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Abstract

This paper offers a noncooperative behaviourally-founded solution of the
complete information bargaining problem where two impatient individuals
wish to divide a unit pie. We formulate the game in continuous time, with
unrestricted timing and content of offers. Reprising experimental work from
1960, we introduce and explore aspirational equilibrium — a Markovian refine-
ment of subgame perfection where behaviour is governed by aspiration values
(expected payoffs). The analysis is tractable, and generates many intuitive
aspects of bargaining absent from the standard temporal monopoly paradigm.

We find that discounted aspiration values form a martingale, and thereby
compute bounds on the expected bargaining duration. We also deduce some
simple implications about consecutive offers, and relate delay times, offers,
and acceptance rates. Finally, we draw into question a traditional comparative
static: Ceteris paribus, more impatient players can expect more of the pie.
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1 Introduction

“The whole creation groans and yearns, desiderating a principle of arbitration . . . ”

— Edgeworth, Mathematical Psychics (1881), part II, page 46

The classic bargaining problem presents two individuals with the opportunity to share
a dollar if they can first agree on a partition. The rebirth of interest in this subject from
a modern noncooperative approach dates to Rubinstein (1982), itself related to St̊ahl
(1972). He proposes a discrete time alternating offer model with payoff discounting.

We shall focus on three critical “realistic” elements of the above bargaining problem:
(i) two risk neutral players 1, 2 must divide a unit pie, by concurring on a feasible split;
(ii) an agreement means a proposal by one player and an immediate acceptance by the
other; (iii) the force for timely resolution is the players’ impatience. Like Rubinstein
(1982), we shall ignore the additional (and important) element of incomplete information.

Harsanyi (1956) observed: “As is well-known, ordinary economic theory is unable
to predict the terms on which agreements tend to be reached in cases of . . . bilateral
monopoly. Only on the basis of additional assumptions does the theory of games furnish
a determinate solution.” Rubinstein’s assumptions about the action space converted the
intractable bilateral monopoly into a simple sequence of temporal monopolies: In his
alternating offer bargaining model, players in turn are given the power to ask the other
party to accept an offer, or to burn some of the pie by declining. This yielded a unique
subgame perfect equilibrium (SPE) with an immediate agreement favouring the proposer.

Temporal monopoly captures situations where the time cost of each negotiation round
plays a central role in the players’ minds. While there are many situations with this critical
feature, this effect intuitively should play no role in procedure-less settings. Players may
well care about delay, and yet consider the reply time unimportant for this delay.

This paper explores the bargaining problem without temporal monopoly, and instead
aims for a behaviourally motivated noncooperative solution. Since discrete time forces
temporal monopoly, we shift to continuous time, where there are infinitely many SPE.
View a discrete time model, or more generally temporal monopoly, as a restriction of the
feasible action space to a subset of continuous time. We instead build the behavioural
foundation into the solution concept — aspirational equilibrium (AE). In this Markovian
refinement of SPE, players’ behaviour is governed by their aspiration values, or expected
payoffs in the game. While quite tractable as we will see, the resulting theory is richer than
temporal monopoly, and offers many compelling new economic insights into bargaining.

Continuous Time Bargaining and Aspirational Equilibrium. As argued, to avoid
the temporal monopoly outcome, we must allow players to react instantaneously, and
thereby must start with a model nested from the outset in continuous time. Continuous
time models introduce a host of well-known problems, most especially the twin issues that
(i) outcome profiles need not be well-defined given strategies, and (ii) best replies need not
exist. We construct an extensive form game that eludes both problems. This extensive
form game uses the novel idea of a two-dimensional vector time and a restriction on
histories that precludes the players from conditioning their actions on time. We succinctly
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summarize this feature of our extensive form as sealed-envelope instructions — at offer
decision nodes, the players simultaneously commit to mixed (offer, time) pairs.

With this new structure, outcome profiles are well-defined, and we introduce four
assumptions that refine SPE. The first three essentially ensure time stationary strategies,
disallowing time-dependent offers, or bargaining as cheap talk or protocol. The fourth
assumption asks that strategies coincide after any histories with the same expected payoffs.

The Intuitive Structure of Aspirational Equilibria. For a flavour of this refinement,
consider an AE without immediate agreement. As strategies depend on expected payoffs
alone and not on time, delay owes solely to the players’ randomization. With strict time
preference, there are rents from ending this bargaining hiatus. And since any player is
indifferent about proposing, only the opponent strictly benefits from this offer. In other
words, any delay implies that the players are locked in a war of attrition: Each strictly
prefers that his counterpart and not himself stop the clock and propose. To summarize, an
endogenous ‘proposee’ advantage arises, since receiving an offer makes one better off. This
is precisely opposite to the hard-wired proposer advantage with temporal monopoly, and
is the ultimate source of the different implications between these bargaining paradigms.

Next consider what transpires when some player, say Mr. 1, finally tenders an offer
to Mr. 2. The latter might accept it with probability one. If so, game over. Assume not.
Agreement brings us to the Pareto frontier, and is efficient, while rejection incurs further
delay, and is inefficient. Since Mr. 2 weakly prefers to reject, Mr. 1 must be disappointed
by this outcome, suffering a strict payoff loss if Mr. 2 declines, and payoff jump otherwise.
This yields several desirable and realistic bargaining features: (i) wars of attrition explain
negotiation lags; (ii) serious offers are concessions; (iii) offers may be turned down; (iv)
proposers are strictly disappointed from rejection, and strictly pleased by acceptance.

An AE specifies exogenously-given aspiration levels for the players — the initial state
of a Markov process. Once Mr. 1 offers x, Mr. 2’s aspiration value jumps to this new
level x. Afterwards, the concession that is offered may yet be rejected. (See Figure 1.)
This leads to a tractable Markov and martingale stochastic process on the space of possible
pairs of discounted aspiration levels (Theorem 4). We can then conclude that bargaining
almost surely ends in finite time; we also use this process to provide a simple lower bound
on the duration of bargaining based upon observed alternating offers (Corollaries 3–4).

Contrast with Temporal Monopoly. Temporal monopoly in no way precludes en-
dogenous timing — as Perry and Reny (1993), Sakovics (1993), and Stahl (1993) have
clearly demonstrated. They posit continuous time bargaining games where players have
tiny ‘waiting’ and ‘reaction’ times after offers. This temporal monopoly setting yields
very small monopoly rents, and an accordingly small proposer advantage. Consequently,
the normative predictions of our model do not obtain — wars of attrition and strict con-
cessions. Since their results intuitively obtain for random but boundedly positive mean
waiting times after offers, at first blush one might presume that our AE are merely special
cases. But our timing is truly unrestricted — and to the player with an aspiration level
approaching its highest level, offers must be tendered arbitrarily quickly (Theorem 3).

We explore some key links between when and what to offer, and what to accept. The
second of consecutive offers by a player is more generous (Corollary 5). Also, incentive
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constraints force a trade-off between the offer content and delay time (Corollary 6), as well
as the chance an offer is rejected and the surplus it concedes (Corollary 7). We show how
some properties — sweetening an offer raises its acceptance chance (Corollary 8), for one
— turn on a decreasing or convex aspiration set, which we also characterize (Lemma 8–9).

The distinction between a proposer and proposee advantage yields an enlightening
contrast between the models. In our final result, we explore what happens if player 1
becomes more impatient. In the temporal monopoly framework, this increases player 2’s
temporal advantage, and forces both players to propose pie splits more favourable to
player 2. In our aspirational framework, notwithstanding the multitude of equilibria, we
believe that there is insight gained from posing this question. At the very least, it questions
the validity of the conclusion in the temporal monopoly world. In a word, we ask what
happens to the whole equilibrium set. We argue that there is a natural bijection between
AE in the two worlds where player 1 is more and less impatient. Provided player 2 offers
more rapidly, all incentive conditions are restored at the current aspiration levels. With
this mapping, we can see that the final outcome splits in the AE with a more impatient
player 1 place player 2 more often in the strategically disadvantageous offering role. We
show in Theorem 5 that this raises the expected ultimate pie share of player 1.

Experimental Support for Aspirational Approach. The salience of aspirations in
decision-making has long been established in the psychology literature (Siegel 1957). In
fact, its significance in bargaining has long ago been investigated in laboratory tests.
Siegel and Fouraker (1960) studied a simple buyer-seller bargaining game. The project’s
goal was to investigate the role of differential information on the bargaining split, seeing
whether the better-informed party excelled. But among the “interesting implications”,
they conclude that “the basis of both the bargainer’s ‘expectancy’ and, at least partially,
of his ‘bargaining strength’ may very well be his level of aspiration” (p. 60). While the
authors expected the 50-50 equal split under complete information, their experiments
showed how aspirations acted as a dynamic anchor on the bids made, and explored how
the exchange of offers affected these aspirations. A key role played by offers in an AE
— to ratchet up the opponent’s aspiration level — was observed in a specific experiment
(pp. 80–81), as was the intertemporal non-monotonicity of a player’s offer (pp. 77–90).

Relative to the literature, we take some liberty in our use of the term “aspiration.”
We take Siegel and Fouraker’s phrase ‘expectancy’ literally, as our aspiration is a rational
expectation and not a purely arbitrary benchmark or “reference point” against which gains
and losses are compared (Gilboa and Schmeidler (1994)). For we wish to provide a non ad
hoc basis for the aspirations discussed by the psychological studies. This gives the desired
dynamic anchor for behavior sought by Siegel and Fouraker. A few papers (recently,
Karandikar, Mookherjee, and Ray (1998)) have studied models where aspirations evolve
over time. With our rational aspirations, the evolution is endogenous to the model.

Outline. Section 2 develops an extensive form with which we may formally speak of
subgame perfect equilibria. This is essential, for in section 3, we develop our aspirational
refinement of subgame perfection. Some immediate properties are explored in section 4,
and sensitivity analysis is performed in section 5. The conclusion in section 6 links some
of the details of our approach to the literature. We appendicize two technical proofs.
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2 The Continuous Time Bargaining Model

A. Overview. Two players i ∈ {1, 2} (often denoted i, j) must split a unit pie. The
players are impatient, discounting future payoffs by possibly different positive interest
rates r1, r2 > 0. The players’ outside options are each zero. All parameters are common
knowledge. Bargaining transpires in real time on [0,∞). At a time of his choosing, either
party may propose a pie split. Proposals must lie on the Pareto frontier where pie shares
sum to one — and so may be summarized by the share x ∈ [0, 1] offered to the other
party. To capture the irreversibility of tendering an offer and the risk of rejecting, offers
are assumed final and ‘exploding’: They must be immediately either accepted — thereby
ending the game — or rejected, with no explicit future commitment. (On the other hand,
we shall see that in equilibrium, rejected offers will have implied future repurcussions.)

We now formally introduce the model and the notion of subgame perfection. In so
doing, there are two main problems we must tackle. First, is the possibility of simultaneous
offers and immediate counteroffers. For this, we introduce a notion of vector time, thereby
nuancing between the simultaneous and the instantaneous. Second, and more delicate, the
existence of a well-defined outcome path hσ from a given strategy profile σ is problematic.
For since the continuum is not well-ordered (there is no first time before or after a given
moment), there need not be an initial historical cause for any current action profile.1

To handle this problem, we develop a richer notion of an action space, and maintain a
standard extensive form.2 In our approach every outcome path of the extensive form is
countably discrete. This concept will better reflect the fact that a strategy must be a plan
of action. That is, it must dictate what happens now given the past history.

B. Real Time Bargaining. Let S = [0, 1] ∪ {Y, N} be the set of the available actions
when players ‘speak’, where x ∈ [0, 1] is the share of the unit pie offered to the other player,
and the response is Y = ‘yes’ or N = ‘no’. The vector time domain is T = [0,∞) × N.
For any (t, k) ∈ T , t refers to the real time, and k refers to the artificial time at any
real moment t. That is, the second component k counts the number of events that occur
at a moment in time, and increments whenever players reply instantaneously, thereby
‘stopping the clock’.3 Let Â denote the natural strict lexicographic order on T , namely,
(t, k) Â (t′, k′) if t > t′ or t = t′ and k > k′. Let º be the corresponding weak order.

