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Abstract

This paper shows that altruism may be beneficial in bargaining

when there is competition for bargaining partners. In a game with

random proposers, the most altruistic player has the highest material

payoff if players are sufficiently patient. However, this advantage is

eroded as the discount factor increases, and if players are perfectly

patient altruism and spite become irrelevant for material payoffs.
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1 Introduction

Game theory usually assumes that players care only about their own ma-

terial payoff. However, experiments suggest that many people care about

others’ material payoffs (see e.g. Fehr and Schmidt, 2003). The simplest

possibilities are altruism - utility increases with other people’s material pay-

offs - and spite - utility decreases with other people’s material payoffs. This

paper studies the consequences of allowing for limited altruism or spite in

multilateral bargaining games with complete information.

It is well known that players can benefit from being spiteful in bilateral

bargaining games: a spiteful player is committed to rejecting offers that

would be acceptable to a selfish player, and, if this is anticipated by the
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other player, gets a higher payoff as a result. However, the situation is

more complicated when players can choose bargaining partners: a spiteful

player may get a better deal out of bargaining, but may not get any bar-

gaining partners in the first place. On the other hand, even a spiteful player

may lower his demands in view of competition.1 It is then unclear whether

spiteful players do better than selfish players in terms of material payoffs.

In this paper I address the question of what preferences are the most

successful in terms of material payoffs when there are three players but only

two of them need to cooperate. In a model with irrevocable choice of partner

(players first chose a partner to bargain with and then negotiate on payoff

division) neither altruism nor spite are unambiguously advantageous: the

player with intermediate preferences has an advantage. On the other hand,

if players can keep their options open until a payoff division is agreed upon,

the most altruistic player has an advantage in terms of material payoffs when

players are sufficiently patient. However, that advantage is eroded as the

discount factor increases, and if players are perfectly patient altruism and

spite become irrelevant for material payoffs.

2 General assumptions

There are three players, N = {1, 2, 3}. If two players cooperate, they can
obtain one unit of money. All players are risk neutral and share a discount

factor δ ≤ 1, but they may differ in their attitudes towards other players’
material payoffs. We allow for all utility functions of the type ui = xi +

αi

P
j 6=i xj
n−1 , where −1 < αi < 1 for all i. Selfish players have αi = 0, altruistic

players have αi > 0 and spiteful players have αi < 0. Notice the following

consequences of this assumptions:

• The functional form follows Bester and Güth (1998) and Possajennikov
(2000) and allows for altruism and spite, but not for inequality aver-

sion. Unlike in the models of Fehr and Schmidt (1999) and Bolton and

1Fehr and Schmidt (1999) and Bolton and Ockenfels (2000) point out that competition

may make players behave as if they were selfish even if they are not. They give as an

example the ultimatum game with proposer or responder competition.
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Ockenfels (2000), players are not concerned about inequality as such:

the marginal rate of substitution between own and others’ payoffs is a

constant.2

• As in Bester and Güth (1998), players care more about their own
material payoffs than about other players’. If the total material payoff

is X, player i’s utility function can be rewritten as ui(.) = (1−βi)xi+
βiX, where βi =

αi
n−1 , −1 < βi < 1. Thus, utility is a weighted

average of own payoff and total payoff. If X is a constant, utility is

maximized when i gets the whole cake, and thus players’ altruism or

spite is limited.

• Each player is equally altruistic or spiteful towards all other players.

• Preferences only depend on outcomes, and not on things such as past
offers and counteroffers.

• Players do not care directly about other players’ preferences (unlike in
Levine (1998)).

• The assumption −1 < αi guarantees that it is never a Pareto im-

provement to throw money away: if an additional ² of money becomes

available and players divide it equally they will all be better-off.

Assuming that preferences are complete information, what preferences

will be more successful in terms of material payoffs?

3 A benchmark: the two-player case

In two-player bargaining, a player’s payoff is higher the more spiteful he is

and the more altruistic the other player is. Assuming that no player can

receive a negative share of the money, there are corner solutions in which the

most altruistic player receives 0. These results are supported by the Nash

(1950) bargaining solution, the Rubinstein (1982) bargaining model with

alternating offers and Binmore’s (1987b) variant with random proposers.

