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Abstract

We consider an asymptotic version of Mas-Colell’s theorem on the
existence of pure strategy Nash equilibria in large games. Our result
states that, if players’ payoff functions are selected from an equicon-
tinuous family, then all sufficiently large games have an ε – pure, ε –
equilibrium for all ε > 0. We also show that our result is equivalent
to Mas-Colell’s existence theorem, implying that it can properly be
considered as its asymptotic version.

1 Introduction

Nash (1950)’s celebrated existence theorem asserts that every finite normal
form game has a mixed strategy equilibrium. However, in many contexts
mixed strategies are unappealing and hard to interpret, leading naturally to
the question of the existence of pure strategy Nash equilibria.

Regarding games with a finite action space, considered by Nash (1950),
Schmeidler (1973) was successful in obtaining an answer to the above ques-
tion. He showed that in a special class of games — in which each player’s
payoff depends only his choice and on the average choice of the others — a
pure strategy Nash equilibrium exists in every such game with a continuum
of players.

∗I wish to thank Myrna Wooders for very helpful comments and John Huffstot for
editorial assistance. Any remaining errors are, of course, mine.
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Later, Mas-Colell (1984) extended Schmeidler’s Theorem to a broader
class of games by allowing players’ payoff to depend on the distribution of
choices made by the others.1 At almost the same time, Rashid (1983) ob-
tained an asymptotic version of Schmeidler’s theorem, according to which all
sufficiently large games of the same class considered by Schmeidler (1973)
have an approximately pure, approximate equilibrium provided that players’
payoff functions are selected from an equicontinuous family.2

Asymptotic results are important because, after all, real-world games
have finitely many players. Therefore, we ask whether or not there is an
asymptotic version for Mas-Colell’s Theorem that parallels Rashid’s version
of Schmeidler’s Theorem.

Our Theorem 1 answers the above question affirmatively. It states that
if players’ payoff functions are selected from an equicontinuous family, then
all sufficiently large games of the same class considered by Mas-Colell (1984)
have an ε – pure, ε – equilibrium for all ε > 0.

This result thus provides an approximate version of Mas-Colell’s theo-
rem. Despite the similarities, there are nevertheless some differences: our
assumption on the number of players is less extreme, but our conclusion is
weaker and requires an equicontinuity assumption. So, is our result really a
version of Mas-Colell’s?

Again, the answer is yes: our Theorem 3 shows that the two results
are equivalent, i.e., that each one follows from the other. This means that
they are simply two different ways of expressing the same phenomenon: the
existence of pure strategy Nash equilibria can be addressed either in its exact
version in games with a continuum of players or in an approximate version
in large, equicontinuous games.

This remark reinforces the main conclusion we obtained in Carmona
(2004a). There we showed that in the same class of games we consider
here, Nash equilibria of games with a continuum of players are the limit
points of approximate equilibria of similar large finite games. Given this, the

1More precisely, Mas-Colell’s Theorem asserts that an equilibrium distribution exists
whenever the action space is a compact metric space. In the special case considered by
Schmeidler (1973), an equilibrium strategy can be obtained from the equilibrium distri-
bution.

2More precisely, Rashid’s Theorem shows that all Nash equilibria of sufficiently large
games of the same class can be approximately purified. Note that, as we have shown in
Carmona (2004b), Rashid’s Theorem requires that players’ payoff functions be selected
from an equicontinuous family.
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equivalence asserted by our Theorem 3 becomes quite natural.
It is useful to compare our asymptotic result to others obtained in the

literature. The equivalence between it and Mas-Colell’s implies that it is more
general than Schmeidler’s Theorem. It is also more general than Rashid’s
result on the existence of approximately pure, approximate equilibria in large,
equicontinuous games. In both cases, this follows simply because we consider
a more general framework.

The existence of approximately pure, approximate equilibria in large,
equicontinuous games follows also from the work of Kalai (2001) and Cartwright
and Wooders (2003). Although the class of games considered by them differs
from ours, we can nevertheless approximate equicontinuous games in their
class by equicontinuous games in ours (this approximation requires that we
focus on a sub-class in which all players have the same finite action space
and there is no move by nature, assumptions that are not made by those au-
thors). This implies that the existence of approximately pure, approximate
equilibria in large, equicontinuous games in their framework satisfying the
above assumptions follows also from our Theorem 1.

We consider several possible extensions for our work. Motivated by
the above relationship with the papers of Rashid (1983), Kalai (2001) and
Cartwright and Wooders (2003) we ask whether or not we can approximately
purify all Nash equilibria of large, equicontinuous games, as they can. Our
Theorem 4 shows that, in general, we cannot. This implies that our Theorem
1 is not more general than their main results, but only to the corollaries on
the existence of approximately pure, approximate equilibria in large, equicon-
tinuous games that can be obtained from them.3

Finally, we provide examples that show that neither can we obtain an
exact version for our Theorem 1 (i.e., with ε = 0), nor can we dispense with
the equicontinuity assumption.

2 Notation and Definitions

In the class of normal-form games we consider, all players have the same
strategy space: the standard unit simplex ∆m on Rm, m > 1. As usual,

3It is worth emphasizing that both Kalai (2001) and Cartwright and Wooders (2003)
allow moves by nature and different players to have different action spaces. Furthermore,
Cartwright and Wooders (2003) allow players to have denumerable action spaces. These
are aspects in which their analysis is more general than ours.
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the interpretation is that there are m pure strategies which are identified
with the vertices E = {e1, . . . , em} of ∆m, and players can randomize over it.
Since the focus is on a property that depends on the number of players, we
will index any game by the number of its players. Thus, Gn is a normal-form
game in which the set of players is Tn = {1, . . . , n}, and each has ∆m as its
choice set. A strategy is then a function x : {1, . . . , n} → ∆m. Obviously, a
strategy x can also be thought of as the vector (x1, . . . , xn) in ∆n

m.
A game Gn is then specified by the vector of payoff functions, one for each

player. We denote player t’s payoff function by Ut, for any t ∈ Tn; therefore,
Gn is described by the vector (Ut)t∈Tn . If we let Gn denote the set of all
functions g : ∆n

m → R and G = ∪∞n=1Gn, then a game Gn can be thought of
as a subset of Gn, and so of G.

