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ABSTRACT

The diffusion of two competitive, interchangeable, and durable goods is studied under the framework of a

spatial game where consumers are distributed on a two-dimensional square lattice and play 3×3 symmetric

coordination-like games with their nearest neighbors. There are three strategies, either consuming a product

A or B, or a strategy C of not consuming either A or B. The payoff matrix of the game contains the positive

effects of network externality, that is, the payoffs are increasing functions of the number of agents adopting

the strategies A or B. Both simulations and mean-field approximation show that the existence of the positive

effects of the network externality amplifies any slight initial difference in the number of agents who adopt

either A or B and eventually promotes the superior product to take over the entire market. On the other

hand, without effects of the network externality the slight initial difference is not enlarged and both superior

and inferior products are observed to coexist by forming clusters in the market. Moreover, the effects of

innovation factors that help an inferior product to retake the market are studied. It is shown that both the

timing and size of the innovation factor matter for an inferior product in order to retake the market.
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I. INTRODUCTION

Diffusion of durable goods is often believed to be explainable by the logistic model, which originates from

Verhulst (1838) who applied the model to the studies of demography [3,23]. There exist numerous studies

on diffusion of durable goods with the logistic model [12], and these studies showed that the logistic model

could replicate the data of full diffusion of various durable goods. A discrete version of the logistic model is

given by

pX(t+ 1)− pX(t) = λ pX(t) (1− pX(t)) (1)

where pX(t) represents the fraction of the people who already have a product X at a unit time t and λ is a

constant parameter, which controls the initial slope of the diffusion curve. In the logistic model, the diffusion

rate pX(t+ 1)− pX(t) is given as the multiplication of the parameter λ, pX(t), and 1 − pX(t), that is, the

rate is a function of the fraction of both people who already have adopted the product by the time t and

who have not yet.

Besides the studies on diffusion phenomena with the logistic model, large numbers of diffusion phenomena,

such as expansion of forest fires, disease and so on, have been studied by utilizing the framework of cellular

automata [24]. A study of diffusion of interchangeable and durable goods in a market based on the framework

of the two-dimensional cellular automata is thought to be meaningful because it is commonly observed that

people try to imitate the most successful strategy from their local neighbors. This imitation dynamics is

known as “copy cat.” The spatiality such as local interactions within neighborhood is one of the most

important features of cellular automata. A number of studies show that the effects of physical or abstract

spatiality are critical for people’s behavior [2,7,11,13-19,21]. Under the framework of the cellular automata

based on the two-dimensional square lattice, each consumer on each cell only interacts with his nearest

neighbors. If the field is large enough and if the initial seed pX(1) is much smaller than the entire population

in the whole system, then the diffusion progresses only gradually.

In such case as a spatial game, the number of neighbors is fixed as eight (the Moore neighborhood) in
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this paper and the updating probability, which Huberman and Glance (1993) introduced, is thought to act

like the parameter λ in Eq. (1) [8]. In the game field, consumers who do not have the product X are assumed

to be able to adopt the product X only when there is at least one neighbor who already has the product X,

that is, only such a neighbor can be a source of copy of the strategy that is to adopt the product X. When

there is at least one neighbor who already has the product X in a consumer i’s neighborhood, he is assumed

to copy his neighbor’s strategy with the following updating probability µ(t) that is given as an increasing

function of the fraction of the people who has adopted the product X:

µ(t) = ν(pX(t− 1))ξ (2)

where t is greater than or equal to two, and ν (0 < ν ≤ 1) and ξ are parameters. This particular updating

probability function is one of the arbitrary increasing functions of the fraction of the people who has adopted

the product X, and it is introduced here since this function with a proper set of parameters ν and ξ gives

the time evolution of pX(t), which is obtained from a simulation, a good fit to the logistic curve with a given

λ in Eq.(1).

