimal and  Z  is closed, we have  Z = YR|Y = Y  by 

Lemma 1.  

Let  {xn} ( Y  be any dominance sequence, i.e.  an infinite sequence such 

that  xiRxi+1, i = 0, 1,....  Such a sequence exists, since  Y  contains no 

undominated members.  Since  Y  is closed,   cl{xn} ( Y, where  clZ  means the 

closure of a set  Z.  Now  {xn} = cl{xn}   is impossible.  To see this, suppose  {xn} 

= cl{xn}, that is, {xn}  is closed.  Then  {xn}n*1 = {xn} ) {xn}R  would be closed as 

well, since  AR  is closed for any nonempty closed  A ( Y.  By induction, for all 

natural numbers  k, the dominance sequence  {xn}n*k  starting from  xk  would 

be closed.  Since  {xn}n*m ( {xn}n*k  when  m > k, the intersection  )k{xn}n*k  must 
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be nonempty, because  Y  is a compact Hausdorff space.  Then for some  m,  xm 

# {xn}n*k for all  k, a contradiction with acyclicity.  Therefore  {xn}  is a proper 

subset of  cl{xn}. 

The set  cl{xn}  is a compact Hausdorff space having a countable dense 

subset {xn}.  Urysohn’s metrizability theorem says that the topology of any 

normal topological space with a countable dense subset is metrizable.  

Compact Hausdorff spaces are normal (every pair of disjoint closed subsets 

have disjoint open neighbourhoods), and hence we may view  cl{xn}  as a 

compact metric space. 

Take any  y # cl{xn} \ {xn}.  There must be a subsequence  {xn(k)}  

converging to  y, since we may view  cl{xn}  as a compact metric space.  For the 

same reason  the sequence  {xn(k)+1}  has a subsequence converging to  z # cl{xn}. 

Assume w.l.o.g.  that  {xn(k)+1}  converges.  Since  R  is a closed relation, and  

xn(k)Rxn(k)+1, it follows that  yRz.  Hence every member of cl{xn}  is dominated by 

some member of cl{xn}.  Since  cl{xn}  is a subset of  Y, we must have  Y = cl{xn}  

by minimality of  Y.  Recall that  {xn} ( Y  was an arbitrarily chosen 

dominance sequence.  

If  y # Y  were isolated, we could take a dominance sequence  {xn} ( Y 

such that  yRx0.  Then by acyclicity,  y  couldn’t be a member of  {xn}.  Hence  y  

couldn’t be a member of  cl{xn}, since  y  is isolated.  But then  y + Y  since Y = 

cl{xn}, a contradiction.  Hence  Y  is perfect.                                            Q.E.D. 

 

Proposition 2.  Let  X  be a countable, compact Hausdorff space and  R a 

nonempty and closed relation on  X.  Then every nonempty closed  Z ( X  contains 

members that are undominated in  Z. 
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Proof.  If there were no undominated members in  X, then by Lemma 2  

there would exist a nonempty subset  Y ( X  such that  Y  is homeomorphic to 

a a compact perfect metric space.  But the cardinality of every nonempty 

perfect set is that of the continuum, a contradiction.   

If  Z ( X  is nonempty and closed, then  R|Z  is a nonempty and closed 

relation on a countable, compact Hausdorff space  Z, and the result follows 

from the first part of this proof.                                                               Q.E.D.        

 

Next we drop the assumption that  X  is countable, and give some 

characterizations for the case that each nonempty closed subset  Z  of  X  has 

members that are undominated in  Z. 

 

Proposition 3. Suppose R  is a nonempty and closed relation on a  compact 

Hausdorff space  X.  Each uncountable closed  Z ( X  contains members that are 

undominated in  Z, iff each nonempty A ( X  contains members that are 

undominated in  A. 

 

Proof.  Sufficiency.  If each nonempty  A ( X  contains members that are 

undominated in  A, then this holds for closed nonempty subsets as well. 

Necessity.  The mapping  Z " RZ  (take  Z  and see what members of  X  

the members of  Z  dominate) is monotone on nonempty subsets of  X.  

Namely, if  , % Z ( Z’, and  xRz  for z # Z, then  x # RZ.  But since  z # Z’, 

also  x # RZ’, and therefore  RZ ( RZ’. 