A path is a countable subset h ⊂ {1, 2}×S×T satisfying the following. Each element
(i, s, (t, k)) ∈ h is an event, where i is the player acting, s the action taken, and (t, k)
the time. If (i, s, (t, k)), (i′, s′, (t′, k′)) ∈ h then (t, k) 6= (t′, k′). If (i, s, (t, k)) ∈ h and
k > 1, then there are k − 1 preceding events at time t in h, namely (i`, s`, (t, `)) ∈ h,

1For instance, Bergin and MacLeod (1993) give an example of a continuum of outcome paths that are
all consistent with a strategy profile, but not actually determined (or caused) by that profile.

2An alternative format employed by Bergin and MacLeod (1993) allows players to condition on the
event history as well as the real time, thus formally producing a continuum of decision nodes. To tame
the strategies, they introduce ‘inertia’ into the strategies. By contrast, Simon and Stinchcombe (1989)
deliberately take the view of continuous time as very fine discrete time.

3We have been unable to find this approach elsewhere in the literature. An unrelated notion that also
tries to deal with the inadequacies of the real time domain owes to Fudenberg and Tirole (1985). They
introduce variable intensity atoms to handle entry in pre-emption games.
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` = 1, . . . , k−1; further, s` ∈ [0, 1] for each odd `, s` = N for each even `, and i2j−1 6= i2j.
If h contains an infinite sequence of events at real time t, then the first event after t (if
one exists) must be an offer. Let P denote the set of paths.

C. Histories. For paths h ∈ P , define T1(h) = sup{t | (i, s, (t, k)) ∈ h} and T2(h) =
sup{k | (i, s, (t, k)) ∈ h and t = T1(h)}. A history is a path that ends in some finite real
time, and thereby belongs to H = {h ∈ P | T1(h) < ∞}. A history h ∈ H has a last event
if there exists an element (i, s, (t, k)) ∈ h where (t, k) = (T1(h), T2(h)). We distinguish
histories with ‘last events’ from those without one.

We partition H into five sets. First, histories in Hi have a standing offer by player i:

Hi = {h ∈ H | (i, s, (T1(h), T2(h))) ∈ h and T2(h) < ∞ is odd}.
By definition, when T2(h) < ∞ is odd, the last event (i, s, (T1(h), T2(h))) corresponds to
an offer; i.e., s ∈ [0, 1]. Similarly, when T2(h) < ∞ is even, the last event corresponds to
a response s ∈ {Y, N}. The set of all histories where the last offer has just been accepted
is HY . Similarly, HN consists of the null history and all histories ending in a rejected
offer. Finally, H\ {H1 ∪H2 ∪HY ∪HN} are all other histories with no last event. There
are two types of such histories. First, histories h ∈ H+ have a cluster point, ending in
a sequence of events {(in, sn, (tn, kn)), n ∈ N}, where tn ↑ T1(h) < ∞. Second, histories
h ∈ H++ ‘end’ in a deadlock at real time T1(h) if they have the property T2(h) = ∞:
there is a sequence of events {(in, sn, (T1(h), n)), n∈N}, with sn = N for all n even.

A finite history uniquely identifies a decision node in the game tree. Here we also in-
troduce an offer node “after” infinite histories associated with cluster points or deadlocks.

D. Actions and Sealed Envelope Instructions. As usual, a strategy profile σ =
(σ1, σ2) will map from H into an action set. We imagine that at each decision node, a
player is called upon either to approve a tabled offer, or to submit his instructions (in an
envelope to his bargaining agent) about when and what he will offer next. The action
set Ai(h) of player i at h described below reflects the facts that: (a) he cannot speak if
he has just tendered an offer, or if the game has ended; (b) he must reply if an offer has
just been tendered to him; (c) once an offer has been rejected, he must plan to propose
an offer x ∈ [0, 1] after some elapse time in [0,∞], possibly immediately or never (zero or
infinite elapse time); but (d) it is not feasible to propose an offer at the current moment
(zero elapse time) after a deadlock, where there has been no last event. Altogether,

Ai(h) =





∅ if h ∈ Hi ∪HY

{Y,N} if h ∈ Hj

[0,1]×[0,∞] if h ∈ HN ∪H+

[0,1]×(0,∞] if h ∈ H++.

We call histories h ∈ Hj reply nodes, and histories h ∈ HN ∪ H+ ∪ H++ offer nodes.
A strategy is a map σ on H such that σi(h) ∈ Ai(h) for all h ∈ H.

Hereafter, B(X) are the Borel measurable subsets of X (where the topology will be
understood from the context), and ∆(X) the set of probability measures on (X, B(X)).
A behaviour strategy σ is a profile of mixtures σi(h) ∈ ∆(Ai(h)) for all histories h ∈ H.
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E. Histories Generated from Strategies. We now define the outcome path hσ ∈ P
generated by a strategy profile σ. A naive method to construct h(σ) is to start with the
null history, and then (possibly forever) sequentially append the ‘next event’ associated
with σ(h) to the current history h. However, this may not be possible because it will
never advance the real time past any deadlock or cluster point.

For any (t, k), (τ, `) ∈ T , define (t, k) ⊕ (τ, `) = (t + τ, `) if τ > 0 and otherwise
(t, k)⊕ (0, `) = (t, k + `). For short, we write (t, k)⊕ τ instead of (t, k)⊕ (τ, 1). For any
path h ∈ P , we define a successor path ψσ(h) determined from h by the strategy profile σ.
There are three cases:

• If h ∈ Hj then ψσ(h) = h ∪ {(i, σi(h), (T1(h), T2(h) + 1))}
• If h ∈ HY or T1(h) = ∞ then ψσ(h) = h

• Assume h ∈ HN ∪ H+ and (xi, ti) = σi(h). If t1 = t2 = ∞, then ψσ(h) = h.
Otherwise, ψσ(h) = h∪{(i, xi, T (h)⊕ ti)}, where i = 1 if t2 ≥ t1 and i = 2 if t2 < t1.

In the first case, there’s a standing offer by j ∈ {1, 2}, and i must respond at once. In
the second case, the game has ended or bargaining lasts forever, since for any real time,
there is always a next offer. The third case may be hardest to digest. It considers two
possibilities with no offer on the table. First, both players may decide never to speak
again. Alternatively, one or more players may plan to propose in finite time; if the offer
is immediate, then only the artificial time advances. As an arbitrary tie-breaking rule, if
both players speak simultaneously, we assume that only player 1 is heard.

For any h ∈ P and (t, k) ∈ [0,∞)×{1, . . . ,∞}, let h(t,k) = { (i, s, (τ, `)) ∈ h | (τ, `) ¹
(t, k) }. Observe that h(t,k) = ∅ if h contains no events weakly before (t, k). Fix a pure
strategy σ. An arbitrary path h ∈ P may be inconsistent with σ as it may contain events
that are not generated by σ. For example, it may be that σ(∅) = ((x1, 10), (x2, 20)), so
that the offer by player 1 will arrive first. Then, any history h containing events before
time 10 is incompatible with σ. Accordingly, let us define

H(σ) = { h ∈ P | ψσ(h(t,k)) ⊂ h ∀ (t, k) ≺ T (h) }.

The appendix proves that our extensive form results in a well-defined outcome profile:

Lemma 1 (Outcome Profiles) The outcome path hσ is well-defined by hσ = inf{h ∈
H(σ)|h = ψσ(h)}, where the infimum is taken w.r.t. set inclusion (hσ =∅ if H(σ) = ∅).

F. Payoffs and Subgame Perfection. The payoff to a pure strategy profile σ with
hσ ∈ HY is the vector π(σ) = (π1(σ), π2(σ)), where πi(σ) = e−rit(1−x) and πj(σ) = e−rjtx
if player i made the final offer x at time t = T1(h

σ) < ∞ and player j accepted it.
Otherwise, if bargaining lasts forever, or no proposal occurs after some rejection, then
π(σ) = 0. The payoff π(σ) of a behavior strategy σ is defined by taking expectations.

A behavior strategy profile σ is a subgame perfect equilibrium (SPE) if for all h ∈
H \ (Hi ∪ HY ), any (s, t) ∈ supp(σi(h)) is a best reply to σj at h. This paper is in fact
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Figure 1: Example Aspiration Set, Payoff Frontier, and Transitions. Aspiration
value pairs are denoted by ◦, and agreements by •. Lines indicate continuations following
proposals. Proposals are sometimes turned down by his opponent who is indifferent.

entirely focused on a Markovian class of subgame perfect equilibria. To step back from
the abstraction and fix ideas, we now give a simple example that we later revisit.

Example (Constant Acceptance Rate): In the example SPE, whenever one
player’s aspiration value (his expected payoff) is vi, the other’s will be ϕ(vi), where ϕ :
(0, 1) → (0, 1) is the strictly decreasing function ϕ(vi) = (1 − vi)/(1 + vi). Note that
ϕ = ϕ−1 and so the graph G (ϕ) is symmetric, and that v + ϕ(v) < 1 for all v ∈ (0, 1).

Our mixed strategy equilibrium is Markovian with state space G (ϕ), and an arbitrary
initial state in G (ϕ). At any v ∈ G (ϕ), each player i chooses a proposal x̄i(v) and
randomly chooses an elapse time from an exponential distribution with parameter λi(v).
If player 1’s offer x1 prevails, say, where possibly x1 6= x̄1(v) (if player 1 deviates), then
player 2 accepts it with fixed probability α ∈ (0, 1) if x1 ≥ x̄1(v), and rejects it otherwise.
If the offer is rejected, the state moves to (ϕ(x1), x1) if x1 ≥ v2, and remains at v otherwise.

The functions λj and x̄j (j = 1, 2) satisfy vi = (1− α)ϕ(x̄i(v)) + α(1− x̄i(v)). Hence,
player i is indifferent about making the (equilibrium) offer x̄i(v) or not, and

vi =

∫ ∞

0

λj(v)e−[λj(v)+ri]tx̄j(v)dt =
λj(v)

λj(v) + ri

x̄j(v), (1)

so that player i is indifferent about proposing at any moment or waiting for his opponent to
propose instead. It is easy to check that vi < (1−α)ϕ(x̄i(v))+α(1−x̄i(v)) when xi > x̄i(v);
thus, player i does not want to make a disequilibrium offer. Notice that since x̄i(v) > vj,
the equilibrium offer is acceptable. Also, λi(v) < ∞ everywhere; thus, deadlocks almost
surely do not occur. This also will be a general property of our aspirational equilibria.

Between offer events, the players engage in a waiting game to see who will make the
next offer. Eventually, one player breaks down and proposes a pie split; that offer may
be rejected. The bargaining state randomly transitions through G (ϕ) as offers are made
and rejected until absorption on the Pareto frontier, when an offer is finally accepted.
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3 The Aspirational Refinement

Any pie split at any time is an SPE of our continuous-time model. We now introduce an
equilibrium refinement motivated by the earlier psychological study of Siegel and Fouraker
(1960). We assume that players’ bargaining aspirations govern their behaviour. We
proceed via assumptions that ensure time-constant strategies and stationarity in payoffs.

3.1 Exponential Offer Times

The proper subgame after an offer node h is formally equivalent to the original game,
after resetting the clock. To flesh this out, we need some notation. Introduce a forward
time-shift operator Υ(t,k) on histories. For all h′ ∈ H and vector times (τ, `), let

Υ(τ,`)(h
′) ≡ {(i, s, (τ, `)⊕ (t, k))|(i, s, (t, k)) ∈ h′}.

Let h be an offer node and put (τ, `) = T (h). We now define the history: h followed by
h′ 6= ∅. If ` = ∞, the first event in h′ must occur after a positive elapse time. Then
h∪Υ(τ,`)(h

′) concatenates the prior history h with the new history h′. Thus for any offer
node h, and any h′ ∈ H, define σi|h(h′) = σi(h ∪ Υ(τ,`)(h

′)). Then πi(σ|h) is player i’s
expected continuation value after h, discounted from time T1(h).

Given an offer node h and t > 0, let π(σ|h, t) denote the expected payoff vector of
following σ after history h (discounted from time T1(h) + t), given that no intervening
event has occurred after h in [T1(h), T1(h) + t). Notice that π(σ|h, 0) = π(σ|h).

The first three properties of an SPE that we assume here are:

A1. Action-time independence: For all offer nodes h, we have σi(h) = σx
i (h) × σt

i(h),
where σx

i (h) ∈ ∆([0, 1]) and σt
i(h) ∈ ∆([0,∞]) are independent mixtures over offers

and elapse times. Also, for all offer nodes h, x ∈ [0, 1] and t ≥ 0, the probability
σi(h∪{(j, x, T (h)⊕ t)}) that i accepts j’s offer x does not depend on the real time t.