Figure 1 shows numerically solved pX(t) (square dots) in Eq. (1) with the initial value pX(1)=20/1012

and the parameter λ=0.32 and the value pX(t) (black circles) that is obtained as a result of the cellular-

automata based simulation mentioned above with the initial value pX(1)=20/1012 and the parameters ν=1

and ξ = 0.5. In the simulation consumers are placed in the field of 101×101 cells of a two-dimensional square

lattice, therefore the size of the whole population |N | is given as 1012. It is observed that two plots in Fig. 1

are almost identical, and it suggests that the pX(t) obtained from the simulation could be described by the

logistic equation in Eq. (1). This fact will be utilized later in Sec. V where a mean-field theory is conducted

to recover the results of the simulations in Secs. III and IV.

In this paper the diffusion phenomena of two competitive, interchangeable, and durable goods are studied

based on the framework of spatial game where consumers are distributed on two-dimensional square lattice

and play 3×3 symmetric coordination like games with their nearest neighbors [20,25]. The detailed rules
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of the game are explained in the next section. The payoff matrix of the game contains the positive effects

of the network externality, that is, the payoff elements are increasing functions of the number of agents

adopting each strategy. The network externalities play an important role in diffusion of interchangeable

goods [1,4-6,9,10]. In Sec. III, the results of simulations based on the rules of the game in Sec. II are shown

to clarify the payoff and initial-condition-dependent behavior of the system and the positive effects of the

network externality. The effects of innovation factors that help an inferior product to retake the market

are illustrated in Sec. IV. In Sec. V, a mean-field theory is formulated to approximate the results of the

simulations in Secs. III and IV. Discussions are given in the last section.

II. THE MODEL

Consumers are placed in a two-dimensional square lattice. Each consumer has one of three possible

strategies, consuming either a product A or B, or a strategy C of consuming neither A nor B. Those who

have the strategy C are the potential consumers of either the product A or B in the future. In the following,

adopting either the product A, B, or C is expressed by +1, −1, or 0, respectively, that is, at time t the

consumer in the i-th cell (1 ≤ i ≤ |N |) takes a strategy σi(t) that is either +1, −1, or 0. The consumer i

plays one-shot 3×3 symmetric coordination like games with his eight immediate neighbors, denoted as ñ(i),

under the payoff matrix given in Table I that describes the payoff matrix for a row player.

In Table I, Ri(±1) denotes a consumer i’s payoff derived from a product itself and is given as

Ri(±1) = r(±1)± wθi (3)

where the parameter r(±1) is assumed to be greater than zero. The random value θi is uniformly generated

between −0.5 and 0.5, and w is assumed to be a positive small number compared to r(±1), that is, 0 <

w � r(±1). Introducing such wθi enables Ri(±1) to contain a small amount of fluctuation reflecting the

fact that the utility obtained from a product is not exactly the same but slightly different for each other.
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Additionally, introducing such Ri(±1) allows the model to have consumers with slightly biased preferences

[5].

The enhanced payoffs by sharing the same kind of an interchangeable product with neighbors, S(±1, t),

are defined as

S(+1, t) = s(+1)pA(t− 1) and (4)

S(−1, t) = s(−1)pB(t− 1), (5)

respectively, where the parameter s(±1) is assumed to be greater than or equal to zero and pA(t) and

pB(t) represent the fraction of consumers who are adopting the product A or B in the whole population,

respectively, at the time t. Both pA(0) and pB(0) are assumed to be zero, therefore the initial value, S(±1, 1),

is also assumed to be zero. The S(±1, t), which is a function of pA(t− 1) and pB(t− 1), respectively, reflects

the effects of the network externalities from the whole population [1]. Because of the assumption that having

a product A or B strictly dominates having neither of these products, the third row in Table I is all filled

by zeros. This assumption corresponds to the scenario that all agents sooner or later adopt the product A

or B in the diffusion process.