2For a model of multiplayer bargaining with inequity aversion see Montero (2005).
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3.1 The Nash bargaining solution

The following lemma shows that a player’s material payoff (weakly) increases

as he becomes more spiteful or the other player becomes more altruistic.

Lemma 1 Suppose no player receives any money in case of disagreement,

and let x be the money received by player 1, 0 ≤ x ≤ 1.Then
a) If none of the players is much more altruistic than the other (αi ≤

1
2−αj , i = 1, 2, i 6= j) the Nash bargaining solution is

x∗ =
1

2
− α1 − α2
2(1− α1)(1− α2)

.

This is decreasing in α1 and increasing in α2.

b) If one of the players is much more altruistic than the other, the Nash

bargaining solution is x∗ = 0 (α1 > 1
2−α2 ) or x

∗ = 1 (α2 > 1
2−α1 ).

Proof. See Appendix.

3.2 Rubinstein bargaining

In the Rubinstein bargaining model, the two players alternate making of-

fers until an agreement is reached. Every time an offer is rejected, a period

elapses. For δ < 1, Rubinstein (1982) shows that the subgame perfect equi-

librium of this game is unique and stationary (strategies do not depend on

past play). Binmore (1987a) shows that this subgame perfect equilibrium

converges to the Nash bargaining solution as δ tends to 1. One of Rubin-

stein’s assumptions on preferences is that for any given share of the pie x,

all players prefer to have x now rather than later. This assumption allows

for altruistic players but excludes spiteful ones. However, Rubinstein’s and

Binmore’s results hold in this case as well.

Lemma 2 There is a unique subgame perfect equilibrium of the Rubinstein

game. The equilibrium payoffs converge to the Nash bargaining solution as

δ tends to 1.

Proof. See Appendix.

The same result holds for the random proposers variant of the Rubin-

stein’s game introduced by Binmore (1987b).
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4 A model with irrevocable choice of partner

Suppose there are three players potentially differing in αi, and any two of

them can divide one dollar. The players play the following two-stage game:

• Stage 1: Irrevocable choice of partner. A pair of players emerges from
this stage, and the third player no longer plays a role.

• Stage 2: Once a pair is formed, the players play the Rubinstein game
(or the game with random proposers) described above. If no agreement

is reached, all players receive zero.

Clearly, each player would prefer to form a pair with the most altruistic

of the other two, and the coalition of the two most altruistic players is likely

to emerge. In terms of material payoffs, the most spiteful player gets nothing

and the intermediate player does best.

Example 1 Consider α1 = −15 , α2 = 0, α3 = 1
4 and δ close to 1.

Coalition\Payoffs 1 2 3

{1, 2} 0.58 0.42 −
{1, 3} 0.75∗ − 0.25

{2, 3} − 0.67∗ 0.33∗

The numbers in the matrix are material payoffs, not utilities. However,

given our assumptions every player wants as large a material payoff as pos-

sible. Both players 2 and 3 prefer coalition {2, 3} to form. Player 2 gets the
best deal while player 1, who is the toughest, gets nothing.3

Conclusion 1 In the model with irrevocable choice of partner, neither altru-

ism nor spite is unambiguously beneficial. It is the player with intermediate

preferences who does best in material terms.

3Since the third player is no longer in the game, the calculations assume ui = xi+αixj

rather than ui = xi + αi
xj+xk

2
. This makes no difference to the players’ preferences over

bargaining partners.
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This result echoes Binmore’s (1985) result on bargaining with different

discount factors: the player who can get a better deal out of bilateral bar-

gaining is excluded when there is a choice of bargaining partners.4

5 A competitive model with choice of partner

In the model with irrevocable choice of partner, the most spiteful player

suffers from a sort of hold-up problem. Since he gets nothing out of the

situation he would be willing to moderate his demands in order to get into a

coalition. However, once he is alone with the other player he has no incentive

to do so, thus he is always excluded from the coalition that forms.

Suppose instead that this problem is not present. Players can agree on

a payoff division at the same time they form a coalition, and there is effec-

tive competition between the players. A way of modelling the competition

between players is to consider bargaining games with random proposers (in-

troduced by Binmore, 1987b and extended by Baron and Ferejohn (1989)

and Okada (1996)).