A2. Payoff-time independence: For all offer nodes h, the expected value πi(σ|h, t) is
independent of t ∈ co(supp(σt

j(h))).

A3. Meaningful offers : Equilibrium offers are accepted with strictly positive probability.

Action-time independence A1 asserts an independent randomization over offers and
time. For while we have chosen a countably discrete extensive form to represent the game,
we still wish to admit the possibility that players may reassess their strategies at any point
in real time. Consider a discrete time bargaining game where in every period a player
randomizes over silence and proposing, assuming the other player doesn’t propose first.
That this randomization is independent across periods is the analogue of our time station-
arity assumption. The standard difficulties with assuming a continuum of independent
randomizations in real time was another reason for our choice of extensive form.

While A1 precludes a drift in expected payoffs between offer events, it does not restrict
the continuation values at offer events. Payoff-time independence A2 asserts that expected
values can only be affected by proposal events. This precludes time as a coordination
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device, and thereby constrains continuation values. We thus focus on simple stationary
strategies: Player i’s expected value remains constant as long as it is possible that j makes
an offer (the support restriction). To understand the convex hull proviso of A2, we have
in mind, following A1, strategies where player j randomizes between making an offer or
not at every moment.

Assuming meaningful offers A3 precludes offers as either cheap talk, payoff-irrelevant
babbling, or equilibrium protocol. It cannot be common knowledge, for instance, that the
first offer must be made and ignored. With our assumption in force, every offer is serious,
and we are later able to make falsifiable predictions based on the offers made.

Lemma 2 Let σ be an SPE satisfying A1–A3. Then for all offer nodes h, the mixture
over offer times has an exponential distribution, say Fλi

(τ) = 1−e−λiτ , where λi ∈ [0,∞].

Proof: For any offer node h, let π1(σ|h∪{(2,x,T (h)⊕t)) be player 1’s expected value once
player 2 makes the offer (x, 1− x) at t units of elapsed time after history h. If this is an
equilibrium offer, then by A3, there is a positive probability that player 1 will accept it.
Since accepting the proposal is an optimal response, x = π1(σ|h∪{(2,x,T (h)⊕t)}). Using A1,

π̄1(t) =
∫ 1

0
π1(σ|h∪{(2,x,T (h)⊕t)})σx

2 (h)(dx) =
∫ 1

0
xσx

2 (h)(dx)

is player 1’s expected value immediately after receiving an (equilibrium) offer from player 2
at time T1(h) + t, but before having seen its content. Clearly, π̄1(t) does not depend on t,
and thus it will be denoted simply by π̄1. By assumption A3, π̄1 > 0.

Let G2(τ) = σt
2(h)([0, τ ]) be the chance that player 2 makes an offer in the time interval

[T1(h), T1(h) + τ ]. We first claim that either G2(t) = 1 for all t ≥ 0, or G2 is absolutely
continuous, i.e. having no atoms. The case G2 ≡ 1 is clear for then supp(G2) = {0}.
Hereafter, we assume G2 6≡ 1, and argue that G2 is absolutely continuous. Now,

π1(σ|h, t) = π̄1

∫ ∞

t

e−r1(τ−t)

[
dG2(τ)

1−G2(t−)

]
≡ π̄1φ(t),

where G2(t−) = limε↓0 G2(t− ε) for t > 0 and G2(0−) = 0. But A2 then implies that φ(t)
is constant on co(supp(G2)). This is impossible if G2 has an atom at any t ≥ 0, for then
φ(t)− limτ↑t φ(τ) = π̄1[G2(t)−G2(t−)]/[1−G2(t−)] > 0.

Let g2(t) = G′
2(t) be the density function, and λ2(t) = g2(t)/[1−G2(t)] the hazard-rate

function. Payoff-time stationarity says that π(σ|h, t) = π̂1 does not depend on t. So:

0 = −π̄1λ2(t) + [r1 + λ2(t)]

∫ ∞

t

π̄1e
−r1(τ−t)

[
g2(τ)

1−G2(t)

]
dτ = −π̄1λ2(t) + [r1 + λ2(t)]π̂1.

Hence λ2(t) = r1π̂1/(π̄1 − π̂1) = λ2 is constant. Since λ2 ≥ 0, π̄1 ≥ π̂1. This implies that
G2(t) = 1 − c · e−λ2t, where c ∈ (0, 1]. But, if c < 1, then G2(0) = 1 − c > 0, so that
G2 has an atom at 0. Hence, c = 1. Therefore, G2 = 1 − e−λ2t whether G2 is absolutely
continuous or places all probability mass at 0 (in which case we make λ2 = ∞). ¤
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3.2 Bargaining as a Continuous Time Markov Process

By action-time independence, offers are made at a constant rate, and from a time-invariant
offer distribution. We next impose that after any event history, the players’ behaviour
depends exclusively on their current expected values.

A4. Action-payoff stationarity : π(σ|h)=π(σ|h′) ⇒ σ|h =σ|h′ , for all offer nodes h, h′.

Action-payoff stationarity is the primary basis for our aspirational refinement of SPE.
It asserts that the players’ strategies are functions of their aspirations while bargaining.

We now show that an SPE obeying A1–A4 admits a simple Markovian structure,
summarized by a state space A , and a quintuple (v0, λ, µ, α, ρ), where

• v0 ∈ A ≡ {(v1, v2) ∈ R2
+ | v1 + v2 ≤ 1}

• λ = (λ1, λ2) with λi : A 7→ R+ ∪ {∞}
• µ = (µ1, µ2) with µi : A 7→ ∆([0, 1])

• α = (α1, α2) with αi : A × [0, 1] 7→ [0, 1]

• ρ = (ρ1, ρ2) with ρi = (ρi1, ρi2) : A × [0, 1] 7→ A

and where (for well-defined expectations) λi, αi and ρi are assumed (Borel) measurable
functions, and µi(B|v) ≡ µi(v)(B) is a measurable function of v for each B ∈ B([0, 1]).

Such a quintuple recursively specifies an aspirational profile (AP), hereby denoted
σ̄(v0, λ, µ, α, ρ), as follows: Starting at stage n = 0 with the initial state v0 ∈ A , each
player i randomly and independently chooses a time ti from the distribution Fλi(vn) (pos-
sibly ∞) to propose an offer xi from the distribution µi(·|vn). If t1 ≤ t2, then player 1’s
offer x1 is made, and player 2 accepts it with chance α2(v

n, x1). If t1 > t2, then player 2’s
offer x2 is made, and player 1 accepts it with chance α1(v

n, x2). If player i rejects the
offer xj (possibly not in supp(µj(v

n))) then vn+1 = ρi(v
n, xj). Finally, increment n by 1.

An AP σ = σ̄(v0, λ, µ, α, ρ) has a simple recursive structure which we now exploit.
Let H̄N ≡ {h ∈ HN | h is finite}. After any history h ∈ H̄N , the continuation strategy
profile σ|h is another AP σ̄(v, λ, µ, α, ρ) with the same structure but a different initial state
v ∈ A . So any history h = {(i1, x1, t1), (j1, N, t1), . . . , (in, xn, tn), (jn, N, tn)} ∈ H̄N , with
rejected offers at times t1 ≤ t2 ≤ · · · ≤ tn, generates a state vector Vρ(h|v0) by repeatedly
applying the function ρ. Let v`+1 = ρj(v

`, x`), where j is i`’s opponent, ` = 0, . . . , n− 1;
then Vρ(h|v0) = vn. Moreover, as noted above, σ|h = σ̄(Vρ(h|v0), λ, µ, α, ρ).

So far, our definition of an AP σ = σ̄(v0, λ, µ, α, ρ) only specifies players’ actions after
finite histories. We still must specify actions after infinite histories (i.e., cluster points
and deadlocks). For our purposes, we can prescribe arbitrary behavior after any infinite
histories that occur with probability 0 in an SPE σ. In that case we can pick an arbitrary
v∗ ∈ A and define σ|h = σ̄(v∗, λ, µ, α, ρ) for all h ∈ H+ ∪H++. But if σ produces cluster
points with positive probability, the extension to infinite histories cannot be arbitrary.

Definitions A strategy profile σ coincides with an AP σ̄(v0, λ, µ, α, ρ) if for any offer
node h, σ|h = σ̄(π(σ|h), λ, µ, α, ρ). An aspirational equilibrium (AE) is an SPE σ that
coincides with an AP σ̄(v0, λ, µ, α, ρ).
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Observe that if σ coincides with an AP σ̄(v0, λ, µ, α, ρ) then after any offer node h,
the state of the AP coincides with the value of σ|h.
Theorem 1 Let σ be an SPE satisfying A1–A4. Then σ is an AE σ̄(v0, λ, µ, α, ρ).

Proof: Let σ be an SPE obeying A1–A4. We first define (v0, λ, µ, α, ρ). For each offer
history h, let v = π(σ|h). Given A1–A3, Lemma 2 asserts that after h, players’ offer times
follow exponential distributions, with parameters λ̄1, λ̄2. Put λi(v) = λ̄i, for i = 1, 2. By
assumption A1, the offer distributions σx

i (h) and σt
i(h) are independent; let µi(v) = σx

i (h).
Given the atomless exponential distribution of proposal times, in equilibrium, ties and
instantaneous offers almost surely do not occur (and so do not affect expectations).

Assume that after the offer history h, player i proposes first. Player j accepts an
offer xi at time T1(h) + t with chance αj(v, xi) = σj(h ∪ {(i, xi, (T1(h) + t, 1))}) =
γj({(i, xi, (t, 1))}), where γ = σ|h. By A4, γ depends on h only through v = π(σ|h),
and by A1, γj({(i, xi, (t, 1))}) does not depend on t, so that αj is well defined. For such
an offer, define the tail history h′ = {(i, xi, (t, 1)), (j,N, (t, 2))}, and let ρj(v, xi) = π(γ|h′).
Again, ρj is well defined because γ only depends on v.

Fix a history h, and let t∗ be the last time of any cluster point or deadlock in h, if any,
or set t∗ = 0. Decompose h = h∗ ∪ Υ(t∗,1)(h

′), where h′ ∈ H̄N , and let v∗ = π(σ|h∗) and
v = π(σ|h). By definition, σ|h = σ̄(v∗, λ, µ, α, ρ)|h′ = σ̄(v, λ, µ, α, ρ) since v = Vρ(h

′|v∗).
Hence, v = π(σ̄(v, λ, µ, α, ρ)). ¤

3.3 IC Condition Characterization of Aspirational Equilibrium

For any strategy profile σ, let A (σ) denote its set of continuation values (on and off the
outcome path implied by σ). Formally,

A (σ) = {π(σ|h) | h is an offer node} ⊂ A .

We now identify an intuitive weak (mutual) individual rationality (IR) requirement for
offers — it must provide both players with nonnegative surplus over their current values.

Lemma 3 If σ is an AE σ̄(v0, λ, µ, α, ρ), then supp(µj(v))⊂ [vi, 1− vj] for all v∈A (σ).

Proof: After an offer xj ∈ supp(µj(v)) is made, player i’s continuation value is xj,
and since αi(v, xj) > 0, xj ≥ vi. We claim that xj ≤ 1 − vj. By contradiction, assume
xj > 1 − vj. If i accepts this offer, j gets 1 − xj < vj. Alternatively, if αi(v, xj) < 1
and i rejects this offer, then i’s continuation value is ρii(v, xj) = xj. Since ρi(v, xj) ∈ A ,
we have ρii(v, xj) + ρij(v, xj) ≤ 1 and ρij(v, xj) ≤ 1 − xj. So j’s expected value after
offering xj equals αi(v, xj)(1−xj)+ (1−αi(v, xj))ρij(v, xj) < vj. In either case player j’s
continuation value is less than vj, a contradiction. Hence, supp(µj(v)) ⊂ [vi, 1− vj]. ¤

The players essentially bargain over the remaining surplus 1 − v1 − v2. Since, by
Lemma 3, any equilibrium offer xj must obey vi ≤ xj ≤ 1−vj at the aspiration pair (v1, v2),
it must concede a fraction of the surplus. The surplus concession fraction κj ∈ [0, 1] obeys

xj = vi + κj(1− v1 − v2). (2)
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For any AP σ̄(v0, λ, µ, α, ρ), we denote player i’s expected offer by x̄i(v) =
∫ 1

0
xµi(v)(dx),

for v ∈ A , and the corresponding expected surplus concession fraction by κ̄i(v) =
[x̄i(v)− vj]/[1− v1 − v2]. We now give the incentive compatibility conditions for an AE.