The payoff function for the consumer i in a game with a consumer j can be denoted as fi(σi(t), σj(t)),

that is, fi(+1,+1) = Ri(+1) + S(+1, t), fi(+1,−1) = fi(+1, 0) = Ri(+1), fi(−1,−1) = Ri(−1) + S(−1, t),

fi(−1, 0) = fi(−1,+1) = Ri(−1), and fi(0,+1) = fi(0,−1) = fi(0, 0) = 0. The utility at time t, ui(σi(t)),

of the consumer i with the strategy σi(t) is defined as the sum of the resultant payoffs obtained by playing

the games with the consumer i’s eight immediate neighbors:

ui(σi(t)) =
∑

j∈ñ(i)

fi(σi(t), σj(t))

= (Ri(+1) + S(+1, t)pi(σi(t), t))
n0

2
σi(t)(σi(t) + 1)

+ (Ri(−1) + S(−1, t)pi(σi(t), t))
n0

2
σi(t)(σi(t)− 1) (6)

where n0 stands for the number of neighbors and pi(σi(t), t) is the fraction of the agents with the strategy
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σi(t) among the immediate neighbors and given by

pi(σi(t), t) =
1
n0

∑
j∈ñ(i)

{1
4
σi(t)(σi(t) + 1)σj(t)(σj(t) + 1)

+
1
4
σi(t)(σi(t)− 1)σj(t)(σj(t)− 1)

+ (σi(t) + 1)(σi(t)− 1)(σj(t) + 1)(σj(t)− 1)}

=
1

2n0

∑
j∈ñ(i)

{(3σ2
i (t)− 2)σ2

j (t) + σi(t)σj(t)− 2(σ2
i (t)− 1)} (7)

The updating rule adopted in this paper is so-called “copy cat,” that is, the consumer i’s strategy at

time t+ 1 is defined as follows:

σi(t+ 1) = {σj(t) | uj(t) = max
j∈n(i)

uj(t)} (8)

where n(i) represents i’s neighborhood, which contains both ñ(i) and i itself. In the copy cat, each consumer

imitates the most successful strategy in his neighborhood in terms of consumers’ utilities. The copy cat is

adopted in this paper because it is commonly observed that people try to imitate a strategy of their most

successful neighbor [2,22]. Note that switching costs that consumers pay when they switch from the product

A to B or B to A are assumed to be negligible in this paper and set as zero for simplicity. If such costs are

highly significant, then consumers ’incentive to switch their products dramatically decreases, therefore it

is expected that results of the simulations will be highly dependent on the initial configurations.

III. NUMERICAL RESULTS OF THE MODEL

Simulations are conducted based on the rules of the game explained in the previous section. The results of

the extensive and intensive parameter running are shown in this section. The agents with the three distinct

strategies are homogeneously and randomly distributed at time t = 1 in the game field of two-dimensional

square lattice. Fifty realizations with fifty different initial random configurations are examined in order to

obtain the frequencies of three possible equilibria denoted as A∗, B∗, and P∗. The symbol A∗ denotes the
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equilibrium where the product A takes over the whole market, and B∗ for the product B. The symbol P∗

stands for a polymorphic equilibrium where the product A and B coexist. The small fluctuation term in

payoff, w, is fixed as 0.001 in this paper.

Extensive parameter running is performed with regard to the combinations of three conditions, (ic),

(r), and (s), each of which stands for an initial fraction of agents who have the product A and who have

the product B, r(±1), and s(±1), respectively. The parameter sets are constructed as the combinations

of these three conditions. The condition (ic) has two categories that are (ic-1) {pA(1), pB(1), pC(1)} =

{10/1012, 10/1012, 1 − 20/1012} and (ic-2) {pA(1), pB(1), pC(1)} = {9/1012, 11/1012, 1 − 20/1012}. In the

case of (ic-1) there is symmetry in the initial number of those who adopt the product A and those who adopt

the product B. On the other hand, in the case of (ic-2), the product B is designed to have slight superiority

in number at initial point. The condition on the parameters r(±1) has three categories that are (r-1)

{r(+1), r(−1)} = {1, 1}, (r-2) {r(+1), r(−1)} = {1, 2}, and (r-3) {r(+1), r(−1)} = {2, 1}. The condition

on the parameters s(±1) has four categories that are (s-1) {s(+1), s(−1)} = {0, 0}, (s-2) {s(+1), s(−1)} =

{1, 1}, (s-3) {s(+1), s(−1)} = {1, 2}, and (s-4) {s(+1), s(−1)} = {2, 1}. All the combinations of the above

three conditions count 24. However, only 19 cases excluding one side of symmetric cases are examined.