5.1 Preliminaries

In a game with random proposers, each of the three players is selected to be

proposer with probability 1
3 . The proposer i chooses a responder j and offers

him a division of the monetary payoff. Player j then accepts or rejects. If

j rejects, a period elapses and a new proposer is selected - again each of

the players with probability 1
3 -. We focus of stationary subgame perfect

equilibria (SSPE). These are subgame perfect equilibria in which players’

strategies do not condition on elements of history other than the current

proposal.

Given a strategy combination, we will use the following notation:

yi for the expected material payoff for player i.

4In Binmore’s ”telephone bargaining” model, later generalized by Chatterjee et al.

(1993), players are not irrevocably committed to a bargaining partner. However, compet-

itive pressures in the model are very weak: for example, in a market with one seller and

n ≥ 1 identical buyers, the equilibrium price is independent of n.
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ri for the probability that i receives an offer.

λij for the probability that i makes a proposal to j, conditional on i

being selected to be proposer.

xi for the offer that makes player i indifferent between accepting it or

rejecting it (given that the proposer gets 1− xi).
Because each player would like to keep as much of the dollar as possible,

xi will play an important role in the analysis. In equilibrium the proposer

will choose the player with the lowest xi and offer him exactly xi. A par-

ticular class of equilibria that will be important has the property that each

player is indifferent between proposing to any of the other two players. Then

xi = x for all i. We will refer to this type of equilibria as mixed-strategy

SSPE because players typically randomize between partners.

Lemma 3 Let δ ≤ 1. All SSPE of the game are such that a coalition is
formed immediately and the proposer offers a responder i exactly xi.

Proof. Given any SSPE, we can calculate the expected utility player

i would get from rejecting a proposal. Because equilibrium strategies are

stationary, this utility does not depend on what has happened in the game so

far. Because the utility function is linear, the utility of rejecting a proposal

can be written as δ
h
yi + αi

yj+yk
2

i
; only the average material payoffs matter.

Let i be a player with yi < 1. Consider the situation of player i as pro-

poser. If he makes a proposal that is rejected, his utility is δ
h
yi + αi

yj+yk
2

i
.

But he can do better by proposing to the player j with the lowest yj and

offering him δyj +
1−δyi−δyj

2 , keeping δyi +
1−δyi−δyj

2 for himself. This pro-

posal will be accepted by j and is strictly preferred by i to a proposal that

would be rejected (equal division of the extra payoff ensures this even if i

and/or j are spiteful).

Finally, no player can have yi = 1 because he would receive no proposals,

contradicting yi = 1. Thus, all proposals made in equilibrium are accepted.

Also, if i is a responder he must be offered exactly xi, where xi+αi
1−xi
2 =

δ
h
yi + αi

yj+yk
2

i
; otherwise the proposer would be better-off by reducing i’s

share.
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5.2 Patient players (δ = 1)

With patient players, altruism and spite play no role.

Proposition 1 If δ = 1, the unique SSPE is such that the first proposer

forms a coalition with one of the other players and keeps 23 of the total payoff,

regardless of (αi)i∈N .

Proof. Because of lemma 3, the players will always agree to divide the

whole payoff. Thus, material payoffs add up to 1 and the utility function

can be written as ui(.) = (1 − αi
2 )zi +

αi
2 , where zi is player i’s material

payoff. But then we can take αi
2 from both sides and divide by 1− αi

2 in the

relevant equations, and altruism and spite become irrelevant.

As an illustration, suppose we have an equilibrium and let i be a player

who receives proposals with positive probability and j a player who receives

proposals from player i. In equilibrium xi must be such that i is indifferent

between accepting and rejecting, thus

(1− αi
2
)xi +

αi
2
=

=
1

3

h
(1− αi

2
)(1− xj) + αi

2

i
+
λji + λki

3

h
(1− αi

2
)xi +

αi
2

i
+
2− λji − λki

3

αi
2

Taking αi
2 from both sides and dividing by 1− αi

2 , we obtain

xi =
1

3
(1− xj) + 1

3
(λji + λki)xi.

This is precisely the same equilibrium condition that we would have with

selfish players.

The equilibrium of this game with selfish players is described by Baron

and Ferejohn (1989). They show that in any equilibrium xi =
1
3 for all i,

thus the proposer offers 1
3 to one of the other two players and keeps

2
3 for

himself. Equilibrium strategies are not unique, but they must be such that

each player is equally likely to be in the final coalition; for example, each

player can propose to each of the others with probability 1
2 .
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5.3 Impatient players (δ < 1)

Altruism or spite will play a role because if a proposal is rejected there is a

period in which all players get 0, and different players may feel differently

about this. Altruism in this context is similar to impatience, and would

seem to reduce bargaining power. However, it turns out that if players are

sufficiently patient the most altruistic player does best.