Theorem 2 (IC Conditions) Assume σ coincides with an AP σ̄(v0, λ, µ, α, ρ). Then,
σ is an AE iff for all v ∈ A (σ) and offers x ∈ [0, 1], vi satisfies the waiting IC equation
(3), as well as the offer IC equation (4), and the acceptance IC equation (5) below:

vi ≥ λj(v)

λj(v) + ri

x̄j(v) with equality if λi(v) < ∞ (3)

vj ≥ αi(v, x)(1− x) + (1− αi(v, x))ρij(v, x) with equality if x ∈ supp(µj(v)) (4)

ρii(v, x)





= x if αi(v, x) ∈ (0, 1)

≤ x if αi(v, x) = 1

≥ x if αi(v, x) = 0.

(5)

Proof: Let h be an offer node such that v = π(σ|h) satisfies λi(v) < ∞ and λj(v) > 0.
After any such history, the equilibrium conditions are equivalent to (a) player i is willing
to wait for j’s offer; (b) player j is indifferent among his equilibrium offers, and cannot
improve his expected value by deviating; (c) after rejecting x, player i expects at least x if
he is required to reject x with positive probability, and no more than x if he is required to
accept x with positive probability. Condition (a) was the original logic behind (1), which
yields (3) with equality. Next, any offer x is accepted by j with probability αj(v, x),
and when it is rejected, i’s aspiration value drops to ρji(v, x). Condition (b) is equivalent
to (4). Finally, (5) follows from (c), where ρii(v, x) > x only if x is an off-path offer.

Next assume λi(v) = ∞, so that player i makes an offer immediately. In this case, he
need not be willing to wait and (3) may hold with strict inequality. Similarly, if λj(v) = 0,
player j makes no offers (even though by definition of σ he still must choose an offer for
time ∞). In this case, (4) need not be satisfied with equality when x ∈ supp(µj(v)). ¤

Suppose that λ1(v), λ2(v) < ∞ for all v ∈ A (σ). Then, x̄i(v) > v1 by (3), while
(4) asserts that i’s expected continuation value upon offering is his current value vi. In
other words, the payoff to waiting exceeds that of offering. Players are thus engaged in
a sequence of wars of attrition until agreement. Put differently, there is an endogenous
proposee advantage, unlike the hard-wired proposer advantage with temporal monopoly.

It is easy to construct AE’s using Theorem 2. We will build on the earlier symmetric
aspiration function ϕ(x) = (1 − x)/(1 + x). Observe that even with pure offers, the IC
conditions allow two degrees of freedom for each player’s choice of (λ, µ, α, ρ). So fixing
the aspiration set (and thereby ρ) still leaves one degree of freedom in choosing (λ, µ, α).
Earlier, we also assumed a constant acceptance rate α. We now consider a constant
surplus concession. In section 3.4, we shall see that a constant offer rate λ is impossible.

Example (Constant Surplus Concession): In a κ-concession rule, each player
concedes a fixed surplus fraction κ ∈ (0, 1] whenever he makes an offer. By (3) and (4),

λi(v) =
rjvj

κ(1− v1 − v2)
and αj(v, x) =

vi − ϕ(x)

1− x− ϕ(x)
.
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(The definition of αj(v, x) can be modified to strictly punish player i for deviant offers, if
so desired.) Then one can easily verify that σ̄(v0, λ, µ, α, ρ) is an AE for all v0 ∈ G (ϕ).

Finally, an AE cannot have both a constant acceptance rate and constant conceded
surplus fraction κ. For a constant κ is equivalent to a constant angle of incline from the
aspiration vector v to the offer (1 − x̄1, x̄1). A constant acceptance rate then forces the
aspiration set A (σ) to lie inside and parallel to the Pareto frontier. This contradicts
Lemma 6 below, that A (σ) must approach the Pareto frontier at the extremes.

We can now rigorously establish one of our claimed ‘intuitive’ properties of an AE.

Corollary 1 If j’s equilibrium offer xj is rejected with strictly positive chance, and re-
jection incurs more delay, then rejection strictly harms j, and acceptance strictly helps j.

Proof: Let v ∈ A (σ) be the current value of the AE σ. Delay after rejection implies
ρii(v, xj) + ρij(v, xj) < 1. By assumption, 0 < αi(v) < 1, and therefore ρii(v, xj) = xj

and ρij(v, xj) < 1− ρii(v, xj) = 1−xj. Finally, by (4), vi is the strict convex combination
αi(v, xj)(1− xj) + (1− α(v, xj))ρij(v, xj), and thus ρij(v, xj) < vj < 1− xj. ¤

3.4 The Proposal Rate

A. Positive Aspirations. The aspiration value set A (σ) includes values that can only
be reached after deviations from σ. For much of our analysis, only aspiration values that
can be reached on the equilibrium path matter. Accordingly, let AIR(σ) ⊂ A (σ) be all
value vectors that can be reached after histories with only IR offers. AIR(σ) includes all
equilibrium values and possibly some non equilibrium values, but it excludes, for example,
values reachable only if one player’s overly generous offer were rejected. (Assumptions
will now be enumerated B1, B2, etc., since they instead constitute refinements of AE.)

B1. No Extreme Offers : No player i ever accepts the offer xj = 0, and is never the first
to make a full concession offer xi = 1.

Assumption B1 does not rule out the possibility that the offer xi = 1 be required in
equilibrium after some history h. But, if xi = 1 is required, it must be that along h,
player i has already made the offer xi = 1 (out of equilibrium) at some point.

Lemma 4 If σ is an AE σ̄(v0, λ, µ, α, ρ) satisfying B1, and v ∈ A (σ), then v > 0.

Proof: (Part 1) By contradiction, suppose first that (0, v2) ∈ A (σ) for some v2 ∈ (0, 1]. If
player 1 offers x1 = 1 and player 2 rejects it, the continuation value is (0, 1). Since v2 < 1,
player 1 never offered x1 = 1 along the history leading to (0, v2). But starting at (0, v2),
the continuation strategy must deliver the pie split (0, 1). Thus, in equilibrium either 1
offers x1 = 1 or 2 offers x2 = 0 and player 1 (eventually) accepts it, contrary to B1.

(Part 2) Finally, we show that (0, 0) /∈ A (σ). If (0, 0) ∈ A (σ), then starting at v =
(0, 0), no one proposes again. Consider the out of equilibrium offer x1 ∈ (0, 1) by player 1.
If player 2 accepts this offer, then 1 gets 1 − x1 > 0, violating (4). Hence, α2(v, x1) = 0.
But for player 2 to be willing to reject x1, we must have ρ2(v, x1) = (0, v′2) ∈ A (σ) for
some v′2 ≥ x1, contradicting Part 1. ¤
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B. Infinite or Zero Proposal Rates. The element of our model absent from temporal
monopoly models is the offer rate. We first must understand when player i never offers,
or insistently does so — i.e. when the rate λi implied by an AE is zero or infinity.

Lemma 5 Assume σ is an AE σ̄(v0, λ, µ, α, ρ) satisfying B1. For any v ∈ A (σ): (a)
λi(v) = 0 implies that λj(v) > 0; (b) λi(v) = ∞ for some player i iff v1 + v2 = 1, in which
case the game ends immediately with the split v; (c) deadlocks almost surely do not occur.

Proof: Let v = π(σ|h) ∈ A (σ) for the offer node h. Assume λi(v) = 0. If λj(v)=0, then
bargaining stops and expected values are π(σ|h)=(0, 0). This contradicts Lemma 4.

For (b), assume that λi(v) = ∞. Then after history h, player i offers xi immediately.
From Lemma 3, supp(µi(v)) ⊂ [vj, 1 − vi]. If xi > vj, then player j earns at least xi by
accepting, so that πj(σ|h) > vj. Contradiction. Hence, µi(v) is a point mass at xi = vj.
But since αj(v, xi) > 0 by A3 and rejecting xi moves the state back to v, player j accepts vj

immediately in real time (eventually in artificial time). This implies that i’s expected value
is vi = πi(σ|h) = 1−vj. Thus, v1 +v2 = 1. Conversely, any delay causes inefficiency. So if
v1 + v2 = 1, at least one of the two players i must offer immediately, that is, λi(v) = ∞.

Finally, (c) follows from (b) and A3 (since the values are fixed if ever λi(v) = ∞). ¤
If v0

1 + v0
2 < 1, the state vector v is never on the Pareto frontier (until agreement), and

hence, infinite offer rates are never observed on the equilibrium path. But the state v can
land on the Pareto frontier after an off-path offer. For example, player i may make an out
of equilibrium offer, which calls for player j to reject with probability 1. After rejection,
the continuation value vector is arbitrary and can be chosen to be on the Pareto frontier.

We now address the opposite case where λi = ∞, which forces v1 + v2 = 1.

Corollary 2 Immediate agreement on any efficient v with v1, v2∈(0, 1) is an AE outcome.

In light of this corollary, the interesting implications obtain for AE with delay. We
thus hereafter assume v0

1 + v0
2 < 1, and so we have delayed agreement, as λ1, λ2 < ∞.

C. Exploding Proposal Rates on the Boundary. We now consider the boundary
behavior of the proposal rates λi. Work by Perry and Reny (1993), Sakovics (1993), and
Stahl (1993) showed that imposing a boundedly positive delay time between offers confers
an offerer advantage — for then declining burns a boundedly positive fraction of the pie.
It’s instructive to see that this is not a feature of our model. Indeed, offer rates must
explode in some subgames. To see this, we argue that AIR(σ) touches or approaches the
Pareto frontier, and that the proposal rate blows up at these aspiration vectors.

Lemma 6 Fix an AE σ. If v̄i = sup{vi | v ∈ AIR(σ)}, then [(v̄1, 1−v̄1)+Bε]∩AIR(σ) 6= ∅
and [(1− v̄2, v̄2) + Bε] ∩AIR(σ) 6= ∅ for all ε > 0, where Bε denotes the ε ball in R2.

Proof: WLOG, let i = 2. By contradiction, assume [(1 − v̄2, v̄2) + Bε] ∩ AIR(σ) = ∅ for
some ε > 0. Consider the triangle ∆ with vertices (1− v̄2, v̄2), (1− v̄2, 0) and (1, 0). Note
that v2 is uniformly bounded away from v̄2 in the region ∆ \ [(1− v̄2, v̄2)+Bε]. Therefore,
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by the definition of v̄2, there exists v ∈ AIR(σ) with v1 < 1 − v̄2 and v2 < v̄2. Suppose
that player 1 then offers x ∈ (v̄2, 1− v1) (possibly off-path). If α2(v, x) = 1, then his final
payoff is 1 − x > v1, and offering x immediately lifts his payoff, a contradiction. But if
α2(v, x) < 1, then player 2 must expect a continuation value of at least x > v̄2. So there
exists w ∈ AIR(σ) with w2 > v̄2, contrary to the definition of v̄2. ¤

Theorem 3 (Boundary Proposal Rates) Let σ be an AE σ̄(v0, λ, π, α, ρ). Assume
w = (y, 1 − y) is a limit aspiration vector, where y ∈ (0, 1). Then limv→w λi(v) = ∞,
i = 1, 2. If y = 0, then limv→w λ1(v) = ∞, and if y = 1, then limv→w λ2(v) = ∞.

Proof: Since supp(µ1(v)) ⊂ [v2, 1 − v1], as v ∈ AIR(σ) approaches w = (y, 1 − y), µ1(v)
converges in probability to a point mass at 1−y. By condition (3) of an AE (in Theorem 2)

1− y = lim
v→w

x̄1(v) = lim
v→w

[
1 +

r2

λ1(v)

]
v2.

If 1− y 6= 0, then limv→w λ1(v) = +∞. Similarly, (3) yields limv→w λ2(v) = +∞ if y 6= 0:

y = lim
v→w

x̄2(v) = lim
v→w

[
1 +

r1

λ2(v)

]
v1. ¤

That is, as a player’s aspiration value converges to the lowest possible payoff he will
ever get in any AE, he makes offers at an increasingly unbounded pace. If y ∈ (0, 1),
when the aspiration vector v is near the Pareto frontier and the surplus 1−v1−v2 is close
to 0, then both players make offers very often. When y = 0 (resp. y = 1), the conclusion
only applies to player 1 (resp. 2). Recall that for the AE σ specified by a κ-concession
rule and the function ϕ(x) = [1− x]/[1 + x], we have that λi(v) = rj/[κvi]. Thus, this σ
provides an example where λ2(v) but not λ1(v) tends to ∞ as v → (1, 0).