Table II shows the frequencies of the equilibria A∗, B∗, and P∗ for the 19 cases. The last column in

Table II will be explained in Sec. V. The time after which the system reaches an equilibrium depends on the

parameters ν and ξ in Eq. (2), and it is observed that t=150 (=t∗) is long enough for the system to reach

an equilibrium when ν = 1 and ξ = 0.5 are used.

In the cases 1 and 8, there are no effects of the network externalities because both the parameters s(±1)

are set as zero. In such cases, it is observed that the system has stable polymorphic equilibria. Note that

even though there is symmetry in the initial number, the configuration of the consumers with each strategy

is random. Due to this randomness the equilibria in the case 1 is not exactly as {pA(t∗), pB(t∗), pC(t∗)} =

{0.5, 0.5, 0} but most likely close to these values. On the other hand, the polymorphic equilibria in the case 8

move slightly toward B∗ because of the product B’s slight superiority in number at initial point. In the cases
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2 and 9, now there exist positive and symmetric effects of the network externalities on the product A and B

since the parameters s(±1) are set as the same non-zero value. In such cases, polymorphic equilibria tend

to bifurcate into either A∗ or B∗ and the system becomes sensitive to its initial configuration and fraction.

In the case 2, it now can have three equilibria, A∗, B∗, or P∗. The frequencies of those three equilibria are

distributed nearly equally because of the symmetry in number in the condition (ic-1). In the case 9, however,

the system reaches B∗ more frequently due to the product B’s initial slight superiority in number as in the

condition (ic-2). These results in the cases of 1, 2, 8, and 9 suggest that the existence of the positive effects

of the network externality makes the system inherent three stable equilibria, A∗, B∗, and P∗, and if there

is a difference in initial fraction between agents who adopt A and who does B, the difference is eventually

amplified and decides which equilibrium the system attains. This corresponds to the effects of increasing

returns, which is discussed by Arthur (1989) [1]. In contrast, without effects of the network externality the

slight initial difference is not enlarged and both superior and inferior products are observed to coexist by

forming local clusters in the market (Figure of the game field that contains local clusters is not shown).

In the cases of 3, 4, 5, 6, 10, 12, 13, and 14 the product B is designed to has a strict superiority or

superiorities in its payoff. As a result, in all those cases, the product B always takes over the market. The

same type of argument applies to the cases 11, 16, 17, and 19, but in these cases, the product A is the one

that takes over the market.

Interestingly enough, in the cases of 7and 15, the product B still always takes over the market even

though the product A has a superiority on its network externality parameter s(+1) over s(−1) as seen in

the condition (s-4). This is because the product B has its superiority on the parameter r(−1) over r(+1)

in addition to its initial number superiority for the case 15, and the level of the superiority in network

externality for the product A could not overwhelm the product B’s superiority. It is expected that A∗ could

be seen if s(+1) is set higher, and for example in the case of 7, it is observed that s(+1) = 6 is large enough

for the product A to most likely take over the market as is shown in Table III. The explanation on the last

column in Table III will be given in Sec. V. The case 18 is symmetric against the case 15 except that not
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only the condition (s-3) but also the condition (ic-2) works against the product A, but the frequency of A∗

is still unity due to the condition (r-3).

IV. INTRODUCING AN INNOVATION FACTOR

Now an innovation factor is introduced into the model. Table IV shows frequencies of the three equilibria,

A∗, B∗, and P∗ when an innovation factor is introduced in the case 5 in Table II. The last column in Table

IV will be explained in Sec. V. For the cases 5(a), 5(b), and 5(c) in Table IV, all the parameters as well

as initial conditions are the same as the case 5 up to t = 24, and after t = 25 the parameter s(+1), now

denoted as s(+1, t ≥ 25), is increased to 5(a) 2, 5(b) 4, and 5(c) 6, that is, an innovation is introduced to

the product A’s side at t = 25. One can see that the innovation factor 5(c) s(+1, t ≥ 25) = 6 is large enough

for the product A to retake the market while 5(a) s(+1, t ≥ 25) = 2 and 5(b) s(+1, t ≥ 25) = 4 are too

small. Figure 2(a) represents the trajectories of {pA(t), pB(t)} on the pA(t)-pB(t) plane with (triangle dots)

and without (black circles) the innovation factor s(+1, t ≥ 25) = 6 in the case 5(c) in Table IV, respectively.