Let  X(0) = X, and define  X(n + 1) = RX(n), n * 0.  Then  X(n + 1) ( X(n)  

by monotonicity.  Since each  X(n)  is a closed subset of a compact space  X, 
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the intersection  Z = )n X(n)  is closed as well, and it is nonempty iff each  

X(n)  is nonempty.  

Suppose indeed that  Z  is nonempty.  If  Z  is uncountable, there is by 

assumption  y # Z  such that  yRy’  does not hold for any  y’ # Z.  If  Z  is 

countable, then also  Z  has a member  y  that is undominated in  Z:  R|Z  is a 

closed (irreflexive and acyclic) relation on  Z, and therefore has undominated 

members by Proposition 2.   

Since  y # X(1), y  cannot be undominated in  X.  Hence  {y}R, the set of 

members that dominate  y, is nonempty and closed by closedness of  R.  Since  

y # X(n + 1)  for every  n, it follows that  {y}R ) X(n)  is nonempty and closed 

for every  n.  But then  {y}R ) Z = )n ({y}R ) X(n))  is a nonempty and closed 

subset of  Z, a contradiction. 

It follows that there exists a natural number  n*  such that  X(n* + 1)  is 

empty but  X(n)  is nonempty for all  n < n* + 1.  That is,  RX(n*)  is empty 

although  X(n*)  is nonempty and closed, so members of  X(n*)  do not 

dominate anything.  In particular, no member of  X(n*)  dominates another 

member of  X(n*), and hence each  x  in  X(n*)  is undominated in  X(n*). 

Let  S(n) = X(n) \ X(n + 1),  n < n*, and  S(n*) = X(n*).  Then  S(n)  

contains all members of  X(n)  that are undominated in  X(n). Subsets  S(n)  

and  S(m)  are disjoint when  n % m.  The union of all  S(n)’s  is  X, so  {S(n)}  is 

a partition of  X.   

Let  A ( X  be nonempty.  Let  n  be the least index such that  A ) S(n)  is 

nonempty.  Members of this nonempty intersection are undominated in  A.  

Q.E.D.                                                                                   
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We can give an analogous characterization in terms of functions u : X " 

R  (R  is the set of real numbers) that preserve  R  “in one direction”:  xRy  

implies  u(x) < u(y). 

 

Proposition 4. Suppose R  is a nonempty and closed relation on a  compact 

Hausdorff space  X.  Each uncountable closed  Z ( X  contains members that are 

undominated in  Z, iff there is a lower semicontinuous function  u : X " R  with 

finite range such that  xRz  implies  u(x) < u(z)  for all  x, z # X. 

 

Proof.  Necessity.  Suppose each uncountable closed  Z ( X  contains 

members that are undominated in  Z.  Then this holds for every nonempty 

closed  Z  by Proposition 2.  Let  X(0) = X, and define  X(n + 1) = RX(n), n * 0.  

Then  X(n + 1) ( X(n), each  X(n)  is closed, and  X(n)  is nonempty iff  n $ n*  

for some  n*  (see the proof of Prop. 3). 

Let  S(n) = X(n) \ X(n + 1),  n < n*, and  S(n*) = X(n*).  Then  S(n)  

contains all members of  X(n)  that are undominated in  X(n).  Note that since 

each  X(n + 1)  is closed,  n < n*, the union  S(0) - ... - S(n) = X \ X(n + 1)  is 

open, and that subsets  S(n)  and  S(m)  are disjoint when  n % m.  The union of 

all  S(n)’s  is  X, so  {S(n)}  is a partition of  X. 

Define a function  u  on  X  by  u(x) = n* - n, where  n  is the unique 

number such that  x # S(n).  Now  u  represents  R  in the sense that  xRz  

implies  u(x) < u(z).  Namely,  u(x) = k  iff  x # S(n* - k).  Since  x  is 

undominated in  X(n* - k),  z # S(n)  implies   n < n* - k.  Hence  u(z) = n* - n > k 

= u(x).  Fix   a # R, and note that  {x # X |  a < u(x)} is open, and so  u  is lower 

semicontinuous. 
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Sufficiency.  Suppose there is a lower semicontinuous function  u : X " R  

with finite range such that  xRz  implies  u(x) < u(z)  for all  x, z # X.  We may 

assume w.l.o.g. that  u[X] = {0,...,n*}, the set of first  n* + 1  natural numbers.  