Proposition 2 If δ is sufficiently close to 1, there is an SSPE with the

property that the most altruistic player has the highest expected material

payoff.

To prove this result, we show that in a mixed-strategy SSPE the more

altruistic players must do better in material terms. We then go on to con-

struct such an equilibrium.

In a mixed-strategy equilibrium, each player must be indifferent between

proposing to any of the other two. All players make the same proposal: they

offer x to one of the other players, and keep 1− x for themselves. Because
the responder must be indifferent between accepting and rejecting, a mixed-

strategy SSPE must be a solution to the following system (where i = 1, 2, 3

and {j, k} = N\{i})

x+ αi
1− x
2

=
δ

3

h
1− x+ αi

x

2

i
+

δ

3
(λji + λki)

∙
x+ αi

1− x
2

¸
+

δ

3
(2− λji − λki)

αi
2

There are three additional equations of the form λij + λik = 1. Thus,

we have six equations and seven unknowns (x and six λij ’s). We will show

that for δ sufficiently close to 1 we can find values for the λij ’s such that

0 ≤ λij ≤ 1 for all i 6= j, and a unique solution for the equilibrium proposal

x, the expected material payoffs for each player (yi)i∈N and the probabilities
of receiving proposals for each player (ri)i∈N .

Lemma 4 In a mixed-strategy SSPE, the equilibrium values of x, (yi)i∈N
and (ri)i∈N are uniquely determined given (αi)i∈N and δ.
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Proof. Because players are risk neutral, we can write the indifference

conditions of the players in terms of (yi)i∈N and x. The equilibrium values

of (yi)i∈N and x must solve the following system

x+ αi
1− x
2

= δ

∙
yi + αi

1− yi
2

¸
i = 1, 2, 3X

i∈N
yi = 1

The solution to this system is

x = 1− 2δ
3
−
X
i∈N

2(1− δ)

3(2− αi)
. (1)

yi =
1

3
+

4(1− δ)

3δ(2− αi)
− 2
3

X
j∈N\{i}

1− δ

δ(2− αj)
(2)

Given the equilibrium value for x, the value for ri can be found from the

indifference condition of player i, now rewritten in terms of ri

x+ αi
1− x
2

= δ

∙
1

3

³
1− x+ αi

x

2

´
+ ri

µ
x+ αi

1− x
2

¶
+

µ
2

3
− ri

¶
αi
2

¸
.

(3)

Lemma 5 In a mixed-strategy SSPE, the value of yi is increasing in αi and

decreasing in αj.

Proof. Differentiating expression (2), we can see that ∂yi
∂αi

= 4(1−δ)
3δ(2−αi)2 >

0 and ∂yi
∂αj

= − 2(1−δ)
3δ(2−αj)2 < 0.

The intuition for this result is that, in order for a mixed-strategy SSPE

to exist, all players must have the same value of xi, even though they may

have different values for αi. Equilibrium strategies should then balance

two sources of bargaining power: the way players react to the possibility

of delay, and how often people receive proposals. Because more altruistic

players suffer more from delay they must receive proposals more often.

Thus, altruism is beneficial if players are playing a mixed strategy equi-

librium. However, this effect becomes smaller as players become more pa-

tient, as the following corollary shows.
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Lemma 6 Let αi > αj, and suppose we have a mixed-strategy SSPE. Then

yi − yj is decreasing in δ.

Proof. yi − yj = 2(1−δ)(αi−αj)
δ(2−αi)(2−αj) . The derivative of this expression with

respect to δ is − 2(αi−αj)
δ2(2−αi)(2−αj) < 0.

In order for a mixed strategy equilibrium to exist, players must be suf-

ficiently patient as the following lemmas show.

Lemma 7 The value of x given by (1) is decreasing in each αi and increas-

ing in δ, and is positive if δ is close enough to 1.