It is observed that the product A regains its market share after t = 25 and eventually takes over the whole

market. Here, note that introducing an innovation factor could make the system finally arrive a polymorphic

equilibrium as one can see in Table IV. On the other hand, in the case 5(d) in Table IV, the same size of

innovation factor as the case 5(c) is introduced but at time t = 35. In this case, the product B still always

takes over the market, that is, the time t = 35 is too late for the product A with the innovation factor given

as 6 or the innovation factor s(+1, t ≥ 35) = 6 is too small for introducing at t = 35 to retake the market.

These results suggest that both the timing and size of the innovation factor matter for an inferior product

in order to retake the market.

Figure 2(b) illustrates the overall mean utilities corresponding to the Fig. 2(a) where the product A

successfully retakes the market. The overall mean utilities denoted as UA(t) and UB(t) are defined as
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follows:

UA(t) =
1

|NA(t)|
∑

i∈NA(t)

ui(+1, t)

=
1

|NA(t)|
∑

i∈NA(t)

n0{Ri(+1) + S(+1, t)pi(+1, t)}

= n0{r(+1) +
∑

i∈NA(t) pi(+1, t)

|NA(t)| s(+1)pA(t− 1)} (9)

UB(t) =
1

|NB(t)|
∑

i∈NB(t)

ui(−1, t)

=
1

|NB(t)|
∑

i∈NB(t)

n0{Ri(−1) + S(−1, t)pi(−1, t)}

= n0{r(−1) +
∑

i∈NB(t) pi(−1, t)
|NB(t)| s(−1)pB(t− 1)} (10)

where ui(±1, t) = ui(σi(t) = ±1), NA(t) and NB(t) are the sets of agents who consume the product A and

B in N , respectively, |NA(t)| and |NB(t)| are the size of the sets NA(t) and NB(t), respectively. The ex

and square dots represent UA(t) and UB(t), respectively, in Fig 2(a). Equations (9) and (10) are the key

factors to control the equilibrium of the system since utility functions realize all the parameters in payoffs,

which decide the payoff matrix on which the system mainly is dependent. As in Fig. 2(b), when the inferior

product A comes from behind to retake the market due to the innovation factor, there exists crossover of

UA(t) and UB(t). This fact is utilized when a mean-field theory is constructed to recover the results of the

simulations.

V. MEAN-FIELD THEORY

In this section, a mean-field approximation is conducted to recover the results of the simulations in the

previous section. Here we introduce the local densities of i’s neighbors who are adopting either the strategy

A, B, or C at time t that are given as �i(+1, t), �i(−1, t), and �i(0, t), respectively, as follows:

�i(σ, t) =
1

2(n0 + 1)

∑
j∈n(i)

{(3σ2 − 2)σ2
j (t) + σσj(t)− 2(σ2 − 1)} (11)
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where σ = +1,−1, or 0. Now, if we let σM
k∈n(i)(t) symbolize the σi(t + 1) that satisfies the right hand side

of Eq. (8), then from Eq. (11) the time evolutions of the local densities are given as

�i(+1, t+ 1)− �i(+1, t) =
1

2(n0 + 1)

∑
j∈ñ(i)

{(σM
k∈n(i)(t))

2 − σ2
j (t) + (σM

k∈n(i)(t)− σj(t))}

=
1

2(n0 + 1)
{

∑
j∈ñ(i)

σj(t)(σj(t)− 1)
σM

k∈n(j)(t)(σ
M
k∈n(j)(t) + 1)

2

−
∑

j∈ñ(i)