Let  T(n) = {x # X |  n - 1 < u(x) $ n}, and note that unions  T(k) - T(k + 1) - ... 

- T(n*)  are open,  k $ n*, and that  {T(n) | 0 $ n $ n*}  is a partition of  X. 

Let  Z  be a nonempty closed subset of  X, and let  k  be the largest 

number such that  Z ) T(k)   is nonempty.  For each  x # Z ) T(k),  u(x) = k, 

and if  xRy  then  u(x) < u(y).  But then  y + Z.  So members of Z ) T(k)  are 

undominated in  Z.                                                                                   Q.E.D.  

 

We will now formulate some sufficient conditions for the existence of 

undominated elements.  In the first, we use the reducibility concept. 

Let  R  a relation on  X.  We say that dominance sequences starting from  

x # X  are uniformly reducible, if there is  M > 0  such that  to each dominance 

sequence  {xn},  x0 = x, there is  n $ M  such that  xiRxn+1  for some  i < n.  

 

 

Proposition 5. Suppose R  is a nonempty and closed relation on a  compact 

Hausdorff space  X.  If every uncountable closed subset  Z ( X  contains a member  z  

such that dominance sequences starting from  z  are uniformly reducible, then  R  has 

undominated members. 

 

Proof.  Suppose  R  has no undominated members.  Then there is a 

minimal closed subset  Y  by Lemma 1  such that every  y # Y  is dominated in  

Y.  By Lemma 2,  Y  is homeomorphic to a compact perfect metric space, and 

so  Y  is uncountable. 
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Define  {z}Rn  by  ({z}Rn-1)R, when  n > 0  and  {z}R0 = {z},  z # X.  Then 

each  {z}Rn  is closed, and so are the finite unions of these sets.  By assumption, 

there is  y0 # Y  such that dominance sequences starting from  y0  are 

uniformly reducible. 

 

Claim.   -n {y0}R
n  is closed. 

 

Proof.  Since the dominance sequences starting from  y0  are uniformly 

reducible, there is  M > 0  such that for every dominance sequence  {yn}  that 

starts from  y0, there is  n $ M  such that  yiRxn+1  and  i < n. 

Let  {xt} ( -n {y0}R
n be a sequence converging to  x, not necessarily a 

dominance sequence.  Since  xt # -n {y0}R
n, there exists a shortest path  {y0,..., 

yk, xt}.  Since  X  contains no undominated members, this path extends to a 

dominance sequence  {yn}  starting from  y0  such that  yk+1 = xt.  Since  {y0,..., yk, 

xt}  is a shortest path from  y0  to  xt = yk+1, we have that  yiRyj  if and only if  j = 

i + 1, when  j $ k + 1.  By uniform reducibility,  k + 1 $ M. 

Therefore  {xt} ( {y0}R - ... - {y0}R
M, which is a closed set, and therefore 

the limit  x  of  {xt}  is in this set also, and so  x # -n {y0}R
n.  End.                                                           

  

Now  y0  is such that  y0  does not dominate any  y # -n {y0}R
n.  By 

Lemma 2  there is  y’ # Y  such that  y0  dominates  y’, so  -n {y0}R
n ) Y  is a 

proper closed subset of  Y.  By Lemma 1, there is  z # -n {y0}R
n ) Y  such that  

z  is undominated in  -n {y0}R
n ) Y.  Since  z # Y,  zRy  holds for some  y # Y, 

and then necessarily y + -n {y0}R
n.  But  y # {z}R ( -n {y0}R

n  by construction, a 

contradiction.                                                                                                Q.E.D. 
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If  X  is a topological space, we say that  A ( X  is sequentially closed, if for 

any sequence  {an} ( A  converging to  a, also  a # A.  Every closed subset is 

sequentially closed.  In metric spaces, sequentially closed sets are closed.   

Recall the definition of the transitive closure  RTr  of a relation  R  on  X 

(see Section 3).  Since  R  is acyclic and irreflexive, {x}RTr = -n {x}Rn \ {x} for all  

x # X, where  {x}R0 = {x}  and  {x}Rn+1 = ({x}Rn)R  for  n * 0. 

 

Proposition 6. Suppose R  is a nonempty and closed relation on a  compact 

Hausdorff space  X.  If every uncountable closed subset  Z  of  X  contains some  z  

such that  {z}RTr is sequentially closed, then  R  has undominated members. 