In this paper we will focus on a special class of games in which each
player’s payoff depends on his strategy and on the distribution of strategies
chosen by the other players. Let M be the set of Borel probability measures
on ∆m endowed with the Prohorov metric ρ.4 Given a strategy x in a game
with n players and t ∈ Tn, we define νn,t ◦ x−1 ∈M as follows:

νn,t ◦ x−1(B) =
|{j ∈ Tn \ {t} : xj ∈ B}|

n− 1
(1)

for any Borel set B ⊆ ∆m. To each player t, we associate m continuous
functions Vtk : M→ R, 1 ≤ k ≤ m; then player t’s payoff function is

Ut(x) = xt1Vt1(νn,t ◦ x−1) + . . . + xtmVtm(νn,t ◦ x−1), (2)

for any strategy x. We denote this class of games by H.
Note that a game Gn ∈ H is described by the vector (Vtk)t,k. We let

V (Gn) = {Vtk : 1 ≤ t ≤ n, 1 ≤ k ≤ m} and so V (Gn) is a subset of U , the
space of all continuous, real-valued functions on M.

The class of games considered by Rashid (1983) is easily seen to be a
special case of our framework. Let f̄ : M → ∆m be defined by f̄(µ) =∫

∆m
idµ, where i : ∆m → ∆m denoted the identity function. Assume that

Gn is such that for every k ∈ {1, . . . , m} and t ∈ Tn, there exists a function
Rtk : R→ R such that

Vtk(µ) = Rtk

(
n− 1

n
f̄(µ)

)
, (3)

4See Appendix A.1 for the definition of this and other mathematical concepts.
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for all µ ∈M. In such a game, then

f̄(νn,t ◦ x−1) =
∑

j 6=t

xj

n− 1
, (4)

and so

Ut(x) = xt1Rt1

(∑

j 6=t

xj

n

)
+ . . . + xtmRtm

(∑

j 6=t

xj

n

)
, (5)

for any strategy x. We will denote this class of games by R.
For any ε ≥ 0, we say that x∗ = (x∗1, . . . , x

∗
n) is an ε – equilibrium of a

game Gn if, for all t ∈ {1, . . . , n},

Ut(x
∗) ≥ Ut(xt, x

∗
−t)− ε for all xt ∈ ∆m. (6)

Thus, in an ε – equilibrium all players are close to their optimum by choosing
according to x∗. A strategy x∗ is a Nash equilibrium of Gn if x∗ is an ε –
equilibrium of Gn for ε = 0.

For any strategy x in a game Gn, let Pn(x) = {t ∈ Tn : xt ∈ E}. We say
that x is ε – pure if

|P c
n(x)|
n

< ε. (7)

That is, in an ε – pure strategy all but a small fraction of players play a pure
strategy.

Let x∗ be a Nash equilibrium of a game Gn. Then, we say that x is an ε
– purification of x∗ if x is an ε – pure, ε – equilibrium and

||U(x)− U(x∗)|| < ε. (8)

Let K be a subset of U . We say that K is equicontinuous (or, that the
family K of functions is equicontinuous) if for all η > 0 there exists a δ > 0
such that

||V (x)− V (y)|| < η

whenever ρ(x, y) < δ, x, y ∈ M and V ∈ K (see Rudin (1976, p. 156)). In
our framework, equicontinuity can be interpreted as placing “a bound on the
diversity of payoffs” (see Khan, Rath, and Sun (1997)).
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3 Existence of Approximately Pure, Approx-

imate Equilibria in Large, Equicontinuous

Games

In this section we state our first main result. It says that all sufficiently
large games have an ε – pure, ε – equilibrium, provided that players’ payoff
functions are selected from an equicontinuous family.

Theorem 1 Let K be an equicontinuous subset of U . Then, for all ε > 0
and all m ∈ N there exists N ∈ N such that n ≥ N and V (Gn) ⊆ K implies
that Gn has an ε – pure, ε – equilibrium.

Theorem 1 is an approximation result: it guarantees the existence of an
approximate equilibrium that is approximately pure if the game is sufficiently
large. Essentially, we are approximating not only pure strategy Nash equi-
libria, but also games with a continuum of players, in which the conclusion
of Theorem 1 holds exactly. This is how we proceed: we associate, to any
sufficiently large finite game, a game with a continuum of players having the
same distribution of payoff functions. In such a game, we restrict players to
play pure strategies and, by Mas-Colell (1984)’s existence theorem, we ob-
tain an equilibrium distribution. We then use this equilibrium distribution
to construct an approximately pure, approximate equilibrium for the original
finite game.5

Our construction shows that we can think of Theorem 1 as being an
asymptotic version of Mas-Colell (1984)’s existence theorem. As we have
emphasized in Carmona (2004a), such asymptotic results are natural since
we can characterize the Nash equilibria of games with a continuum of players
in terms of approximate equilibria of games with a finite number of players.

Another aspect that stresses the asymptotic nature of Theorem 1 is that
it requires a class of payoff functions for which an equilibrium is sure to exist
whenever the game has a continuum of players. In particular, it is false for
games in which players have general payoff functions. As a simple example,
consider ε = 1/4, and the following games Gn with m = 2 and n even:
players’ 2k and 2k − 1, 1 ≤ k ≤ n/2, play the matching pennies, i.e., their
payoff depend only on their choices and is given by:

5See Appendix A.3 for the proof of Theorem 1.
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2k − 1\2k H T
H 1,−1 −1, 1
T −1, 1 1,−1

Table 1: Payoff Function for the Matching Pennies

Then, if x is a 1/4 – pure strategy, it follows that there is 1 ≤ k ≤ n/2 such
that both players 2k − 1 and 2k play a pure strategy. This implies that x
cannot be an 1/4 – equilibrium. Therefore, Gn has no 1/4 – pure, 1/4 –
equilibrium for all n even.

In general, Theorem 1 is also false if we insist on ε = 0, or if we drop
the equicontinuity assumption. This will be established by the example in
Section 6.

It is also useful to compare Theorem 1 to other results in the literature.
It follows from Rashid (1983)’s Theorem that the conclusion of Theorem 1
holds for games in R. Since we do not require that payoffs depend only on
the average choice of the other players, Theorem 1 is more general in this
respect.6

Theorem 1 also provides similar generalizations for other classes of games
that have been considered. Before we can state them, we need a slight
generalization of the theorem.