σj(t)(σj(t) + 1)
σM

k∈n(j)(t)(σ
M
k∈n(j)(t)− 1)

2

+
∑

j∈ñ(i)

2(1 + σj(t))(1− σj(t))
σM

k∈n(j)(t)(σ
M
k∈n(j)(t) + 1)

2
}, (12)

�i(−1, t+ 1)− �i(−1, t) =
1

2(n0 + 1)

∑
j∈ñ(i)

{(σM
k∈n(i)(t))

2 − σ2
j (t)− (σM

k∈n(i)(t)− σj(t))}

=
1

2(n0 + 1)
{−

∑
j∈ñ(i)

σj(t)(σj(t)− 1)
σM

k∈n(j)(t)(σ
M
k∈n(j)(t) + 1)

2

+
∑

j∈ñ(i)

σj(t)(σj(t) + 1)
σM

k∈n(j)(t)(σ
M
k∈n(j)(t)− 1)

2

+
∑

j∈ñ(i)

2(1 + σj(t))(1− σj(t))
σM

k∈n(j)(t)(σ
M
k∈n(j)(t)− 1)

2
}, (13)

and

�i(0, t+ 1)− �i(0, t) =
1

2(n0 + 1)

∑
j∈ñ(i)

(−2){(σM
k∈n(i)(t))

2 − σ2
j (t)}

=
1

2(n0 + 1)
{−

∑
j∈ñ(i)

2(1 + σj(t))(1− σj(t))(σM
k∈n(j)(t))

2}. (14)

Here the global densities of the strategy A, B, and C consumers are introduced as

pA(t) =
1
|N |

∑
i∈N

�i(+1, t), (15)

pB(t) =
1
|N |

∑
i∈N

�i(−1, t), and (16)

pC(t) =
1
|N |

∑
i∈N

�i(0, t), (17)

respectively, where N is the set of the whole customers. Certainly it holds

pA(t) + pB(t) + pC(t) = 1. (18)
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Now the local densities �i(+1, t), �i(−1, t), and �i(0, t) are replaced by the global density pA(t), pB(t),

and pC(t), respectively, and the following equations are obtained:

1
|N |

∑
i∈N

[ �i(±1, t+ 1)− �i(±1, t) ]

= ±Pr(σM
k∈n(j∈n(i))(t) = +1 | ∀i ∈ B)

1
|N |

∑
i∈N

1
2(n0 + 1)

∑
j∈ñ(i)

σj(t)(σj(t)− 1)

∓Pr(σM
k∈n(j∈n(i))(t) = −1 | ∀i ∈ A)

1
|N |

∑
i∈N

1
2(n0 + 1)

∑
j∈ñ(i)

σj(t)(σj(t) + 1)

+Pr(σM
k∈n(j∈n(i))(t) = ±1 | ∀i ∈ C)

1
|N |

∑
i∈N

1
2(n0 + 1)

∑
j∈ñ(i)

2(1 + σj(t))(1− σj(t)) (19)

and

1
|N |

∑
i∈N

[ �i(0, t+ 1)− �i(0, t) ]

= Pr(σM
k∈n(j∈n(i))(t) = +1 ∪ −1 | ∀i ∈ C)

1
|N |

∑
i∈N

1
2(n0 + 1)

∑
j∈ñ(i)

2(1 + σj(t))(1− σj(t)) (20)

that lead to

pA(t+ 1)− pA(t) = α(t) pB(t)− β(t) pA(t) + γ(t) pC(t), (21)

pB(t+ 1)− pB(t) = −α(t) pB(t) + β(t) pA(t) + δ(t) pC(t), and (22)

pC(t+ 1)− pC(t) = −ε(t) pC(t) (23)

where α(t), β(t), γ(t), δ(t), and ε(t) are transition probabilities and therefore approximated as

α(t) = Pr(σM
k∈n(j∈n(i))(t) = +1 | ∀i ∈ B)

�



a
2{1 + sign[ÛA(t)− ÛB(t)]} if pA(1) �= 0

0 otherwise
(24)