Proof. ∂x
∂αi

= − 2(1−δ)
3(2−αi)2 < 0. ∂x

∂δ =
2
3

³P
i

1
2−αi − 1

´
, which is positive

because αi > −1 for all i.
Because x is decreasing in each αi, it suffices to find a value of δ that

guarantees x ≥ 0 when all αi’s are close to 1. If we replace each αi by 1,

x = 4δ−3
3 , which is positive for δ ≥ 3

4 .

It remains to show that we can find a collection (λij)i6=j (with λij ∈ [0, 1]
and λij + λik = 1) so that each player offering x to one of the others is an

equilibrium. This will be possible provided that δ is sufficiently close to 1.

Lemma 8 shows that, for δ sufficiently close to 1, the equilibrium value of

ri is between 0 and
2
3 for any preference profile (αi)i∈N . This is clearly a

necessary condition for the existence of a suitable collection (λij)i6=j . Lemma
9 shows that it is also sufficient.

Lemma 8 The value of ri that solves (3) is between 0 and
2
3 if δ is suffi-

ciently close to 1.

Proof. The expression for ri as a function of (αi)i∈N can be found by

solving for ri in (3) and then replacing x by its equilibrium value found

in (1). Because exactly one player is the responder, the solution satisfiesP
ri = 1.

It can be shown5 that dri
dαi

> 0 and dri
dαj

= −2(1−δ)(αi(2δ−3)+2δ)
9δx2(2−αi)(2−αj)2 < 0 for

δ ≥ 3
4 . This implies that the condition ri ≥ 0 will be most difficult to

5A proof is available from the author.
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satisfy when αi is close to −1 and αj and αk are close to 1. Analogously,

the condition ri ≤ 2
3 will be most difficult to satisfy when αi is close to 1

and αj and αk are close to −1.
The value of ri associated to αi = −1 and αj = αk = 1 is 8δ2+19δ−24

3δ(8δ−5) ,

which is positive for δ ≥
√
1129
16 − 19

16 ≈ 0.913. The value of ri associated

to αi = 1 and αj = αk = −1 is4δ2−25δ+243δ(4δ−1) , which is smaller than
2
3 for

δ ≥ 0.902.
We have shown that the candidate equilibrium values for ri are between

0 and 2
3 provided that δ is large enough. It is also the case that

P
ri = 1.

Lemma 9 Suppose we have a vector (ri)i∈N such that 0 ≤ ri ≤ 2
3 for all i

and
P
i∈N ri = 1. Then there are mixed strategies that implement (ri)i∈N .

Proof. Without loss of generality, suppose r3 ≥ r2 ≥ r1.
Equilibrium strategies must satisfy the following system of equations

1

3
(λji + λki) = ri, i = 1, 2, 3

Since λ23 = 1−λ21, λ32 = 1−λ31 and r3 = 1− r1− r2, we can write the
system as

1

3
(λ21 + λ31) = r1

1

3
(λ12 + 1− λ31) = r2

1

3
(2− λ12 − λ21) = 1− r1 − r2

The three equations are not linearly independent: the first two imply

the third. Taking λ31 as a parameter we find:

λ12 = 3r2 − 1 + λ31

λ21 = 3r1 − λ31

We want to set a value for λ31 such that λ12 and λ21 are between 0 and

1. Notice that, because r3 ≥ 1
3 ,

1
3 ≤ r1 + r2 ≤ 2

3 . There are two cases:

a) r2 ≥ 1
3 : then λ31 = 0 is suitable.
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b) r2 ≤ 1
3 : then λ31 = 1− 3r2 is suitable.

Even thought equilibrium strategies are not unique, equilibrium payoffs

are. Uniqueness of equilibrium payoffs can be shown by considering each

possible type of equilibrium in turn. We have seen that an equilibrium

exists with xi = xj = xk; the other three possibilities are xi > xj = xk, xi =

xj > xk and xi > xj > xk. These other possibilities can be eliminated by

calculating the equilibrium values of (xi)i∈N implied by player’s preferences
(for example, if xi > xj > xk, players i and j always propose to k and

player k always proposes to j) and reaching a contradiction (in the case

xi > xj > xk, one would actually find xk > xi).

The following example illustrates how the most altruistic player is the

most successful in purely material terms and how this effect is less pro-

nounced when players are more patient.

Example 2 Consider α1 = −15 , α2 = 0, α3 = 1
4 .