Let C ⊆ G and K ⊆ U . Then C can be approximated by (H, K) if the
following property holds: For all ε > 0 there exists N ∈ N such that if n ≥ N
and Fn = (Utk)t,k ∈ C there exists Gn ∈ H satisfying V (Gn) ⊆ K and

||V (x)− U(x)|| < ε (9)

for all strategies x : {1, . . . , n} → ∆m. The following corollary is an obvious,
but useful, consequence of the above definition.

Corollary 1 Let K be an equicontinuous subset of U and assume that C ⊆ G
can be approximated by (H, K). Then, Theorem 1 holds for C.

That is, for all ε > 0 and all m ∈ N there exists N ∈ N such that n ≥ N
and Gn ∈ C implies that Gn has an ε – pure, ε – equilibrium.

6Note that although not explicitly stated, Rashid’s Theorem requires that players’
payoff functions are selected from an equicontinuous family. For details, see Carmona
(2004b).
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Corollary 1 is useful for extending Theorem 1 to other classes of games.
A class in which we are interested consists of a particular case of the one
considered in Kalai (2001) and Cartwright and Wooders (2003) (see footnote
3). We will let K be the class of the following games: A game Gn ∈ K
is defined by the vector (ftk)t,k where ftk : ∆m → R is continuous for all
1 ≤ t ≤ n and 1 ≤ k ≤ m. For c = (c1, . . . , cn) ∈ En, e ∈ E and t ∈ Tn,
define

empc−t
(e) =

|{i 6= t : ci = e}|
n− 1

. (10)

Then, for any strategy x, define

Ut(x) = xt1Ut1(x−t) + . . . + xtmUtm(x−t), (11)

and

Utk(x−t) =
∑

c−t∈
Q

i6=t Ei

(∏

i6=t

xi(ci)

)
ftk(empc−t

). (12)

Let V be the space of all continuous functions f : ∆m → R and F (Gn) =
{ftk : 1 ≤ t ≤ n, 1 ≤ k ≤ m} ⊆ V for any Gn ∈ K.

Let D be an equicontinuous subset of V . Define K ⊆ U as follows K =
{f ◦ f̄ : f ∈ D}. Then, K is an equicontinuous subset of U . Let C be the
subset of K induced by D, i.e., all the games Gn = (ftk)t,k satisfying ftk ∈ D
for all 1 ≤ t ≤ n and 1 ≤ k ≤ m. It then follows from Kalai (2001, Lemma 4)
that C can be approximated by (H, K). Hence, the conclusion of Theorem
1 holds for the class K, provided that the payoff functions are derived from
an equicontinuous family of functions.

We conclude this section with another class of games. This class of games
is very similar to the one we consider in Theorem 1, since games in the two
classes differ only on the definition of the distribution of actions that affects
players’ payoffs.

Let Gn be a game and x a strategy. We let νn denote the uniform measure
on Tn, and so we define νn ◦ x−1 ∈M as follows:

νn ◦ x−1(B) =
|{t ∈ Tn : xt ∈ B}|

n
(13)

for any Borel set B ⊆ ∆m. To Gn we associate the game Gn defined as
follows: it has the same set of players Tn and each has the same action space
∆m. For t ∈ Tn, his payoff function is now

U t(x) = xt1Vt1(νn ◦ x−1) + . . . + xtmVtm(νn ◦ x−1), (14)
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for any strategy x. Thus, in Gn player t’s payoff depends on the distribution
of actions played by all players, including t himself, whereas in Gn it depends
only on the distribution induced by the choices of the other players. Note,
however, that V (Gn) = V (Gn). We let H denote this class of games.

The following remark states that the conclusion of Theorem 1 also holds
for H. In fact, Lemma 3 in Appendix A.2 shows that it is equivalent to
Theorem 1.

Remark 1 Let K be an equicontinuous subset of U . Then, for all ε > 0 and
all m ∈ N there exists N ∈ N such that n ≥ N and V (Gn) ⊆ K implies that
Gn has an ε – pure, ε – equilibrium.

Note that in a game Gn ∈ H, each player’s payoff function is linear in
his own choice. Since this is not necessarily the case in Gn, Remark 1 shows
that the the existence of approximately pure, approximate equilibria in large
games does not depend on that assumption.

4 On the Equivalence to Mas-Colell’s Theo-

rem

We have emphasized that Theorem 1 can be thought of as an asymptotic
version of Mas-Colell (1984)’s existence theorem. Moreover, we have used it
in our proof, and so it follows that Theorem 1 is implied by it. In this section
we show that the two results are equivalent.

We next describe Mas-Colell (1984)’s Theorem in our context, i.e., in
games with a finite number of pure strategies. We note that his theorem
holds more generally, and therefore, our Theorem 1 is really equivalent to a
particular version of it.

Let E be the space of the continuous functions u : E ×M(E) → R. A
game with a continuum of players is described by a Borel probability measure
on E .

Given a Borel probability measure τ on E × E, we denote by τE and τE

the marginal distributions of τ on E and E respectively. The expression
u(e, τ) ≥ u(E, τ) means u(e, τ) ≥ u(e′, τ) for all e′ ∈ E.

Given a game µ, a Borel probability measure τ on E ×E is an equilibrium
distribution for µ if

1. τE = µ, and
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2. τ({(u, e) ∈ E × E : u(e, τE) ≥ u(E, τE)}) = 1.

Mas-Colell (1984)’s Theorem 1 asserts the existence of an equilibrium
distribution in games with a continuum of players.

Theorem 2 (Mas-Colell) An equilibrium distribution exists for all games
µ ∈M(E).

Theorem 3 below shows that this version of Mas-Colell (1984)’s Theorem
is equivalent to Theorem 1.7

Theorem 3 Theorem 1 holds if and only if Theorem 2 holds.

5 On the Purification of Nash Equilibria

We have shown that we can generalize the existence of approximately pure,
approximate equilibria in large games from the classes R and K. Existence
of such equilibria in those classes is easy to establish, since there all Nash
equilibria can be approximately purified in large games. In this section, we
ask whether or not it is possible to purify all Nash equilibria of sufficiently
large games in H. Theorem 4 shows that the answer is no.