Example (Battle of the Sexes): Suppose that in equilibrium, players are en-
gaged in a war of attrition to first propose their less favoured pie split among (2/3, 1/3) and
(1/3, 2/3); such an offer is always accepted. (Think of this as a method of deciding which
pure equilibrium to play in a Battle of the Sexes.) This is an AE with v0 = (1/3, 1/3)
provided λ1 = r2 and λ2 = r1 (to satisfy the IC conditions). But A (σ) must contain more
than just v0, as player i can always make offers like x = 1/2. The simplest aspiration
set is A (σ) = {(1/3, 2/3), (1/3, 1/3), (2/3, 1/3)} — where after any offer by i, the value
reverts at once to j’s favoured outcome. For v ∈ {(1/3, 2/3), (2/3, 1/3)}, at least one offer
rate must be infinite for immediate agreement.

Notice that the conclusion of Corollary 1 fails for this example. In fact, if the offer is
rejected (off-path), then agreement is still immediate at that proposal. No harm is done.

D. Exploding Proposal Rates in the Interior. We now ask whether an AE can have
a proposal rate explosion at an aspiration vector v that is not on the Pareto frontier. We
now show this can occur, and likewise cluster points can occur with positive probability.
We then provide a simple intuitive condition that rules it out.
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Example (Exploding Proposal Rates): Assume that r1 = r2 = 1 and v0 =
(3/8, 3/8). Consider the function ϕ : (1/4, 1/2) → (1/4, 1/2) given by ϕ(x) = 3/4−x, with
graph G (ϕ). We construct σ so that A (σ) = G (ϕ) ∪ {(1

4
, 3

4
), (1

2
, 1

2
), (3

4
, 1

4
), (1

4
, 1

2
), (1

2
, 1

4
)}.

For all v ∈ G (ϕ), let ρij(v, x) = ϕ(x) and ρii(v, x) = x if x ≥ vi, and ρi(v, x) = v if
x < vi. For any v ∈ G (ϕ), let µi(v) be a degenerate distribution at x̄i(v), where

x̄i(v) =
1

2

[
1

2
+ vj

]
, λi(v) =

4vj

1− 2vj

, αj(v, x) =

{
0 if x < x̄i(v)

2vi − 1/2 if x ≥ x̄i(v).

When v ∈ {(1/4, 1/2), (1/2, 1/4)}, we continue as in the ‘Battle of Sexes’ example, to
(1/4, 3/4) or (1/2, 1/2) from (1/4, 1/2), and to (1/2, 1/2) or (3/4, 1/4) from (1/2, 1/4).

As vi ↓ 1/4 and vj ↑ 1/2, we have λi(v) ↑ ∞, κi(v) ↓ 0, and αj(v, x̄i(v)) ↓ 0. Thus, the
AP σ̄(v0, λ, µ, α, ρ) may generate a cluster point in finite time. In particular, for example,
starting at v0 = (3/8, 3/8), consider an infinite history h where player 1 makes all the offers
x̄1(v

k) that player 2 always rejects, where vk+1 = (ϕ(x̄1(v
k)), x̄1(v

k)) for all k ≥ 0. The
set of such histories has probability Π∞

k=0(1− α2(v
k, x̄1(v

k)))λ1(v
k)/[λ1(v

k) + λ2(v
k)] > 0

(proof omitted). Along any such history h, offers arrive increasingly rapidly, becoming
stingier and more likely to be rejected. The expected elapse time of the k-th offer by
player 1 is tk = 1/λ1(v

k) = 2−k/[2(4 − 2−k)]; therefore, the expected time of the cluster
point generated by such a history is

∑
tk ≤

∑
2−k/6 = 1/3. Let σ be the AE that

coincides with σ̄(v0, λ, µ, α, ρ) for any finite history. For an infinite history h ∈ H+ ending
with player i making a sequence of offers converging to 1/2 in finite time (a cluster point),
put σ = σ̄(vi, λ, µ, α, ρ), where vi

i = 1/4 and vi
j = 1/2.

We noted in §3.2 that our AP does not fully describe strategies with cluster points. It is
natural to ask how to rule out this possibility. In fact, the example works because surplus
concessions κi and acceptance chances αj both vanish as we approach (vi, vj) = (1/2, 1/4).
The next result shows that if we rule out this possibility, cluster points cannot obtain.

Lemma 7 Let σ be an AE σ̄(v0, λ, π, α, ρ) such that for any closed subset A in the interior
of A , there exists κ > 0 such that κ̄1(v), κ̄2(v) ≥ κ > 0 for all v ∈ A. Then proposal rates
λ1(v), λ2(v) are bounded in the set A. Hence, cluster points (and infinite histories, if B1
holds) happen with probability zero, except possibly at the last moment of bargaining.

Proof: The result follows from rewriting the delay IC equation (3) as

λjκ̄j = viri/(1− v1 − v2). (6)

4 Properties of Aspirational Equilibrium

4.1 Bargaining Duration via Aspirations as a Submartingale

Denote by τ(v0) the random time to agreement when the initial aspiration vector is
v(0) = v0. When the players follow an AE σ̄(v0, λ, µ, α, ρ), at any time t until τ(v0), each
player has a well-defined aspiration level vi(t) between offer events. Moreover, if an offer
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transpires at time t, then let vi(t) be the expected value of player i immediately after the
proposal is tendered, but before its content is heard, and v̄i(t) just after the content is
heard and the reply is given. (Define v̄i(t) = vi(t) at all other times.)

We now assert that the process e−ritvi(t) is a martingale ‘until’ the players reach an
agreement at time τ(v0). We eliminate the termination date in the following artificial
stochastic process, where we “freeze” the terminal value:

zi(t) =

{
e−ritvi(t) for t ≤ τ(v0)

e−riτ(v0)v̄i(τ(v0)) for t > τ(v0).

The process z̄i(t) is likewise defined, using v̄i(t) for t ≤ τ(v0) instead.

Theorem 4 Let σ be an AE σ̄(v0, λ, µ, α, ρ). The stochastic processes zi(t) and z̄i(t) are
martingales. The aspiration process vi(t) is a strict submartingale until agreement time τ .

For an intuition about the martingale, either player is indifferent about offering, since
he expects his value back by waiting and never offering. Of course, the final agreement
time may owe to either player proposing, and so conditional on getting proposed to, the
expected discounted value exceeds the current value. The proof shows that this surplus
over the martingale exactly balances the loss in the event that a player ends up as proposer.

Proof of Theorem 4: Fix t ∈ (0,∞). First consider the zi(t) process. Let θi ≥ 0 be the
time to the first (hypothetical) offer by player i (i.e., the realization of σt

i(∅)). Let τk ≥ 0
be the time to the k-th offer event. Defining a∧ b ≡ min{a, b}, we thus have τ1 = θ1 ∧ θ2.
Almost surely, the number of offers in [0, t] is finite, and hence t = limk→∞ t∧τk. Then by
the Dominated Convergence Theorem, limk→∞ E[z(t∧ τk)|z(0) = v0] = E[z(t)|z(0) = v0].
We will prove that v0 = E[z(t∧τk)|z(0) = v0] for all k < ∞ and so v0 = E[z(t)|z(0) = v0].

We first show that z(0) = E[z(t ∧ τ1)|z(0)]. Then by the strong Markov property,

E [z(t ∧ τk+1)|z(0)] = E [E [z(t ∧ τk+1)|z(t ∧ τk)] |z(0)] = E [z(t ∧ τk)|z(0)] ,

and thus by induction, z(0) = E[z(t ∧ τk)|z(0)] for all k ≥ 1. Consider the events
B1 = [t > τ1 and θ1 < θ2], B2 = [t > τ1 and θ1 ≥ θ2] and B3 = [t ≤ τ1]. Clearly
{B1, B2, B3} is a partition of the states of the world. Since θ1 and θ2 are independent
exponential random variables, P [θi ≤ s|θi < θj] = 1− eλ0s, where λ0 = λ1 +λ2. Therefore

E[e−r1θ1|B1] =

∫ t

0

e−r1s λ0e
−λ0s

1− e−λ0t
ds =

[
λ0

r1 + λ0

] [
1− e−(r1+λ0)t

1− e−λ0t

]
= E[e−r1θ1|B2],

Further, we have the conditional expectations

• E[z1(t ∧ τ1)|B1] = v1(0)E[e−r1θ1|B1] by (4) of Theorem 2

• E[z1(t ∧ τ1)|B2] = x̄2(v
0)E[e−r1θ1|B2] since the AE σ obeys σx

2 (∅) = µ2(v
0)

• E[z1(t∧ τ1)|B3] = v1(0)e−r1t since the aspiration value is constant on [0, t] if t < τ1.
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Since P [Bi] = λi

[
1− e−λ0t

]
/(λ1 + λ2) for i = 1, 2, and P [B3] = e−λ0t, by equation (3) of

Theorem 2, we have E[z1(t ∧ τ1)|z1(0)] equal to

= [P [B1]v1(0) + P [B2]x̄2(v
0)]

[
λ0

r1 + λ0

][
1− e−(r1+λ0)t

1− e−λ0t

]
+ P [B3]v1(0)e−r1t

= v1(0)
[
1− e−(r1+λ0)t

]
+ v1(0)e−r1teλ0t = v1(0).

Finally, for the process z̄i(t) we only need to observe that by (3) and (4) of Theorem 2,
E[z̄(t)|z(t)] = z(t), and therefore E[z̄(t)|z̄(0) = v0] = v0 as well.

Finally, the discounted martingale implies the un-discounted submartingale. ¤
By the martingale convergence theorem, since values are a bounded submartingale,

they almost surely converge. But being generated by an AP, they are also a Markov pro-
cess; so any limit value v must be stationary under the dynamic. But the only stationary
values are on the Pareto frontier, where the real delay time is zero, by Lemma 5. Hence,

Corollary 3 (Bargaining Finiteness) Bargaining ends almost surely in finite time.

Not only is the bargaining duration τ(v0) a.s. finite, but we can bound it below too:

Corollary 4 (a) In an AE, we have E[τ(v0)] ≥ − log[v0
1 + v0

2]/ max(r1, r2).
Hence, (b) if players i and j made the the last two offers, xi and xj, and both were rejected,
then the expected time until the bargaining ends is at least − log(x1 + x2)/max(r1, r2).

Proof: Denote r̄ = max(r1, r2) and τ̄ = E[τ(v0)]. By the Optional Stopping Theorem,

v0
i = E[z̄i(τ(v0))|z̄i(0)=v0

i ] = E[e−riτ(v0)v̄i(τ(v0))|v0
i ] ≥ E[e−r̄τ(v0)v̄i(τ(v0))|v0

i ]

since z̄i(t) is a martingale process, and ri ≤ r̄. Because (v̄1(τ(v0)), v̄2(τ(v0))) is the final
agreed pie split, it lies on the Pareto frontier, or v̄1(τ(v0)) + v̄2(τ(v0)) = 1. Finally, since
E[e−r̄τ(v0)] ≥ e−r̄τ̄(v0) by Jensen’s inequality, we have v0

1 + v0
2 ≥ e−r̄τ̄ , as required in (a).

For part (b), after the first offer is rejected, v2 = x1. After the second offer, v1 = x2

and v2 drops below x1 (Corollary 1). Thus, v1 + v2 ≤ x1 + x2. Now apply part (a). ¤

4.2 Relating Offer Rates, Offers, and Acceptance Rates

We now relate our three strategic choices (λ, µ, α) — suppressing arguments where clear.

A. Offers and Timing. The war of attrition aspect of bargaining yields a simple testable
implication about rejected offers alone, consistent with Siegel and Fouraker (1960).

Corollary 5 (Consecutive Offers) If a player makes consecutive equilibrium offers,
then his second offer is strictly more generous to the other player. If players i, j make
sequential offers xi and xj, then player j offers i less than i offered himself: xj ≤ 1− xi.