 

Proof. Suppose there are no undominated members. Then there is a 

minimal closed set  Y  by Lemma 1  such that every  y # Y  is dominated in  Y.  

By Lemma 2,  Y  is homeomorphic to a compact perfect metric space, and so  

Y  is uncountable.   

By assumption, {y}RTr is sequentially closed for some  y # Y.  Since  Y  

can be viewed as a metric space,  Y ) {y}RTr is closed.  Since every member of  

Y  is dominated in  Y, Y ) {y}RTr is nonempty.  Since  y  is not a member of  

{y}RTr, Y ) {y}RTr is a proper closed subset of  Y.  By Lemma 1, there is  z # Y ) 

{y}RTr such that  z  is undominated in Y ) {y}RTr.  Since  z # Y,  zRx  holds for 

some  x # Y, and then necessarily  x + Y ) {y}RTr.  But  x # {z}R ( {y}RTr by 

construction, a contradiction.                                                              Q.E.D.                                                                                                

 

Corollary 1. Suppose R  is a nonempty and closed relation on a  compact 

Hausdorff space  X.  R  satisfies the conditions of Prop. 5  or Prop. 6, iff for each 

uncountable closed  Z ( X, there is  z # Z  which is undominated in  Z. 
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Proof.  Necessity.  If  Z  is countable, then by Prop. 1  Z  contains a 

member  z  such that  z  is undominated in  Z.  If  Z  is uncountable, then 

apply Prop. 5  and  6  to the relation  R|Z  on  Z.  

Sufficiency.  By Prop. 4, there is a function  u : X " R  such that  xRz  

implies  u(x) < u(z)  for all  x, z.  If   {xn} ( X  is a dominance sequence, then the 

image  u[{xn}]  is infinite.  But u[X]  is finite by Prop. 4, so there are no 

dominance sequences.  So the sufficient conditions of Prop. 5  and  6  are 

automatically satisfied.                                                                     Q.E.D. 

 

 

5.  Fixed Points Theorems and Applications 

 

Let  F: X . X  be a correspondence:  for each  x # X,  F(x) ( X.  A 

correspondence  F  is nonempty valued (finite valued), if  F(x)  is nonempty 

(finite) for all  x.  A correspondence  F  is acyclic (irreflexive), if its graph  grF 

= {(x, y) |  y # F(x), x # X}  is acyclic (irreflexive).  We call a correspondence 

reducible, if for some  x0, all dominance sequences in  grF  starting from  x0  are 

reducible.  In other words, if there exists an infinite sequence  {xn}  with first 

member  x0  such that  xi+1 # F(xi), i = 0, 1, ... , then for some  n > 0, there exists  

i < n  such that  xn+1 # F(xi).  If  X  is a topological space, then a correspondence  

F  is closed, if its graph  grF  is closed in the product topology of  X ' X.   

We say that x # X  is a fixed point of  F: X . X, if   x # F(x).   

 

Proposition 7.  If  X  is a nonempty set, and  F : X . X  is a nonempty and 

finite valued, acyclic and reducible correspondence, then  F  has a fixed point.  
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Proof.  If  F  has no fixed points, then  F  is irreflexive.  By Proposition 1, 

the relation  grF  has then undominated members.  That is, for some  x # X, 

there is no  y # X  such that  (x, y) # grF.  Since  F  is nonempty valued, this is 

impossible.                                                                                                   Q.E.D. 

 

Proposition 8.  Suppose  X  is countable, compact Hausdorff space.  If the 

correspondence  F : X . X  is closed, nonempty valued and acyclic correspondence, 

then  F  has a fixed point. 

 

Proof.  Apply Proposition 2  and the proof of Proposition 7.     Q.E.D. 

 

Given a correspondence  F: X . X, let  F0(x) = {x}, and  Fn(x) = F[Fn-1(x)]  

for  n > 0, for every  x # X. 

 

Proposition 9.  Suppose  X  is a compact Hausdorff space, and the 

correspondence  F : X . X  is closed, nonempty valued and acyclic correspondence. If 

every uncountable closed subset  Z  of  X  contains a member  z  such that  -n>0 F
n(z)  

is sequentially closed, then  F  has a fixed point. 