Theorem 4 There exists an equicontinuous subset K of U , ε > 0 and m ∈ N
such that for all N ∈ N theres exist a game Gn with n ≥ N , V (Gn) ⊆ K and
a Nash equilibrium x of Gn that has no ε – purification.

Proof. Let ε = 1/4 and m = 2. Define g : M→ R as follows:

g(µ) =
ρ

(
µ,Bc

1/4(11/2)
)

ρ
(
µ,Bc

1/4(11/2)
)

+ ρ
(
µ, 11/2

) . (15)

Note that g is continuous, g(11/2) = 1 and g(µ) = 0 for all µ 6∈ B1/4(11/2).
Let K = {g}.

Let N ∈ N and let n = N + 2. Define Gn by letting Vtk(µ) = g(µ) for
all t ∈ {1, . . . , n} and k = 1, 2. It follows that any strategy in Gn is a Nash
equilibrium.

7See Appendix A.4 for its proof.
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Consider x∗ defined by x∗t = 1/2 for all t ∈ Tn. Then Ut(x
∗) = 1 for all

t ∈ Tn. We claim that any 1/4 – pure strategy x satisfies ρ(νn,t ◦x−1, 11/2) ≥
1/4 for all t ∈ Tn, from which the theorem follows because then Ut(x) = 0
for all t ∈ Tn and so

||U(x∗)− U(x)|| = 1 >
1

4
. (16)

So, it remains to prove that if x is a 1/4 – pure strategy, then ρ(νn,t ◦
x−1, 11/2) ≥ 1/4 for all t ∈ T . For convenience, denote νn,t ◦ x−1 by τ . Let
D = {1/2}. Then obviously 11/2(D) = 1 and B1/4(D) = [1/4, 3/4]. It follows
that

τ(B1/4(D)) ≤ νn,t(P
c
n(x)) <

n

4(n− 1)
. (17)

Since n ≥ 2, we obtain that

11/2(D) = 1 >
n

4(n− 1)
+

1

4
> τ(B1/4(D)) +

1

4
. (18)

Thus, 1/4 6∈ Σ(τ, 11/2) and so ρ(τ, 11/2) ≥ 1/4.

6 On the Non-Existence of Equilibria

In this section, we show that in general, we cannot obtain a pure Nash
equilibrium even in equicontinuos large games. The exact version of Theorem
1 (i.e., with ε = 0) therefore holds only in the limit case of games with a
continuum of players. As an easy consequence, we also show that it is not
possible to dispense with the equicontinuity assumption used in Theorem 1.

Theorem 5 There exists an equicontinuous subset K of U and m ∈ N such
that for all N ∈ N there exists a game Gn with n ≥ N and V (Gn) ⊆ K which
has no pure strategy Nash equilibrium.

Proof. We let m = 2, and for any N ∈ N, we let n ≥ N be a multiple
of 4. Define Gn as follows: let T1 = {1, . . . , n/2} and T2 = {n/2 + 1, . . . , n}.
For t ∈ T1, let

Vt1

(∑

j 6=t

xj1

n

)
=

1

2
− n

n− 1

∑

j 6=t

xj1

n
and

Vt2

(∑

j 6=t

xj1

n

)
= −Vt1,

(19)
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while for t ∈ T2, let Vti = −V1i, i = 1, 2. Thus, for t ∈ T1, we have that
player t’s optimal choice is:

xt =





1 if
∑

j 6=t
xj1

n−1
< 1

2
,

x ∈ [0, 1] if
∑

j 6=t
xj1

n−1
= 1

2
,

0 if
∑

j 6=t
xj1

n−1
> 1

2
.

(20)

For any player t ∈ T2, the optimal choice is just the opposite, that is, player
t’s optimal choice is:

xt =





0 if
∑

j 6=t
xj1

n−1
< 1

2
,

x ∈ [0, 1] if
∑

j 6=t
xj1

n−1
= 1

2
,

1 if
∑

j 6=t
xj1

n−1
> 1

2
.

(21)

Let K = {V11, V12,−V11,−V12}.
We claim that Gn has no pure strategy Nash equilibrium. Let

x̄ =
∑
t∈T

xt

n
,

and

x̄t =
∑

j 6=t

xj

n− 1
=

nx̄− xt

n− 1
,

for any t ∈ T . We consider the cases x̄ < 1/2, x̄ = 1/2 and x̄ > 1/2.
Assume that x is pure and that x̄ = 1/2. If t ∈ T2 is such that xt = 0,

then x̄t = n/(2n− 2) > 1/2. Therefore, the gain from deviating to x̃t = 1 is

2x̄t − 1 =
1

n− 1
> 0. (22)

Similarly, if t ∈ T2 is such that xt = 1, then x̄t = (n − 2)/(2n − 2) < 1/2,
and player t is not optimizing.

If x̄ < 1/2, then there exists t ∈ T1 such that xt = 0, which is clearly
not optimizing. Finally, if x̄ > 1/2, then there exists t ∈ T1 such that
xt = 1, which again is not optimizing. Thus, Gn has no pure strategy Nash
equilibrium.

The following result shows that we cannot dispense with the equiconti-
nuity assumption in Theorem 1. In its proof, we consider the same family
of games as in Theorem 5, and we show that the corresponding n – players
game has no 1/4 – pure, εn – equilibrium, for some 0 < εn ≤ 1/(n − 1).

12



This implies that the game obtained by dividing players’ payoff functions by
εn has no 1/4 – pure, 1 – equilibrium, and so no 1/4 – pure, 1/4 – equilib-
rium. Since εn → 0, the family of games obtained in this way fails to be
equicontinuous.

Theorem 6 There exist ε > 0 and m ∈ N such that for all N ∈ N there
exists a game Gn with n ≥ N which has no ε – pure, ε – equilibrium.

Proof. Let ε = 1/4 and m = 2. Let N ∈ N and let n ≥ N be a multiple
of 4. Define G̃n as follows: let T1 = {1, . . . , n/2} and T2 = {n/2 + 1, . . . , n}.
For t ∈ T1, let

Ṽt1

(∑

j 6=t

xj1

n

)
=

1

2
− n

n− 1

∑

j 6=t

xj1

n
and

Ṽt2

(∑

j 6=t

xj1

n

)
= −Ṽt1,

(23)

while for t ∈ T2, let Ṽti = −Ṽ1i, i = 1, 2. Thus, G̃n equals the game Gn used
in the proof of Theorem 5.