β(t) = Pr(σM
k∈n(j∈n(i))(t) = −1 | ∀i ∈ A)

�



b
2{1 + sign[ÛB(t)− ÛA(t)]} if pB(1) �= 0

0 otherwise
(25)
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γ(t) = Pr(σM
k∈n(j∈n(i))(t) = +1 | ∀i ∈ C)

�



k(1− pC(t)) if pA(1) �= 0

0 otherwise
(26)

δ(t) = Pr(σM
k∈n(j∈n(i))(t) = −1 | ∀i ∈ C)

�



k′(1− pC(t)) if pB(1) �= 0

0 otherwise
(27)

ε(t) = Pr(σM
k∈n(j∈n(i))(t) = +1 ∪−1 | ∀i ∈ C)

= γ(t) + δ(t) (28)

where a, b, k, and k′ (0 < a, b, k, k′ < 1) are parameters that controls the magnitude of transition probabilities,

and sign[0] is assumed to be -1, that is, α(t) and β(t) are zero when ÛA(t) = ÛB(t) holds. From Eqs (9)

and (10), the global average utilities for the A and B consumers, ÛA(t) and ÛB(t) in Eqs. (24) and (25), are

approximated as

ÛA(t) = n0{r(+1) + s(+1)p(+1)pA(t− 1)} (29)

ÛB(t) = n0{r(−1) + s(−1)p(−1)pB(t− 1)} (30)

where p(+1) and p(−1) (0 ≤ p(±) ≤ 1) are positive parameters that represent the mean values of pi(+1, t)

and pi(−1, t) over i, respectively. These mean values could approximately be fixed as nearly unity over time

since those who have either A or B essentially form clusters in order to survive no matter what values pA(t)

and pB(t) are. Only exceptions are the cases where either pA(t) or pB(t) are nearly zero or zero. However,

in those cases the values of the parameters p(+1) and p(−1) do not matter since pA(t) and pB(t) are nearly

zero or zero.

The last columns in Tables II, III, and IV show equilibria that are approximated by numerically solving

Eqs. (21) to (23) with Eqs. (24) to (28). The parameters a (= b), k (= k′), and p(+1) (= p(−1)) are

13



chosen as 0.08, λ/2=0.16, and 1, respectively. The parameter k (= k′) is set as λ/2 so that 1 − pC(t)

(= pA(t) + pB(t)) can be described by the logistic equation in Eq. (1) whose parameter is λ. One can see

that the mean-field theory with the above parameters successfully approximates the equilibria the system

most likely reaches.

The trajectory of {pA(t), pB(t)} and overall mean utilities, ÛA(t) and ÛB(t), which are approximated by

the above mean-field theory, are shown in Figs. 3(a) and (b), respectively. These figures correspond to the

case in Figs. 2(a) and (b), respectively, which are obtained as a result of a simulation. It is observed that

the generous features of Figs. 2(a) and (b) are successfully recovered by Figs. 3(a) and (b).

VI. DISCUSSION

In this paper the diffusion phenomena of two competitive, interchangeable, and durable goods have been

studied based on the framework of the spatial 3×3 symmetric coordination like-game. The payoff matrix

of the game contains the positive effects of the network externalities that affect the payoff matrix itself

dynamically by providing feedbacks to the system from the system itself.

Both the simulations and the mean-field approximation have shown that the existence of the positive

effects of the network externality makes the system inherent three stable equilibria, A∗, B∗, and P∗, and

if there is a difference in initial fraction between agents who adopt A and who does B, the difference is

eventually amplified that decides which equilibrium the system reaches. On the other hand, without the

effects of the network externality the slight initial difference is not enlarged and both superior and inferior

products are observed to coexist by forming local clusters in the market. Additionally, from the study on the

model with an innovation factor, it is shown that both the timing and size of the innovation factor matter

for an inferior product in order to retake the market.