Proof: After player i makes a proposal that is rejected, the new aspiration value shifts
down for player i, and up to xi for player j. Now apply Lemma 3. ¤
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The IC conditions yield stronger implications about offer timing and acceptance rates.
By the new delay IC (6):

vi =
rjλjκ̄j

rirj + riλiκ̄i + rjλjκ̄j

(7)

From this formula, as the chance that j offers vanishes, i’s value vanishes. By contrast,
in a temporal monopoly, as the chance that j gets to offer vanishes, j’s value vanishes.

Equation (7) also betrays a crucial separability between the delay and offer IC equa-
tions (6) and (4), evident in our examples and theorems. Surplus concessions κ interact
with offer rates λ alone to determine current values in (6); the aspiration set is only
relevant in the linkage in (4) between surplus concessions κ and acceptance rates α.

Corollary 6 Ceteris paribus, the rate λj that player j offers varies inversely with the
expected fraction of surplus in the pie κ̄j that he concedes.

Corollary 6 captures the inherent trade-off between offer timing and content: Ceteris
paribus (holding values fixed), if a player anticipates a more generous offer, then he should
expect to wait longer. This is consistent with Corollary 4, that less generous alternating
offers foretell a greater lower bound on the expected bargaining duration.

Equation (7) also provides insights into the nature of bargaining power. With temporal
monopoly, there are two exogenous sources of asymmetry: relative impatience levels, and
the offering order. In our aspirational paradigm, offering order is not an issue, but there
is a intuitive new strategic component of bargaining power: Parties gain strength from
their refusal to make offers. As is so often true in social bargaining, one can hurt the
other party by according him the “silent treatment”, forcing him to make all overtures.

B. Offers and Acceptance Rates. Our theory is much richer when we move beyond
AE like the Battle of Sexes where players simply “make an offer that can’t be refused.”
We now relate the content of offers to the acceptance rates. By using coarse bounds from
the IC conditions, we find two necessary inequalities jointly satisfied by all parameters
(λ, κ, α). They are especially useful as they obtain for any aspiration set, and any offer.

Corollary 7 Consider an offer xi by player i that might be rejected (αj < 1). Then

αj

1− αj

(1− κi)ri < λjκ̄j (8)

Proof: Using (2), rewrite the offer IC equation (4) as

(1− αj)(vi − ρji(v, xj)) ≥ αj(1− κi)(1− v1 − v2)

Since rejection values are positive (by Lemma 4), and αj < 1, (6) yields the inequality. ¤
Corollary 7 captures the trade-off between the acceptance rate and surplus concession

of a given offer: Ceteris paribus, if an offer concedes too little surplus, it must be accepted
with a small chance. Corollary 7 shows that incentive constraints inherently force lower
bounds on surplus concession fractions and offer rates, and upper bounds on acceptance
rates. Eg., if offers are accepted at least half the time, and concede half the surplus (κ1 =
κ2 = 1/2), then i’s proposal rate must exceed j’s interest rate. Only in extreme cases like
the Battle of Sexes, which concede all the surplus, can offers almost surely be accepted.
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4.3 Simple Aspiration Sets

A. Decreasing Aspiration Sets. We now give plausible assumptions that guarantee
a continuously decreasing IR aspiration set AIR(σ): There exists an open interval W =
(w, w̄) ⊂ [0, 1] (with closure W̄ = [w, w̄]) and a continuous, strictly decreasing function
ϕ : W̄ → [0, 1] with: ϕ(w) = 1−w, ϕ(w̄) = 1− w̄, and AIR(σ)∪{(w, 1−w), (w̄, 1− w̄)} =
G (ϕ). Depending on σ, (w, 1 − w) and (w̄, 1 − w̄) may or may not be in G (ϕ).4 The
simplicity of the constant α and κ examples owed to this property of the aspiration sets.

We assume that as soon as a player, say 2, hears an IR offer x1, the past is forgotten,
and his behaviour only depends on the new interim aspiration value vector (v1, x1).

B2. Interim Stationarity. The offerer’s continuation value ρij(v, xj) is independent of
the rejecter’s value vi, and ρii(v, xj) = xj for all v ∈ A (σ) and IR offers xj. So if
v, v′ ∈ A (σ) satisfy vj = v′j and xj ≥ max(vi, v

′
i), then ρij(v, xj) = ρij(v

′, xj).

B2 obtains if the acceptance chance obeys interim stationarity (so αi(v, xj) is constant in
vi for vi ∈ (0, xj]). We next assume in B3 that the same offer to a player with a greater
value be accepted with a lower chance; we also assume away in B4 examples like the
Battle of Sexes. Not conceding all surplus is in the same spirit as the second part of B1.

B3. Strict Acceptance Monotonicity. Fix vj. The chance αi(v, xj) that i accepts j’s offer
xj is strictly decreasing in the proposee’s value vi for all v ∈ A and xj ∈ [vi, 1− vj].

B4. No Full Concessions. For every v ∈ AIR(σ), κ̄i(v) < 1, i = 1, 2.

Assumptions B2–B4 are satisfied by the constant κ and α examples (ϕ being 1-1); B2
and B4 are violated by the Battle of Sexes example. Unlike earlier assumptions, B2–B3
place restrictions both on and off the equilibrium path. Eg., B2 says that the proposer’s
continuation value is the same after any IR (possibly out-of-equilibrium) offer is rejected.

Lemma 8 Given assumptions B2–B4, the IR aspiration set AIR(σ) is decreasing.

Proof: Assume that v, v′ ∈ A (σ) with vj = v′j and vi < v′i. Let xj ∈ supp(µj(v
′)) such that

xj < 1−vj (guaranteed by B4). Then v′j = αi(v
′, xj)(1−xj)+(1−αi(v

′, xj))ρij(v
′, xj), and

since αi(v
′, xj) > 0 (by A3) and 1 − xj > v′j, we must have ρij(v

′, xj) < v′j. Therefore, if
player j makes the same offer xj at v, he expects αi(v, xj)(1−xj)+(1−αi(v, xj))ρij(v, xj) >
v′j = vj since αi(v, xj) > αi(v

′, xj) by B3, and ρij(v, xj) = ρij(v
′, xj) by B2. Hence,

player j can raise his expected value vj by offering xj, a contradiction.
For each w ∈ A with w1 + w2 < 1, let L(w) denote the right triangle with vertices w,

(w1, 1−w1) and (1−w2, w2). Clearly if L(w) and L(w′) contain AIR(σ), then AIR(σ) ⊂
4If (1− x, x) ∈ AIR(σ) were reached from v ∈ AIR(σ) after player 1, say, made an offer x and player

2 rejected, then w ≤ (1− x, x) (because the offer x is IR). That is, 1− x = ρ21(v, x). By (4), v1 = 1− x,
for otherwise offering x strictly increases player 1’s expected value, contradicting B4 below. Hence,
(1−x, x) ∈ AIR(σ) can only be reached in the limit after a cluster point. Thus, (w,ϕ(w)) ∈ AIR(σ) only
if σ can produce a cluster there.
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L(w) ∩ L(w′). Also, there exists w′′ such that L(w) ∩ L(w′) = L(w′′). Let L∗ be the
intersection of all triangles L(w) containing AIR(σ). Then L∗ 6= ∅ since v0 ∈ L∗, and
clearly there exists w∗ such that L∗ = L(w∗). Let w = w∗

1 and w̄ = 1 − w∗
2. We now

show that AIR(σ) intersects every vertical and horizontal line through L∗ once and only
once. Suppose, eg., the vertical line at some level v1 ∈ (w, w̄) does not intersect AIR(σ):
i.e. {v1} × [0, 1] ∩ AIR(σ) = ∅. Then [0, v1] × [0, 1 − v1] ∩ AIR(σ) = ∅. For if w were in
this intersection and player 2 offered x2 = v1 at w, then ρ1(w, x2) ∈ {v1}× [0, 1]∩AIR(σ)
by B2. So AIR(σ) ⊂ L(w, 1 − v1) ∪ L(v1, 1 − w̄). But for any w ∈ L(w, 1 − v1), say,
and any IR offer xi at w, ρj(w, xi) ∈ L(w, 1 − v1). Thus, AIR(σ) ⊂ L(w, 1 − v1) or
AIR(σ) ⊂ L(v1, 1− w̄), depending on which contains v0, contrary to the definition of L∗.

If AIR(σ) is not decreasing, there must exist two Pareto-ranked points v, v′ ∈ AIR(σ),
say v < v′. Since v′ is the only point in AIR(σ) on the horizontal line through v′, if player 1
offers x1 = v′2 at v, he gets 1− x1 ≥ v′1 > v1 if the offer is accepted and v′1 otherwise. His
expected value is thus strictly higher than v1 after making that offer, a contradiction. So
no two points in AIR(σ) can be Pareto ranked, and AIR(σ) ∪ {(w, 1− w), (w̄, 1− w̄)} is
the graph of a decreasing function ϕ : W̄ → [0, 1]. Since AIR(σ) intersects every vertical
and horizontal line through L∗, ϕ is continuous, and ϕ(w) = 1−w and ϕ(w̄) = 1− w̄. ¤

Suppose that a mixture over offers is entertained. Casual empiricism suggests that
the reason a proposer might consider sweetening an offer is to ensure a greater chance of
acceptance. In his classic text, eg., Zeuthen (1930) simply assumes it as a behavioural
postulate of bargaining. In fact, this fails in our context unless the aspiration set is
well-behaved: Perhaps a less generous offer is rewarded by a better continuation value.

Corollary 8 Assume B2–B4 (so that AIR(σ) is continuously decreasing). If x′ > x are
two IR offers made by player i at the value v ∈ AIR(σ), then αj(v, x′) > αj(v, x).

Proof: We have vi = αj(v, z)(1 − z) + (1 − αj(v, z))ρji(v, z) for z = x and z = x′. Since
A (σ) is decreasing, ρji(v, x) > ρji(v, x′), and αj(v, x) < α(v, x′). ¤

We can finally establish another of our claimed intuitive properties of an AE: strictly
IR offers. Corollary 7, without assumptions B2–B4, directly implies that the expected
offer is strictly IR: κ̄ > 0. Using AIR(σ) decreasing, we now deduce this for all AE offers.

Corollary 9 Assume B2–B4. If v ∈ AIR(σ) with v1 + v2 < 1 and xi is an AE offer at v,
then xi strictly increases player j’s aspiration: xi > vj.

Proof: By Lemma 3, suppose instead xi = vj. Since AIR(σ) is decreasing, player i gets
1 − xi > vi if the offer is accepted (which happens with positive chance by A3) and vi

otherwise. This yields player i an immediate positive expected gain. Contradiction. ¤

B. Convex Rejections and Consecutive Offers. We introduce a stronger property
of the IR aspiration set: AIR(σ) has convex rejections if for all v ∈ AIR(σ) and IR offers
x1, x2,

1− ρ12(v, x2)

ρ11(v, x2)
<

1− v2

v1

<
1− ρ22(v, x1)

ρ21(v, x1)
(9)
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This property obtains if ϕ is a convex function, and was satisfied by our constant α and κ
examples. It will permit more powerful and intuitive conclusions about consecutive offers.

Lemma 9 (Convexity) The aspiration set AIR(σ) has convex rejections, iff for i = 1, 2,

αj

1− αj

>
κi

1− κi

· λjκ̄j

ri + λjκ̄j

(10)

In particular, it suffices that α1 > κ2 and α2 > κ1.

Proof: Using (8) and then (7), the right inequality of (9) holds iff

1− α2(1− κ1)r1

(1− α2)λ2κ̄2

=
ρ21(v, x2)

v1

<
1− ρ22(v, x1)

1− v2

= 1− κ1r1r2

r1r2 + r2λ2κ̄2

since ρ22(v, x1) = x1 = v2 − κ1(1− v1 − v2) by (2). This yields (10) for i = 1. ¤
So the convex rejections property obtains provided players’ offers do not concede too

much surplus, or are not too likely to be rejected. A consequence of Lemma 9 and (6) is:

Corollary 10 (Consecutive Offers, Encore) Assume (10), or more simply α1 > κ2

and α2 > κ1 (so that AIR(σ) has convex rejections). Then λjκ̄j rises after player j’s
proposal is rejected; that is, he either must concede more surplus or offer more rapidly.

Suppose that player j’s offer has been rejected. We knew from Corollary 5 that his next
offer must be more generous. We now know that λjκ̄j is lower: He expects a smaller share
of the surplus. He must now either accelerate his proposal rate, or concede more surplus.