We will show that there exists an εn > 0 with the property that no 1/4
– pure strategy is an εn – equilibrium. We then define Gn by letting

Vti =
Ṽti

εn

(24)

for all t ∈ T and i = 1, 2. Then no 1/4 – pure strategy is an 1 – equilibrium
of Gn and so, Gn has no 1/4 – pure, 1/4 – equilibrium.

We will show that there is no 1/4 – pure Nash equilibrium of G̃n. This
implies the existence of εn > 0 with the property that no 1/4 – pure strategy
is an εn – equilibrium of G̃n as follows: Note that a strategy can be thought
of as a vector x ∈ [0, 1]n and consider the set X of strategies that are 1/4
– pure. We can show that X is compact: let X0 = [0, 1]n and for 0 < l ≤
n/4 − 1, let Xl be defined as follows: first, define Tl as the collection of
all sets with l elements from T ; second, for τ ∈ Tl, define Xl,τ as the set
of strategies in which players outside of τ must play a pure strategy, i.e.,
Xl,τ = Xl,τ,1 × · · · ×Xl,τ,n with

Xl,τ,t =

{
[0, 1] if t ∈ τ,
{0, 1} otherwise;

(25)
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third, and finally, define Xl = ∪τ∈Tl
Xl,τ — the set Xl is the set of strategies

in which exactly l players are allowed to play a mixed strategy. Let 0 ≤ l ≤
n/4 − 1. Clearly, Xl,τ is compact for all τ ∈ Tl. It then follows that Xl is

compact since it equals a finite union of compact sets. Then X = ∪n/4−1
l=0 Xl

is compact. Hence, if our conclusion is false, we could find an 1/4 – pure, 1/k
– equilibrium xk of G̃n for every k ∈ N. Taking a subsequence if necessary,
we can assume that xk converges, and so x = limk xk is an 1/4 – pure Nash
equilibrium of G̃n.

We have shown in Theorem 5 that G̃n has no pure strategy Nash equilib-
rium. It now remains to show that G̃n has no 1/4 – pure Nash equilibrium.
Let x be 1/4 – pure. Consider the case in which x̄ = 1/2. Then, there is
t ∈ T2 playing a pure strategy and we can show exactly as in the proof of
Theorem 5 that he cannot be optimizing.

Consider now the case x̄ < 1/2. By the above, we may assume that there
is at least one player playing a mixed strategy. For any such player t to be
optimizing, it must be that x̄t = 1/2, which is equivalent to

xt = nx̄− n− 1

2
<

1

2
. (26)

If xt ≤ 0, we get a contradiction. So assume that xt > 0. Then, letting
P1(x) = {t ∈ T : xt = 1}, it follows that

x̄ =
|P c(x)|

n

(
nx̄− n− 1

2

)
+
|P1(x)|

n
(27)

which implies that

|P c(x)| = nx̄− |P1(x)|
nx̄− n−1

2

. (28)

Since obviously |P c(x)| < 1, it follows that |P1(x)| > (n − 1)/2 and so
|P1(x)| ≥ n/2. But this implies that x̄ ≥ 1/2, a contradiction.

Finally, consider the case x̄ > 1/2. Assume, in order to get a contradic-
tion, that x is a 1/4 – pure equilibrium. Then define y by yt = 1− xt for all
t ∈ T . Then one easily computes that ȳ = 1− x̄ and that ȳt = 1− x̄t. This
implies that y is a 1/4 – pure equilibrium with ȳ < 1/2, a contradiction.

We remark that the above example does not contradict Theorem 1. In
the game Gn, we can write, for any t ∈ T and k = 1, 2,

Vtk(µ) =
1

εn

(
1

2
− f̄(µ)

)
, (29)
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Let ωf̄ (δ) denote the modulus of continuity of f̄ . Then, the modulus of

continuity ω(δ) of Vtk is, for all 1 ≤ t ≤ Tn and 1 ≤ k ≤ m,
ωf̄ (δ)

εn
≥

(n − 1)ωf̄ (δ) since it follows by 22 that εn ≤ 1
n−1

. This implies that ω(δ)
converges to infinity with n, which shows that the family of payoff functions
we used in the example is not equicontinuous. This accounts for the failure
of the conclusion of Theorem 1.

Finally, we note that the game Gn used in both theorems belongs to
the class R. This shows that even if we restrict attention to games in R,
we can obtain neither a pure strategy Nash equilibrium nor an ε – pure, ε
– equilibrium for all ε > 0 without equicontinuity for all sufficiently large
games. This last conclusion generalizes our result in Carmona (2004b): since
for the non-equicontinuous game in our example there is no ε – pure, ε
– equilibrium, for any ε > 0 small enough, then it follows that no mixed
strategy equilibrium can be ε – purified.

7 Concluding Remarks

The main objective of this paper is to obtain an asymptotic version of Mas-
Colell’s Theorem on the existence of a pure strategy Nash equilibrium. Our
main results show that:

1. for any equicontinuous family of payoff functions and any ε > 0, all
sufficiently large games have an ε – pure, ε – equilibrium, and,

2. the above asymptotic result is equivalent to Mas-Colell’s.

These results imply that the existence of pure strategy Nash equilibria in
games with a continuum of players can be studied equivalently to the exis-
tence of approximately pure, approximate equilibria in large, equicontinuous
games.

Furthermore, they provide an additional example of the type of results
that show that approximate equilibria of finite games have the same, or
approximately the same, properties as equilibria of continuum games. In
this way, it stresses the close relationship between equilibria of games with
a continuum of players and approximate equilibria of games with a finite
number of players.
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A Appendix

A.1 Mathematical Appendix

In this section we provide the definition of some of the mathematical concepts
we have used.

Let z ∈ Rn. If n = 1, then ||z|| denotes the usual absolute value of z,
while if n > 1, then z = (z1, . . . , zn) and ||z|| = max1≤i≤n ||zi||.