 

Proof.  Note that  z + -n>0 F
n(z)  since  F  is acyclic.  Apply Proposition 6  

and the proof of Proposition 7.                                                             Q.E.D. 

 

An  n –person normal form game is  G = {S1,...,Sn; u1,...,un}, where  Si  is a 

nonempty set of strategies of player  i = 1,...,n, and  ui  is a real valued utility 

function of player  i = 1,...,n  defined on  S = S1 ' ... ' Sn, the set of strategy 
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profiles.  Given a strategy profile  s  and player  i, denote  s = (si, s-i), where  s-i  

denotes the strategies chosen by  i’s  opponents, and  si  denotes the strategy 

chosen by  i.  A strategy profile  s*  is a Nash equilibrium, if the inequality 

 

ui(s*) * ui((si, s-i*)) 

 

holds for all  i  and all  si # Si.  Let  Bi(s) = {xi | ui((xi, s-i)) * ui((yi, s-i)), for all  

yi # Si}  denote the set of best replies of player  i  against a strategy profile  s # 

S.  For all strategy profiles  s, let  B(s) = B1(s) ' ... ' Bn(s), and let  B : S . S  

denote the correspondence that to each  s  assigns the set  B(s).  Then  s*  is a 

Nash equilibrium, if and only if  s* # B(s*).  We say that  B  is the best reply 

correspondence of the game  G.   

 

Proposition 10.  Suppose G = {S1,...,Sn; u1,...,un}  is an  n –person normal 

form game having a best reply correspondence B : S . S.  If  B  is a nonempty and 

finite valued, acyclic and reducible correspondence, then  G  has a Nash equilibrium. 

 

Proof.  By Proposition 7.                                                                  Q.E.D. 

 

A Nash equilibrium existence result based on Propositions 8 and 9  can 

be formulated analogously.  

In game theoretic applications, dominance sequences are usually called 

best reply sequences.  Acyclicity of a best reply correspondence  B  means that 

there cannot exist cycles in any best reply sequence (or path).  Reducibility of  

B  means that there exists a strategy profile  s  such that if  {sk}  is a best reply 

sequence starting from  s, then for some  k,  sk+1  is a best reply not just against  
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sk  but also against some other  si,  i < k.  Finite valuedness of  B  means simply 

that each player has only a finitely many best replies against every strategy 

profile. 

As a last application, we show that stable sets exist, if a relation has 

undominated members in every nonempty closed subset.  

Given a relation  R  on  X, a nonempty  S ( X  is stable, if  (i)  x, y # S  

implies that neither  xRy  nor  yRx  holds; (ii)  x # X \ S  implies that  xRy  for 

some  y # S. 

 

Proposition 11. Suppose R  is a nonempty, closed, irreflexive and acyclic 

relation on a  compact Hausdorff space  X, and assume that each nonempty closed  Y 

( X  contains a member  y  such that  y  is undominated in  Y.  Then a stable set 

exists. 

 

Proof. Let the subsets  S(n), X(n), n = 0,...., n*,  be defined as in the proof 

of Prop. 3.  So  X(0) = X, and  X(n + 1) = RX(n) ( X(n), and  S(n) = X(n) \ X(n + 

1).  It was shown in the proof of Prop. 3, that every member of  X(n*)  is 

undominated in  X(n*)  and  X(n* + 1)  is empty.  

If  n* = 0, then  S(0) = X  is a stable set.  If  n* > 0, then  S(1)  is nonempty.  

Since members of  S(1)  are undominated in  X(1) = X \ S(0), we have that  

S(1) ( RS(0).  Let  k  be the least index such that  S(k)  is not a subset of  S(0) - 

RS(0).  Let  T(1) = S(0) - (S(k) \ RS(0)).  Then  T(1)  and  RT(1)  are disjoint. If 

their union is  X, then  T(1)  is a stable set.  

Suppose that  T(k)  is defined such that  T(k)  and  RT(k)  are disjoint.  If 

their union is  X  then  T(k)  a stable set.  If their union is not  X, then define  

T(k + 1)  by  T(k + 1) = T(k) - (S(m) \ RT(k)), where  m  is the least index such 
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that  S(m)  is not a subset of  T(k) - RT(k).  Since there are only  n* + 1  subsets  

S(n), there must exist  k  such that  T(k)  is a stable set.                    Q.E.D. 
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