5 Sensitivity Analysis

We finally study what happens if one player becomes more impatient. As our bargaining
model admits a multiplicity of AE, it is not immediately obvious how to perform such an
exercise. Indeed, the AE played may vary with the interest rates (r1, r2). We first observe
that for fixed concessions and timing of both players, any player i’s value decreases with
his relative impatience ri/rj, by (6). But this says nothing about the effect on the ultimate
pie split. Perhaps more impatient individuals tend to enjoy smaller bargaining delays. Our
simple approach below pursues this very line of thought, focusing on the proposal rate.

Notice that σ̄(v0, λ, µ, α, ρ) is an AE for the interest rates r = (r1, r2) iff σ̄(v0, λ̂, µ, α, ρ)
is an AE for r̂ = (r̂1, r̂2), where λ̂ are the corresponding offer rates λ̂i = (r̂j/rj)λi, i = 1, 2.
So given any AE σ, if player j becomes twice as impatient, and i doubles the rate that he
offers in σ, then the new strategy σ̂ is an AE. This simple mapping, adjusting the offers
rates in response to an interest rate change, but otherwise fixing the strategy profile and
aspiration set, allows us to compare the sets of AE for different levels of impatience by just
comparing corresponding equilibria.5 We say that player i’s expected pie split is higher

5Milgrom and Roberts (1994) perform a similar comparison exercise for a monotone environment, using
the strong set order; this order, for instance, yields unambiguous shifts in the infimum and supremum
of the equilibrium set. Neither their nor our exercise can be dispositive of how the realized equilibrium
actually changes. Here, one could even imagine that some more complex mapping might yield an opposite
set comparison. However, we just mean to question the unambiguity of the standard comparative static.
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with (r̂1, r̂2) than with (r1, r2) if the expected final split in each AE σ̂ = σ̄(v0, λ̂, µ, α, ρ)
for (r̂1, r̂2) exceeds that of the corresponding AE σ = σ̄(v0, λ, µ, α, ρ) for (r1, r2).

For our next result, we first need an enhanced war of attrition property:

B5. Strong War of Attrition. For any v ∈ AIR(σ), expected offers obey x̄1(v)+ x̄2(v) ≥ 1.

As previously noted, the players are engaged in a war of attrition in terms of expected
continuation values; assumption B5 requires that the war of attrition property holds
(weakly) in terms of the immediate expected offers (i.e. ignoring rejection values). Written
in the form x̄i(v) ≥ 1− x̄j(v), it has the following interpretation. At any v ∈ AIR(σ), the
offer by i to j is more generous to j than what j would offer himself. That is, in terms of
the next offer alone, it is always better to let your opponent speak first.

For technical reasons, we also must strengthen assumption A3, that equilibrium offers
are accepted with positive probability. Even though v1 + v2 < 1 for all v ∈ AIR(σ), it
is still possible that there exist sequences {vn} ⊂ AIR(σ) and {xn

j } ∈ supp(µj(v
n)) such

that vn
1 + vn

2 → 1 and αi(v
n, xn

j ) → 0. Assumption B6 precludes this possibility.

B6. Acceptance Positivity : Equilibrium offers are accepted with at least chance α > 0.

In light of (10) and (7), the lower bound α > 0 in assumption B6 follows from the premise
of Lemma 7 except where values vanish. So provided A (σ) is boundedly positive, that
assumption implies B6. The next sensitivity analysis result is proven in the appendix.

Theorem 5 (Impatience Helps) Let σ be an AE σ̄(v0, λ, µ, α, ρ) satisfying B2–B6. If
r̂i/ri > r̂j/rj, then player i’s expected pie split is higher with interest rates r̂ than with r.

6 Conclusion

Summary. We have analyzed the complete information bargaining problem truly with-
out procedures. Our approach therefore restricts the equilibrium concept rather than the
action space. Our refinement of SPE is behaviourally-based, and inspired by research on
the importance of players’ aspirations in decision-making. It also yields a very tractable
theory of bargaining. While not unique, all AE have the same intuitive elements of bar-
gaining absent from the temporal monopoly theory: wars of attrition endogenously arise;
offers are concessions; offers may be declined, disappointing the proposer, or accepted,
strictly pleasing him. Offer timing and content are also entwined. For instance, an embed-
ded martingale structure yields immediate bounds on the duration of bargaining. Further,
a player’s second consecutive offer must be more generous that his first. We have shown
more generally how acceptance rates, surplus conceded, and offer rates are related.

Relative to temporal monopoly, our refinement inverts the strategic role of the proposer
— no longer strength but weakness. This changes many results, and casts doubt on the
standard impatience comparative static. We show that for a natural mapping between
AE for different discount rates, increased impatience skews the final pie split in one’s
favour. Our methodology, showing how the expected absorbing state of a Markov process
changes as the initial state changes, is new and should be applicable elsewhere.
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En route, we have given a new formalization of continuous time games in the spirit of
standard extensive forms, specialized to our complete information bargaining context.

Literature Reprise. Temporal monopoly has been the foundation of most if not all
dynamic noncooperative bargaining papers written since 1982. Even behavioural bar-
gaining papers have adopted this paradigm. For instance, Yildiz (2001) admits different
priors over who has the temporal monopoly each period (the ‘recognition’ process). Our
behaviourally-founded bargaining paper escapes this paradigm. We do, however, omit
an obviously important aspect of bargaining, by avoiding incomplete information. That
complication is the natural next hurdle to surmount.

This paper returns to some early influential views of bargaining. Edgeworth (1881),
for instance, thought [§II, p. 51] “there are an indefinite number of arrangements à priori
possible, towards one of which the system is urged by . . . the Art of Bargaining — higgling
dodges and designing obstinacy, and other incalculable and often disreputable accidents.”
By avoiding temporal monopoly, we have given just such a stochastic story of bargaining,
despite complete information. Our randomness instead owes to mixed strategies and
imperfect information. Harsanyi (1956) even wrote that random elements may be the
source of bargaining strength: “Of course, information on the two parties’ . . . strength
alone may not suffice: the outcome may depend significantly on such ‘accidental’ factors
as . . . bargaining skill.” This view is also well-captured by our model: Having randomly
offered and been rejected first, perhaps many times, hurts one’s bargaining position.

There is also a long-standing view of bargaining as an irreversible concession game,
which has naturally led to war of attrition analyses.6 Osborne (1985) offers a simple com-
plete information war of attrition bargaining game, but unlike our completely unrestricted
offers, assumes fixed offers.7 Abreu and Gul (2000) is a recent incomplete information war
of attrition. The war of attrition in Abreu and Pearce (2001) even owes to a concession
game. Our bargaining is a war of attrition, and yet is not a concession game. To see this
distinction, assume players each have two units in Abreu and Pearce’s five unit bargaining
problem. In their pure concession game, a player’s concession of the last unit cannot be
rejected. Just as in Rubinstein (1982), we have instead assumed exploding offers — i.e.
implying no future commitment: Bygones are bygones.8

Exploding offers not only ensures an analysis that is stationary in aspiration space,
but also captures the realistic inherent risk of declining any offer: One may ultimately
offer or accept a strictly worse outcome. Accepting an offer is like an irreversible decision
to exercise an option, and spurning one like a risky decision not to sell an asset. If offers
implied irrevocable commitments, some sort of third party commitment technology would
be required to enforce equilibria where the players gradually concede the pie.

6For a striking example, the pre-St̊ahl frontier bargaining textbook Coddington (1968) amazingly
formalizes the bargaining problem as “represented quite generally by . . . (1) a pair of variables q1, q2

representing the demands of the bargainers at any point in time.” This view held at least since Hicks
(1932) and Zeuthen (1930), whose concession games unfolded in one instantaneous mental flash.

7Our Battle of Sexes with fixed offers has this flavour for on-path, but not off-path, offers.
8eg. Fershtman and Seidmann (1993) assume players can’t accept worse offers than they have rejected.
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A Appendix: Omitted Proofs

A.1 Outcome Profiles are Well-Defined: Proof of Lemma 1

Claim 1 If { hn | n ∈ N } ⊂ H(σ), then h∞ =
⋃

n∈N hn ∈ H(σ).

Proof: History h∞ is a countable set, being a countable union of countable sets. Hence,
h∞ ∈ P . Now for any (t, k) ∈ [0,∞)×{0, . . . ,∞}, there exists n ∈ N with h∞(t,k) ⊂ hn. If

T (hn) = (t, k) and h` ⊂ hn for all ` 6= n, then h∞ = hn and T (h∞) = (t, k). In this case,
(t, k) 6≺ T (h∞), and we’re done. Otherwise, choose n so that h∞(t,k) ⊂ hn and T (hn) Â (t, k).

Then h∞(t,k) = hn
(t,k), and ψσ(h∞(t,k)) ⊂ hn ⊂ h∞ since hn ∈ H(σ). So h∞ ∈ H(σ). ¤

For any time t1 ∈ R+ let

H t1(σ) = { h ∈ H(σ) | T1(h) ≤ t1 } and θ(t1) = supÂ{ T (h) | h ∈ H t1(σ) }.
The supremum in the definition of θ(t1) is always attained. For example, if there is a
cluster point in real time at θ1(t1), then there exists a sequence {ĥn} ⊂ H t1(σ) with
T1(ĥ

n) ↑ θ1(t1). In this case, the supremum is attained at
⋃

n∈N ĥn ∈ H t1(σ). And if

there is a deadlock at θ1(t1), then there is a sequence {ĥn} ⊂ H t1(σ) such that T (ĥn) =
(θ1(t1), n), and again the supremum is attained at

⋃
n∈N ĥn.

For each n ∈ N, let hn ∈ Hn(σ) be such that T (hn) = θ(n).

Claim 2 For every h ∈ H(σ) with T1(h) < +∞, there exists n ∈ N such that h ⊂ hn.

The claim asserts that { h ∈ H(σ) | T1(h) < +∞} =
⋃

n∈NHn(σ).
Proof: Let h ∈ H(σ) be such that T1(h) < ∞. By definition, h ⊂ hn for all n ≥ T1(h).

If ψσ(h) 6= h, then σ̄(h) = (i, s, (t, k)) where t < ∞. Therefore, T1(ψσ(h)) = t < ∞, and
ψσ(h) ⊂ hn for all n ≥ T1(ψσ(h)). ¤

Claim 3 The map σ 7→ hσ ∈ H is well-defined by hσ =
⋃

n∈N hn.

Proof: Denote h∞ =
⋃

n∈N hn. Claim 1 implies h∞ ∈ H(σ). We first show that
ψσ(h∞) = h∞. If T1(h

∞) < +∞, Claim 2 yields h∞ ⊂ hn for some n. In this case,
h∞ = hn = h` for all ` > n, and ψσ(h∞) = ψσ(hn) = hn. (This case occurs when σ
leads to an offer that is accepted, or to a juncture where no player speaks again.) Next,
if T1(h

∞) = ∞, then ψσ(h∞) = h∞, by definition.
We finally show that if h̄ ∈ H(σ) is such that ψσ(h̄) = h̄, then h∞ ⊂ h̄. It is enough

to show that h ⊂ h̄ for all h ∈ H(σ). By contradiction, assume this is not the case. Let

(t̄, k̄) = supÂ{ T (h) | h ∈ H(σ) and h ⊂ h̄ }.
Assume first that t̄ < ∞. Then the supremum is attained (the argument is similar to
that in Claim 1). Then there exists h ∈ H(σ) such that T (h) = (t̄, k̄). If ψσ(h) = h,
then h∞ = h ⊂ h̄, a contradiction. If ψσ(h) 6= h, then, since T (ψσ(h)) Â T (h) = (t̄, k̄),
ψσ(h) 6⊂ h̄, contradicting the fact that h̄ ∈ H(σ). Now assume that t̄ = +∞. In this case,
h̄ ⊃ hn for all n, and thus h̄ ⊃ h∞

Thus, h∞ is the smallest element of H(σ) with h∞ = ψσ(h∞). Hence, h∞ = hσ. ¤
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A.2 Sensitivity Analysis: Proof of Theorem 5

Let σ be an AE σ̄(v0, λ, µ, α, ρ). By Lemma 8, AIR(σ) is the graph of a continuous
decreasing function ϕ : W → [0, 1], where W = (w, w̄). We will expand the set of
states and view the bargaining process on the equilibrium path as a stochastic process,
where agreement corresponds to absorption on the Pareto frontier. With each w ∈ W
we identify two states, wA and wB. The first represents the absorbing (or agreement)
state (w, 1−w) on the Pareto frontier, and the second the transient (or bargaining) state
(w, ϕ(w)). Abusing notation, denote µi(w, ϕ(w)) by µi(w).