δ = 0.65 (x = 0.21) Spiteful Selfish Altruistic

Probability of being in coalition 0.39 0.62 0.99

Expected material payoffs 0.28 0.32 0.40

δ = 0.85 (x = 0.28) Spiteful Selfish Altruistic

Probability of being in coalition 0.60 0.66 0.75

Expected material payoffs 0.31 0.33 0.36

If δ is not sufficiently close to 1, the most altruistic player is not necessar-

ily the one that does best in terms of material payoffs, as the next example

illustrates.

Example 3 Consider α1 = −23 , α2 = −12 , α3 = 3
4 and δ = 0.8. The unique

SSPE equilibrium is such that players 1 and 2 propose (0.87, 0.13) to player

3, and player 3 proposes (0.68, 0.32) to either player 1 - with probability

0.44 - or player 2 - with probability 0.56 -. Expected material payoffs are

(0.34, 0.35, 0.32), thus player 2 is doing best.
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6 Conclusion

In purely material terms, spite is beneficial in two-player situations (or in

general in unanimous bargaining). Intermediate preferences (relative to the

preferences of the other two players) are best in three-player games with irre-

vocable choice of partner. In more competitive environments the most altru-

istic player does best in material terms provided that players are sufficiently

patient. However, when δ equals 1 altruism and spite become irrelevant.

The results imply that the same characteristics of preferences that are

beneficial in two-player bargaining can be detrimental when there is competi-

tion for bargaining partners. Related results have been found by Harrington

(1990) for risk aversion and Kawamori (2005) for impatience. The driving

force behind this type of results is that, if every player were to receive offers

with the same probability, the ’weakest’ player would have the lowest con-

tinuation value and be the most desirable partner; thus in equilibrium the

weakest types receive proposals more often.

Altruism matters because it affects the players’ attitudes towards dis-

agreement. With discounting, disagreement occurs temporarily and altru-

ism interacts with discounting so that more altruistic players behave like

more impatient players. In the infinite horizon game without discounting,

agreement is guaranteed and altruism and spite become irrelevant.6

An important assumption behind the results is that players are indis-

criminately altruistic or spiteful. If instead we allow for utility functions

of the type ui(x) = xi +
P
j 6=i αijxj , altruism may be detrimental. As

an illustration, suppose player 1 is altruistic towards player 2 (that is,

u1(x) = x1 + α1x2 with α1 > 0) and players 2 and 3 are selfish. Because

player 1 is altruistic towards player 2, he will prefer to propose to player

2 unless 2 has a significantly higher continuation value than 3. Moreover,

player 1 requires a lower payoff in order to accept a proposal if the proposer

6In a finite-horizon bargaining game without discounting, spite would still play some

role because the most spiteful player never receives a proposal in the last period; altruism

and selfishness however would be indistinguishable because both altruistic and selfish

players would accept 0 in the last period. See Norman (2002) for an analysis of the

bargaining procedure with a finite horizon and selfish players.
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is player 2. In the mixed-strategy SSPE, player 2 has the highest mate-

rial payoff, and 1 and 3 are equally hurt in material terms by 1’s altruism

towards 2.7

In Bester and Güth (1998), if an altruistic player is paired with an ego-

istic one, the egoistic player does better than the altruistic one in material

terms. The possibility of evolutionary stability of altruistic players arises

because the presence of altruistic players increases efficiency. Because of

this, an altruistic player may do better against another altruistic player

than a selfish player would do against an altruistic player. In this paper

there is no possibility of efficiency gains. Total material payoffs always add

up to 1 provided that players reach an agreement immediately, and even

the most spiteful players manage to do that. There is no possibility for

altruistic preferences to be stable in bilateral situations. Altruistic prefer-

ences however have an advantage when there is competition for bargaining

partners. Altruistic players are more popular in equilibrium, despite the

fact that other types of players have moderated their demands due to the

competitive pressures. If we made the (very arbitrary!) assumption that

players always interact in triads, altruistic preferences would not only be

evolutionarily stable, but could successfully invade a population made by

any other preferences provided that players are sufficiently patient.

Acknowledgments. I’m grateful to Alex Possajennikov, Yuan Ju, An-

drew Colman and participants of the Midlands Game Theory Workshop for

helpful comments.