If Y is a subset of some space X, then Y c denotes the complement of
Y in X, i.e., Y c = {x ∈ X : x 6∈ Y }. When Y is finite, |Y | denotes the
number of points belonging to Y . If X is a metric space with metric d,
x ∈ X and ε > 0, then Bε(x) = {z ∈ X : d(x, z) < ε} is the open ball of
radius ε around x. If D is a subset of X, then dist(x, D) = infz∈D d(x, z) and
Bε(D) = {x ∈ X : dist(x,D) ≤ ε}.

Let X be a metric space. Then M(X) denotes the space of all Borel
probability measures on X. For any x ∈ X, 1x denotes the measure con-
centrated in x, i.e., 1x(B) = 1 for all Borel subsets B of X that contain x,
while 1x(D) = 0 for all Borel subsets D of X that do not contain x. If X
is compact, then M(X), when endowed with the weak convergence topol-
ogy, is also a compact metric space (Parthasarathy (1967, Theorem II.6.4)).
The Prohorov metric ρ on M(X), which is known to metricize the weak
convergence topology, is defined as follows: let µ, τ ∈M(X) and define

Σ(µ, τ) ={ε > 0 : τ(D) ≤ µ(Bε(D)) + ε and

µ(D) ≤ τ(Bε(D)) + ε for all Borel D ⊆ X}. (30)

Then, ρ(µ, τ) = inf Σ(µ, τ). If τ ∈ M(X) and {τn}n ⊆ M(X), we write
τn ⇒ τ whenever ρ(τn, τ) → 0.

Throughout the paper we have had the opportunity to explore the rela-
tionship between games with a continuum of players and games with finitely
many players. Let A be a non-empty, compact metric space (representing the
space of actions) and let Ũ denote the space of continuous utility functions
u : A ×M(A) → R endowed with the supremum norm (and which repre-
sents the space of players’ payoff functions). A game with a continuum of
players is characterized by a measurable function U : [0, 1] → Ũ , where the
unit interval [0, 1] is endowed with the Lebesgue measure λ on the Lebesgue
measurable sets and represents the set of players. A strategy is a measurable
function x : [0, 1] → A and the payoff for player t ∈ [0, 1] is

U(t)(x(t), λ ◦ x−1). (31)
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We denote such game by G = (([0, 1], λ), U, A).
A game with a finite number of players is characterized by a function

U : T → Ũ , where T is a finite set. The set T represents the set of players
and it is endowed with the uniform measure ν. A strategy is a function
x : T → A and the payoff for player t ∈ T is

U(t)(x(t), ν ◦ x−1). (32)

Given a strategy x, a ∈ A, and t ∈ T , let x \t a denote the strategy y
defined by y(t) = a, and y(t̃) = x(t̃), for all t̃ 6= t — this is the strategy that
results if player t deviates from x by playing a. We denote such a game by
G = ((T, ν), U, A).

Note that for any m,n ∈ N, a vector (Vtk)1≤t≤n,1≤k≤m of functions Vtk :
M(∆m) → R defines a game with a finite number of players in the above
sense by equations 13 and 14. The above notion of a game with a finite
number of players is useful because we have shown in Carmona (2004a) (see
Theorem 1 and its proof) that: if G is a game with a continuum of players
Gn is a sequence of games with a finite number of players, |Tn| → ∞, τn is
an equilibrium distribution of Gn, τn ⇒ τ and τŨ = λ ◦ U−1, then τ is an
equilibrium distribution of G.

A.2 Lemmata

In this appendix, we prove three results needed for Theorem 1. Lemma 1
deals with measures with a finite support. For such measures, we will some-
times write µl instead of µ({l}), whenever l is a point in the space in which µ
is strictly positive. This notation also suggests that a measure with a finite
support can be thought of as a vector in some Euclidean space. Roughly,
Lemma 1 says that the Prohorov distance between two measures whose sup-
port is contained in some finite set is proportional to their Euclidean distance.

Lemma 1 Let τ, µ ∈ M(X) be such that supp(τ) ∪ supp(µ) ⊆ Ψ, where Ψ
is a finite set. If there exists ε > 0 such that ||τl−µl|| ≤ ε for all 1 ≤ l ≤ |Ψ|,
then ρ(τ, µ) ≤ |Ψ|ε.

17



Proof. Let ε > 0 and B ⊆ X be Borel measurable. Then,

τ(B) =
∑

l∈Ψ∩B

τ({l}) ≤
∑

l∈Ψ∩B

(µ({l}) + ε) ≤
∑

l∈Ψ∩B

µ({l}) + |Ψ|ε ≤

µ(B|Ψ|ε(B)) + |Ψ|ε.

(33)

Similarly, we can show that µ(B) ≤ τ(B|Ψ|ε(B)) + |Ψ|ε. This implies that
ρ(τ, µ) ≤ |Ψ|ε.

Lemma 2 shows that in large games a player deviation has a small impact
on the distribution of actions.

Lemma 2 Let Gn be a game and let x be a strategy. If y is another strategy
that differs from x in exactly one point, then

ρ(νn ◦ x−1, νn ◦ y−1) ≤ 1

n
, (34)

Proof. Let τ = νn ◦ x−1 and τ ′ = νn ◦ y−1. We have that

τ({a}) =
|{t ∈ Tn : x(t) = a}|

n

for all a ∈ ∆m, and similarly for τ ′. Since there is just one t ∈ Tn such
that y and x differ, there are only two points a1 and a2 in ∆m such that
τ({ai}) differs from τ ′({ai}). Note that we have ||τ({ai})− τ ′({ai})|| = 1/n
for i = 1, 2. Then, for any Borel subset B of ∆m, it follows that ||τ(B) −
τ ′(B)|| = 0 if either a1 and a2 belong to B or a1 and a2 belong to Bc, while
||τ(B)− τ ′(B)|| = 1/n otherwise. This implies ρ(τ, τ ′) ≤ 1/n.

The following lemma is the analog to Rashid (1983)’s observation 1.
Roughly, it says that for approximate equilibria of large games, it does not
matter whether or not we include a player’s own action when defining the
distribution of actions that determines her payoff.