For every v ∈ A , let γ(v) = λ1(v)/[λ1(v) + λ2(v)] be the chance that in equilibrium
player 1 makes the next offer at the aspiration vector v. Define e(w) = 1− w, w ∈ [0, 1].

Below, we will exploit the fact that our bargaining process is really a mixture of the
two artificial processes where only one of the players i = 1, 2 makes all the offers. Indeed,
let MN

i (w,B) (MY
i (w,B), resp.) be the chance that from an initial state w ∈ W , the

next period’s state is a transient (absorbing) state in B ∈ B(W ), when player i makes
all the offers (that is, when we set λj ≡ 0). Then,

MN
1 (w, B) =

∫

ϕ(B)

(1− α2(w, x))µ1(dx|w), MY
1 (w, B) =

∫

e(B)

α2(w, x)µ1(dx|w),

MN
2 (w, B)=

∫

B

(1− α1(w, x))µ2(dx|w), MY
2 (w, B) =

∫

B

α1(w, x)µ2(dx|w)

for all w ∈ W and B ∈ B(W ). The bargaining stochastic process is described by the
following transition probability functions MN ,MY : [0, 1]×B → [0, 1]:

MN(w, B) = γ(w)MN
1 (w, B) + (1− γ(w))MN

2 (w, B)

MY (w, B) = γ(w)MY
1 (w, B) + (1− γ(w))MY

2 (w, B).

Thus, MN(w, B) is the mixture of the chances MN
1 (w,B) and MN

2 (w,B), i.e. the chance
that from an initial state w ∈ W , the next period’s state is a transient state via B. This
transition probability depends on both the random offers and the acceptance chances.

Let K be the set of stochastic kernels K : W ×B(W ) → [0, 1], where for each w ∈ W ,
K(w, ·) ∈ ∆(W ), and for B ∈ B(W ), K(·, B) is a measurable function. Each stochastic
kernel K represents the transition probabilities from transient to absorbing states for
some stochastic process. For each w ∈ W and B ∈ B(W ), K(w,B) is the chance that
when the process starts at the transient state w, it enters the set absorbing states in B.
For any kernel K ∈ K, let K̄(w) =

∫
W

xK(w, dx) be the expected absorbing state when
the process starts at the bargaining state w ∈ W . For any two kernels K1, K2 ∈ K, write
K1 ¹ K2 if K̄1(w) ≤ K̄2(w) for all w ∈ W . The poset (K,¹) is a complete lattice.

We assume r̂1/r1 > r̂2/r2, so that γ̂(w) > γ(w) for all w ∈ W . Let Q (resp. Q̂) be the
kernel corresponding to the stochastic process generated by the AE σ (resp. σ̂).

Define Ψ : K → K by

Ψ(K)(w, B) = γ(w)Ψ1(K)(w, B) + (1− γ(w))Ψ2(K)(w, B)
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for each K ∈ K, where for i = 1, 2, we have

Ψi(K)(w, B) =

∫

W

K(x,B)MN
i (w, dx) + MY

i (w, B)

for each w ∈ W and B ∈ B(W ). The stochastic kernel Q satisfies the standard equation
Q(w, B) = Ψ(Q)(w,B) for all w ∈ W and B ∈ B. Similarly, Q̂ is a fixed point of the
map Ψ̂ defined using γ̂ in place of γ.

Step 1 If Q ¹ Ψ̂(Q), then Q ¹ Q̂.

Proof of Step 1: By Tarski’s fixed point theorem, Q̂ = sup {K | K ¹ Ψ̂(K)} º Q. ¤
By Step 1, since Q = Ψ(Q), it suffices to show that Ψ(Q) ¹ Ψ̂(Q). We have

Ψ(Q)(w,B) = γ(w)Ψ1(Q)(w,B) + (1− γ(w))Ψ2(Q)(w, B)

Ψ̂(Q)(w,B) = γ̂(w)Ψ1(Q)(w,B) + (1− γ̂(w))Ψ2(Q)(w, B)

for all w ∈ W and B ∈ B(W ). Since γ(w) < γ̂(w) for each w ∈ W , Ψ(Q) ¹ Ψ̂(Q) iff
Ψ1(Q) ¹ Ψ2(Q). We must prove that for any initial transient state, player 1 gets a larger
expected share from the process where player 2 makes all offers than with reversed roles.

Step 2 There exists a positive measure ξ on (W,B(W )) and β ∈ (0, 1) such that

∫

W

MN(w,B)dξ(w) ≤ βξ(B) for all B ∈ B(W ),

and ξ(B) ≥ m(B) for all B ∈ B(W ), where m denotes Lebesgue measure.

Proof of Step 2: Let V denote the set of signed measures of bounded variation on
(W, B(W )) with the total variation norm. The Banach space V is the dual of L∞(W ).
Let 1− α < β < 1 (recall B6). Define Φ : V → V by

Φ(ξ)(B) =
1

β

∫

W

MN(x,B)dξ(x) + m(B) ∀ξ ∈ V , B ∈ B(W ).

Consider instead V with the weak-∗ topology. It is easy to see that Φ is continuous
when V has this topology. Indeed, suppose that {ξn} ⊂ V is such that ξn → ξ in the
weak-∗ topology. That is, 〈f, ξn〉 → 〈f, ξ〉 for all f ∈ L∞(W ), where, for example,
〈f, ξn〉 =

∫
W

f(x)dξn(x). Fix f ∈ L∞(W ). Let g(x) = [1/β]
∫

W
f(y)MN(x, dy). Since

f ∈ L∞(W ), we have g ∈ L∞(W ) as well. Therefore,

〈f, Φ(ξn)〉 − 〈f, m〉 =
1

β

∫

W

∫

W

f(y)MN(x, dy)dξn(x)

=

∫

W

g(x)dξn(x) = 〈g, ξn〉 → 〈g, ξ〉 = 〈f, Φ(ξ)〉 − 〈f,m〉.
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Let C be the set of all positive measures ξ on (W,B(W )) such that ξ(W ) ≤ βm(W )/
[β − (1− α)]. Let ξ ∈ C. Then Φ(ξ) ∈ C because

Φ(ξ)(W ) =
1

β

∫

W

MN(x,W )dξ(x) + m(W ) ≤ (1− α)ξ(W )/β + m(W )

≤ 1− α

β − (1− α)
m(W ) + m(W ) = βm(W )/[β − (1− α)].

Thus, Φ(C) ⊂ C. As C is a convex, bounded and closed subset of V (with the total
variation topology), it is weak-∗ compact by Alaoglu’s Theorem. By Schauder’s Fixed
Point Theorem, Φ : C → C has a fixed point ξ. Finally, ξ = Φ(ξ) implies that for all
B ∈ B(W ), ξ(B) ≥ m(B) and

∫
W

MN(x,B)dξ(x) = β[ξ(B)−m(B)] ≤ βξ(B). ¤

Let L be the space of functions K : W ×B → R such that for each w ∈ W , K(w, ·)
is a signed Borel measure on W , and for each B ∈ B(W ), K(·, B) is a (Borel) measurable
function. Thus, K is a subset of the positive cone in L . Endow L with the norm

‖K‖ =
∫

W

∫
W
|K(w, dx)|dξ(w) =

∫
W
|K(w, ·)|(W )dξ(w),

where |K(w, ·)| is the positive measure K+(w, ·) + K−(w, ·). Then, L is a Banach space.

Step 3 K is a closed subset of L and Ψ : L → L is a contraction.

Proof of Step 3: Pick K,K ′ ∈ L and let D(w,B) = |K(w, ·)−K ′(w, ·)|(B) for all w ∈ W
and B ∈ B(W ). For each B ∈ B(W ), we have that

Ψ(K)(w, B)−Ψ(K ′)(w,B) =
∫

W
[K(x,B)−K ′(x,B)]MN(w, dx).

Hence

‖Ψ(K)−Ψ(K ′)‖ ≤ ∫
W

∫
W

D(x,W )MN(w, dx)dξ(w)

≤ β
∫

W
D(w, W )dξ(w) = β‖K −K ′‖. ¤

We projected the aspiration set AIR(σ) into the horizontal axis to construct the one-
dimensional bargaining state space W . Alternatively, since ϕ is strictly decreasing, we
could have projected AIR(σ) into the vertical axis to produce a “dual” state space W ∗ =
ϕ(W ) = (1−w̄, 1−w). For each kernel K ∈ K there corresponds a dual kernel K∗, defined
by K∗(w,B) = K(ϕ−1(w), e(B)) for each w ∈ W ∗ and B ⊂ B(W ). When player 2 has an
initial aspiration value w, player 1 has the initial aspiration value ϕ−1(w), and player 2’s
final share is in B iff player 1’s share is in e(B). Thus, K∗(w,B) represents the probability
that when player 2’s expected value is w, his share in the final split is in the set B.

Step 4 Let K̂ be the set of kernels K ∈ K such that (i) K̄(w) ≥ w for all w ∈ W ; (ii)
K̄∗(w) ≥ w for all w ∈ W ∗. Then the fixed point Q of Ψ belongs to K̂.
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Proof of Step 4: K̂ is a closed subset of L . Hence, by Step 3, it is enough to show that
Ψ(K) ∈ K̂ for all K ∈ K̂.

Note that ϕ−1(w) is the new bargaining state when player 1 makes the admissible offer
w and player 2 rejects it. Fix K ∈ K̂ and denote J = Ψ(K). We first show that J satisfies
constraint (i) above. We have J(w, ·) = γ(w)J1(K)(w, ·) + (1− γ(w))J2(K)(w, ·), where
Ji = Ψi(K). Therefore,

J̄(w) = γ(w)

∫

ϕ(W )

[(1− α2(w, x))K̄(ϕ−1(x)) + α2(w, x)(1− x)]µ1(w)(dx)

+ (1− γ(w))

∫

W

[(1− α1(w, x))K̄(x) + α1(w, x)x]µ2(w)(dx)

≥ γ(w)

∫

ϕ(W )

[(1− α2(w, x))ϕ−1(x) + α2(w, x)(1− x)]µ1(w)(dx)

+ (1− γ(w))

∫

W

[(1− α1(w, x))x + α1(w, x)x]µ2(w)(dx)

≥ γ(w)w + (1− γ(w))x̄2(w) ≥ w,

because w = (1 − α2(w, x))ϕ−1(x) + α2(w, x)(1 − x) for each x ∈ [ϕ(w), 1], by (4) in
Theorem 2, and because supp(µ2(w)) ⊂ [w, 1] (so x̄2(w) ≥ w) by Theorem 2. A symmetric
argument shows that J also satisfies (ii). Therefore, Q ∈ K̂. ¤

Step 5 Properties (i) and (ii) imply Ψ1(K) ¹ Ψ2(K) for all K ∈ K̂.

Proof of Step 5: Pick any K ∈ K̂ and as before denote Ji = Ψi(K), i = 1, 2. Since the sum
of the players’ expected final shares cannot exceed 1, player 2’s expected share starting at
w ∈ W̄ cannot exceed 1− K̄(w). By (ii), this expected share is at least ϕ(w) (since the
aspiration value of w for player 1 corresponds to the aspiration value ϕ(w) for player 2).
So 1− K̄(w) ≥ ϕ(w) or K̄(w) ≤ 1− ϕ(w). In particular, K̄(ϕ−1(w)) ≤ 1− w. Hence

J̄1(w) =

∫

ϕ(W )

[(1− α2(w, x))K̄(ϕ−1(x)) + α2(w, x)(1− x)]µ1(w)(dx)

≤
∫

ϕ(W )

[(1− α2(w, x))(1− x) + α2(w, x)(1− x)]µ1(w)(dx) = 1− x̄1(w))

J̄2(w) =

∫

W

[(1− α1(w, x))K̄(x) + α1(w, x)x]µ2(w)(dx)

≥
∫

W

[(1− α1(w, x))x + α1(w, x)x]µ2(w)(dx) = x̄2(w)).

By B3, x̄2(w) ≥ 1− x̄1(w), and thus Ψ1(K) = J1 ¹ J2 = Ψ2(K). ¤
Since Q ∈ K̂, we have Ψ1(Q) ¹ Ψ2(Q), and therefore Q ¹ Q̂, as required. ¤
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