7 Appendix

Proof of lemma 1. Because no player receives any money in case of

disagreement,8 the utility associated with disagreement is 0 regardless of

7Calvert and Dietz (1998) allow for identity-dependent altruism, but require αij = αji.
8If one or both players receive something in case of disagreement, they will come to an

agreement provided that the sum of material payoffs in case of disagreement is less than

1. This is because the extra money can be divided equally.
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preferences. The Nash bargaining solution would be the solution to

max (x+ α1(1− x)) (1− x+ α2x)

s. t. x ∈ [0, 1]

x+ α1(1− x) ≥ 0

1− x+ α2x ≥ 0

The maximization problem takes into account that players will never

agree to throw money away, so player 2’s share equals 1 − x. The require-
ment x ∈ [0, 1] is a feasibility requirement. The other two constraints are
individual rationality constraints: the agreement must guarantee a utility of

0 to both players.

Ignoring the constraints for the moment, the FOC of this maximization

problem is

1− α1(2− α2)− 2x(1− α1)(1− α2) = 0

or

x =
1

2
− α1 − α2
2(1− α1)(1− α2)

.

Since −(1−α1)(1−α2) < 0, the second order condition for a maximum

is always satisfied. The solution also satisfies individual rationality for both

players, but it is not always between 0 and 1. In some cases (when α1 and

α2 are sufficiently dissimilar) we will have a corner solution. If α1 ≥ 1
2−α2

we have x = 0; if α2 ≥ 1
2−α1 we have x = 1. If both players are selfish or

spiteful, the solution is always interior. Thus, corner solutions are always

individually rational because the player getting 0 must be altruistic.

Proof of lemma 2. Let us look for a stationary subgame perfect

equilibrium. Denote player 1’s proposal by (x, 1−x) and player 2’s proposal
by (y, 1−y). Because each player (however altruistic) will offer the other as
little as possible, in an interior solution each responder is indifferent between

accepting a proposal and rejecting it, thus:

y + α1(1− y) = δ (x+ α1(1− x))
1− x+ α2x = δ (1− y + α2y)
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The solution to this system is x = 1−α1(1+δ(1−α2))
(1−α1)(1−α2)(1+δ) and y =

δ−α1(1+δ−α2)
(1−α1)(1−α2)(1+δ) .

In order for these values to be between 0 and 1, we need αi ≤ δ
1+δ−αj for

i, j = 1, 2, i 6= j. Both x and y converge to 1
2 − α1−α2

2(1−α1)(1−α2) as δ tends to 1.
If α1 ≥ δ

1+δ−α2 , there is a corner solution. Player 2 claims the whole
payoff when he proposes; player 1 makes the proposal that makes 2 indif-

ferent. Player 1 prefers to accept nothing in the current period rather than

endure delay. The corresponding equations would be:

1− x+ α2x = δ (indifference condition for player 2)

α1 ≥ δ [x+ α1(1− x)] (player 1 prefers to accept (0, 1))

The solution to the first equation is x = 1−δ
1−α2 , always positive. In order

for x ≤ 1 we need α2 ≤ δ. In order for player 1 to be willing to accept (0, 1)

we need α1 ≥ δ
1+δ−α2 . This bound becomes more demanding with δ and at

the limit becomes α1 ≥ 1
2−α2 .

If αi > δ for i = 1, 2, we have a corner solution in which 1 proposes

(1, 0) and 2 proposes (0, 1). Because αi < 1 for i = 1, 2, this type of corner

solution is not relevant for sufficiently large values of δ.

Uniqueness of equilibrium can be shown adapting the arguments in Sut-

ton (1986), taking into account that a player’s utility depends on the other’s

share.

Denote by U∗i (u
∗
i ) the supremum (infimum) of the utility player i can

get in any subgame perfect equilibrium as the proposer. Because equilibria

could in principle be inefficient and player 1’s utility depends on both players’

share, there isn’t a unique payoff division associated to these utility levels.

However, we can find the share Mi ∈ [0, 1] such that player i’s utility when
he gets Mi and j gets 1−Mi equals U

∗
i (we can define mi analogously).