Lemma 3 Let K be an equicontinuous subset of U . Then, for all η > 0 and
all m ∈ N there exists N ∈ N such that if n ≥ N , V (Gn) ⊆ K and Gn has
an η – equilibrium, then Gn has an 4η – equilibrium. Furthermore, if n ≥ N ,
V (Gn) ⊆ K and Gn has an η – equilibrium, then Gn has an 4η – equilibrium.
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Proof. Let η > 0. Since K is equicontinuous, let δ > 0 be such that

||V (τ)− V (µ)|| < η (35)

whenever ρ(τ, µ) < δ, τ, µ ∈M and V ∈ K. Finally, let N ∈ N be such that
1/(n− 1) < δ whenever n ≥ N .

Let n ≥ N , V (Gn) ⊆ K and x be a η – equilibrium of Gn. Let t ∈ Tn

and let µ = νn ◦ x−1 and τ = νn,t ◦ x−1. We claim that

ρ(µ, τ) ≤ 1

n− 1
. (36)

Let D be a Borel measurable subset of ∆m and d = |{i ∈ Tn : xi ∈ D}|.
Then

µ(D) =
d

n
, (37)

and

τ(D) =

{
d

n−1
if xt 6∈ D,

d−1
n−1

otherwise.
(38)

Then, in order to have µ(D) ≤ τ(Bε(D)) + ε for all D, it is enough that

d

n
≤ d− 1

n− 1
+ ε (39)

for all 0 ≤ d ≤ n, d ∈ N. One easily sees that 39 is satisfied if ε ≥ 1/(n− 1).
Also, in order to have τ(D) ≤ µ(Bε(D)) + ε for all D, it is enough that

d

n− 1
≤ d

n
+ ε (40)

for all 0 ≤ d ≤ n, d ∈ N. Again, one easily sees that 40 is satisfied if
ε ≥ 1/(n− 1). Therefore, ρ(µ, τ) ≤ 1

n−1
as we claimed.

Hence,

Ut(xt, τ) ≥ Ut(xt, µ)− η

≥ Ut(ā, νn,t ◦ (x \t ā))− 2η

≥ Ut(ā, µ)− 3η

≥ Ut(ā, τ)− 4η,

(41)

for all ā ∈ ∆m. Hence, x is a 4η – equilibrium of Gn.
Finally, note that the above computations also imply that if n ≥ N ,

V (Gn) ⊆ K and x be a η – equilibrium of Gn, then x is a 4η – equilibrium
of Gn.
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A.3 Proof of Theorem 1

Let ε > 0 and let η > 0 be such that 4η < ε. Since K is equicontinuous, let
δ > 0 be such that

||V (τ)− V (µ)|| < η/3 (42)

whenever ρ(τ, µ) < δ, τ, µ ∈M and V ∈ K. Finally, let N ∈ N be such that
2m2/n < δ and m/n < η whenever n ≥ N .

Let n ≥ N and Gn be a game. By Lemma 3, it is enough to show that Gn

has an η – pure, η – equilibrium. Consider the game Gλ = (([0, 1], λ), E, V )
where V (t) = Ui if t ∈ Ti := [ i−1

n
, i

n
) for 1 ≤ i ≤ n − 1 and V (t) = Un if

t ∈ Tk = [n−1
n

, 1]. Then Gλ has Nash equilibrium distribution τ on U ×E by
Mas-Colell (1984, Theorem 1).

Let τi,j = τ({(ui, ej)}) and τj =
∑n

i=1 τi,j for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.
The equilibrium distribution can be represented in the following way:

τ1,1 τ1,2 · · · τ1,m

τ2,1 τ2,2 τ2,m
...

τn,1 τn,2 τn,m

τ1 τ2 τm

Note that
∑m

j=1 τi,j = 1/n for all 1 ≤ i ≤ n.
Let

Si =

{
1

n
ej : τi,j > 0

}
.

Then, we have that (τi,1, . . . , τi,m) ∈ co(Si) for every 1 ≤ i ≤ n, since

(τi,1, . . . , τi,m) =
∑

j:τi,j>0

τi,jej =
∑

j:τi,j>0

nτi,j
ej

n
, (43)

nτi,j ≥ 0 for all j and
∑

j:τi,j>0 nτi,j = 1. This implies that (τ1, . . . , τm) ∈
co(

∑n
i=1 Si) =

∑n
i=1 co(Si), and so by the Shapley-Folkman Theorem, it

follows that there are n points (αi,1, . . . , αi,m) ∈ co(Si), i = 1, . . . , n, such
that (τ1, . . . , τm) =

∑n
i=1(αi,1, . . . , αi,m) and |{i : (αi,1, . . . , αi,m) 6∈ Si}| ≤ m.

In order to simplify notation, we write ∆ for ∆m. Since τ is an equilibrium
distribution, it follows that if τi,j > 0 then Ui(ej, τ∆) ≥ Ui(el, τ∆) for all
l = 1, . . . , m. Let ā ∈ ∆. By the expected utility hypothesis (a =

∑m
l=1 alel
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implies that Ut(a, µ) =
∑m

l=1 alUt(el, µ)), it follows that τi,j > 0 implies that
Ui(ej, τ∆) ≥ Ui(ā, τ∆). Furthermore, we conclude that

Ui(a, τ∆) ≥ Ui(ā, τ∆) (44)

if a ∈ nco(Si) = co(nSi) = co({ej : τi,j > 0}).
Define the following strategy x in Gn: xi = (nαi,1, . . . , nαi,m), i = 1, . . . , n.

Let µ = νn ◦ (U, x)−1. By construction, at least n−m players are playing a
pure strategy, and so νn(P c

n(x)) ≤ m/n < η. Thus x is η – pure.
Let Ψ be a finite set with at most 2m elements containing {1e : e ∈ E}

and supp(µ∆): since at most m = n− (n−m) players play a mixed strategy,
then |supp(µ∆) \ {1e : e ∈ E}| ≤ m. Write Ψ = {ψ1, . . . , ψ|Ψ|} with ψ1 =
1e1 , . . . , ψm = 1em . We claim that ||τl − µl|| ≤ m/n for all 1 ≤ l ≤ |Ψ|: If
1 ≤ l ≤ m, we have that µl =

∑
i∈Pn(x) αi,l and τl =

∑n
i=1 τi,l =

∑n
i=1 αi,l;

therefore, ||τl − µl|| ≤
∑

i6∈Pn(x) αi,l ≤ m/n. If m + 1 ≤ l ≤ |Ψ|, then,

||τl − µl|| = µl ≤ m/n.
By Lemma 1, it follows that ρ(τ∆, µ∆) ≤ 2m2/n < δ. Hence, for all

t ∈ {1, . . . , n} and ā ∈ ∆, we obtain

Ut(xt, µ∆) ≥ Ut(xt, τ∆)− η

3

≥ Ut(ā, τ∆)− η

3

≥ Ut(ā, µ∆)− 2η

3
≥ Ut(ā, νn ◦ (x \t ā))− η,

(45)

where the first and third inequality follow from 42, the second from 44 and
the last from Lemma 2. Therefore, x is an η−equilibrium of Gn.

A.4 Proof of Theorem 3

Since we have established Theorem 1 using Theorem 2, it is enough to show
that we can prove Theorem 2 with Theorem 1.

Let µ be a game with a continuum of players. Then, there exists a
sequence µn ∈ M(E) satisfying µn ⇒ µ, supp(µn) is finite and µn({u}) ∈ Q
for all u ∈ supp(µn). Let supp(µn) = {u1

n, . . . , u
Kn
n }, where uk

n ∈ E and

βk
n

tn
= µn({uk

n}). (46)
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Let f : M(E) →M(∆) be defined by f(φ)(B) =
∑

e∈B∩E φ({e}) for all
Borel subset B of ∆m. Then, f is a homeomorphism betweenM(E) and E ′ =
f(M(E)). Furthermore, note that E ′ is a closed subset of M(∆), a compact
metric space. Therefore, for each n ∈ N and 1 ≤ k ≤ Kn uk

n : E×M(E) → R
can be extended to a continuous function V k

n : E ×M(∆) → R, by Tietze’s
extension theorem (see Kahn (1975, Theorem 6.1, p. 99)). The space of all
the continuous functions u : E×M(∆) → R is denoted by U ′ and Ũ denotes
the space of all continuous functions u : ∆×M(∆) → R.

Let n ∈ N be fixed. Then {V k
n (ei, ·)}1≤k≤Kn,1≤i≤m is an equicontinuous

subset of U . Define the following set of games Gγtn = ((Tγtn , νγtn), Uγtn , ∆)
for all γ ∈ N. That is, Gγtn has γtn players, each has ∆ as his choice set and
their payoff functions is defined in the following way: let Vγtn : Tγtn → U ′
be a function with the property that it associates V k

n to γβk
n players, for all

1 ≤ k ≤ Kn; then let Uγtn(t) be the mixed extension of Vγtn(t), i.e.,

Uγtn(t)(σ, τ) =
m∑

k=1

σ(ek)Vγtn(t)(ek, τ) (47)

for all t ∈ Tγtn , σ ∈ ∆ and τ in M(∆). Then, Uγtn is a function from Tγtn

to Ũ and let {U1
n, . . . , UKn

n } = Uγtn(Tγtn) ⊆ Ũ . That is, Gγtn can also be
thought of as a normal-form game with payoffs defined by equation 14.

By Remark 1 (which is equivalent to Theorem 1), Gγntn has a 1/n –
pure, 1/n – equilibrium fγntn : Tγntn → ∆ if γn is sufficiently large. Let
τn = νγntn ◦ (Uγntn , fγntn)−1 ∈M(Ũ ×∆). We may assume that γntn > n, by
choosing γn large enough.

Since M(Ũ × ∆) is compact, we may assume that {τn} converges. Let
τ = limn τn. Then, by Theorem 1 in Carmona (2004a) it follows that τ is
an equilibrium distribution of τŨ . Furthermore, since E is a closed subset ∆
and τn(Ũ × E) ≥ 1− 1/n, then τ(Ũ × E) = 1.

Let g : Ũ ×∆ → E ×∆ be defined by g = (R, i), where i : ∆ → ∆ is the
identity and R : Ũ → E is defined by

R(u)(e, φ) = u(e, f(φ)). (48)

One easily checks that g is continuous. Therefore, we can define a measure
ξ on M(E × E) as follows:

ξ(B) = τ(g−1(B)) = τ ◦ g−1(B), (49)
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for every Borel subset B of E × E.
We claim that ξ is an equilibrium distribution of µ. We will start by

showing that ξE = µ. We have that ξE = τŨ ◦ R−1, so it is enough to show
that µ = τŨ ◦R−1. Note that µn = τŨ ,n ◦R−1 since

τŨ ,n ◦R−1(A) =

∑
k:Uk

n∈A βk
n

tn

µn(B) =

∑
k:uk

n∈B βk
n

tn

(50)

and
uk

n ∈ B ⇔ Uk
n ∈ A, (51)

for every Borel subset A of Ũ and B of E . Then, since R is continuous,
τŨ ,n ⇒ τŨ and µn ⇒ µ, it follows that µ = τŨ ◦R−1.

Note also that f(ξE) = τ∆: Since τ∆(E) = 1, then there exists ai for all
i = 1, . . . , m such that τ∆({ei}) = ai, ai ≥ 0 and

∑m
i=1 ai = 1. Thus, it is

enough to show that ξE({ei}) = ai for all i = 1, . . . , m. Since R−1(E) = Ũ ,
it follows that

ξE({ei}) = ξ(E × {ei}) = τ(R−1(E)× {ei}) = τ∆({ei}) = ai. (52)

Finally, we show that ξ(Bξ) = 1, where Bξ = {(u, e) ∈ E ×E : u(e, ξE) ≥
u(E, ξE)}. Let Bτ = {(u, σ) ∈ Ũ × ∆ : u(σ, τ∆) ≥ u(∆, τ∆)} and Cτ =
Bτ ∩ (Ũ ×E). Since τ(Bτ ) = 1 and τ(Ũ ×E) = 1, it follows that τ(Cτ ) = 1.
Hence, it is enough to show that Cτ ⊆ g−1(Bξ).

Let (u, e) ∈ Cτ . Then

R(u)(e, ξE) = u(e, f(ξE)) = u(e, τ∆) ≥ u(E, τ∆) = R(u)(E, ξE). (53)

That is, (R(u), e) ∈ Bξ and so (u, e) ∈ g−1(Bξ).
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