9

Since in order to keep player 1 indifferent we need to give player 2 more

than half of the (possible) extra payoff, player 2 weakly prefers (M1, 1−M1)

9The existence of Mi ≥ 0 is guaranteed even if i is altruistic: if the equilibrium is not

efficient we need to reduce player i’s share to make him indifferent, but i cannot prefer to

let j get the whole payoff rather than play the equilibrium, since i can always offer the

whole payoff to j and j would accept.
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to the actual equilibrium at the subgame in which player 1 proposes and

get his supremum payoff. Moreover, player 2’s utility associated to the

supremum must be at least δu∗2, that is, δu2(1−m2,m2). Thus

u2(M1, 1−M1) ≥ δu2(1−m2,m2). (4)

On the other hand, a proposal of player 1 never needs to give player 2 a

utility higher than δu2(1−M2,M2). Nevertheless, there is one case in which

1 prefers to give 2 a higher utility: if 2 prefers to accept (1, 0) rather than

wait one period to obtain u2(1−M2,M2). Thus
10

u2(m1, 1−m1) ≤ max [u2(1, 0), δu2(1−M2,M2)] . (5)

There are two analogous equations for player 1.

u1(1−M2,M2) ≥ δu1(m1, 1−m1). (6)

u1(1−m2,m2) ≤ max [u1(0, 1), δ (u1(M1, 1−M1))] . (7)

There are four possible cases, depending on what the maximum is on the

right-hand side of expressions (5) and (7). We examine each case in turn.

1. If max [u2(1, 0), δu2(1−M2,M2)] = δu2(1 − M2,M2) and

max [u1(0, 1), δ (u1(M1, 1−M1))] = δu1(M1, 1 −M1), we can replace

ui(.) by its value in the four equations above, and manipulate then to

show that M1 = m1 and M2 = m2.

Equation (4) can be written as 1−M1+α2M1 ≥ δ (m2 + α2(1−m2)).
Note that since α2 < 1, the right-hand side is increasing in m2.

Equation (7) becomes 1−m2+α1m2 ≤ δ(M1+α1(1−M1)), or, since

α1 < 1, m2 ≥ 1−δ(M1+α1(1−M1))
1−α1 . Combining these two expressions

leads to

M1 ≤ 1− α1(1 + δ(1− α2))

(1− α1)(1− α2)(1 + δ)
.

10If the actual equilibrium proposal is not efficient, it cannot be the case that

u2(m1, 1 − m1) > δu2(1 − M2,M2), because then player 1 could have made a Pareto

improving proposal that player 2 would accept and we would not have an equilibrium.
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Analogously, from (5) and (6) we obtain

m1 ≥ 1− α1(1 + δ(1− α2))

(1− α1)(1− α2)(1 + δ)
.

Thus, player 1 obtains the same payoff as a proposer in any SPE of

this type.

Analogously, we can show that M2 = m2 =
1−α2(1+δ(1−α1))
(1−α1)(1−α2)(1+δ) .

In order for the equilibrium payoffs we have calculated to be between

0 and 1, we need αi ≤ δ
1+δ−αj for i, j = 1, 2.

2. If max [u2(1, 0), δu2(1−M2,M2)] = δu2(1 − M2,M2) and

max [u1(0, 1), δ (u1(M1, 1−M1))] = u1(0, 1), player 2 proposes (0, 1)

in any SPE. Thus, M2 = m2 = 1. Player 1’s proposal is found from

the equation u2(m1, 1−m1) = δu2(0, 1). The equilibrium value of m1

is then

m1 =
1− δ

1− α2
.

In order for this value to be smaller than 1, we need α2 ≤ δ. In order

for player 1 to prefer (0, 1) now rather than (m1, 1−m1) in the next
period, we need α1 ≥ δ

1+δ−α2 .

3. Analogously, if max [u2(1, 0), δu2(1−M2,M2)] = u2(1, 0) and

max [u1(0, 1), δ (u1(M1, 1−M1))] = δ (u1(M1, 1−M1)), player 1 pro-

poses (1, 0) and player 2 proposes (1 −m2,m2) where m2 =
1−δ
1−α2 in

any SPE. This case requires α1 ≤ δ and α2 ≥ δ
1+δ−α1 .

4. Finally, if max [u2(1, 0), δu2(1−M2,M2)] = u2(1, 0) and

max [u1(0, 1), δ (u1(M1, 1−M1))] = u1(0, 1), player 1 proposes (1, 0)

and player 2 proposes (0, 1) in any SPE of this type. This case re-

quires α1 ≥ δ and α2 ≥ δ.

Since each possible combination (α1,α2) corresponds to only one type

of equilibrium, subgame perfect equilibrium payoffs are unique.
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