In the future, we hope to introduce a random connection between consumers into the model.
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Tables I to IV

Table I

Strategy A (+1) Strategy B (−1) Strategy C (0)

Strategy A (+1) Ri(+1) + S(+1, t) Ri(+1) Ri(+1)

Strategy B (−1) Ri(−1) Ri(−1) + S(−1, t) Ri(−1)
Strategy C (0) 0 0 0

Payoff matrix for a row player. The definitions of Ri(±1) and S(±1, t) are given in Eq. (3), and (4) and (5),

respectively.
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Table II

Conditions Case Frequencies of Equilibria M.F.

ic r s No. A∗ P∗ B∗ Approx.

(ic-1) (r-1) (s-1) 1 0 1 0 P∗

(s-2) 2 0.38 0.36 0.26 P∗

(s-3) 3 0 0 1 B∗

(s-4) - - - - -

(r-2) (s-1) 4 0 0 1 B∗

(s-2) 5 0 0 1 B∗

(s-3) 6 0 0 1 B∗

(s-4) 7 0 0 1 B∗

(ic-2) (r-1) (s-1) 8 0 1 0 P∗

(s-2) 9 0.06 0.16 0.78 B∗

(s-3) 10 0 0 1 B∗

(s-4) 11 1 0 0 A∗

(r-2) (s-1) 12 0 0 1 B∗

(s-2) 13 0 0 1 B∗

(s-3) 14 0 0 1 B∗

(s-4) 15 0 0 1 B∗

(r-3) (s-1) 16 1 0 0 A∗

(s-2) 17 1 0 0 A∗

(s-3) 18 1 0 0 A∗

(s-4) 19 1 0 0 A∗

Frequencies of the equilibria A∗, B∗, and P∗. The symbol A∗ denotes the equilibrium where the prod-

uct A takes over the whole market, and B∗ for the product B. The symbol P∗ stands for a polymorphic

equilibrium where the product A and B coexist. The parameter sets are constructed as the combinations

of the following three conditions, (ic), (r), and (s). The condition (ic) has two categories that are (ic-1)

{pA(1), pB(1), pC(1)} = {10/1012, 10/1012, 1−20/1012} and (ic-2) {pA(1), pB(1), pC(1)} = {9/1012, 11/1012, 1−

20/1012}. The condition on the parameters r(±1) has three categories that are (r-1) {r(+1), r(−1)} = {1, 1},

(r-2) {r(+1), r(−1)} = {1, 2}, and (r-3) {r(+1), r(−1)} = {2, 1}. The condition on the parameters s(±1) has

four categories that are (s-1) {s(+1), s(−1)} = {0, 0}, (s-2) {s(+1), s(−1)} = {1, 1}, (s-3) {s(+1), s(−1)} =

16



{1, 2}, and (s-4) {s(+1), s(−1)} = {2, 1}. All the combinations of the above three conditions count 24. How-

ever, only 19 cases excluding one side of symmetric cases are examined. The last columns show equilibria

that are approximated by the mean-field theory in Sec. V.
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Table III

Conditions Frequencies of Equilibria M.F.

ic r s s(−1), s(+1) A∗ P∗ B∗ Approx.

(ic-1) (r-2) (s-4) 1 , 2 0 0 1 B∗

1 , 3 0 0 1 B∗

1 , 4 0.04 0 0.96 B∗

1 , 5 0.34 0.06 0.6 B∗

1 , 6 0.76 0.06 0.18 A∗

1 , 7 0.98 0 0.02 A∗

1 , 8 1 0 0 A∗

1 , 9 1 0 0 A∗

1 , 10 1 0 0 A∗

The results of the intensive parameter running for the case 7 in Table II. The parameter s(+1) = 6 is large

enough for the product A to take over the market most likely. The last columns show equilibria that are

approximated by the mean-field theory in Sec. V.
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Table IV

Conditions Case Frequencies of Equilibria M.F.

ic r s No. A∗ P∗ B∗ Approx.

(ic-1) (r-2) (s-2) 5(a) 0 0 1 B∗

5(b) 0.04 0 0.96 B∗

5(c) 0.72 0.06 0.22 A∗

5(d) 0 0 1 B∗

Frequencies of the three equilibria, A∗, B∗, and P∗ when an innovation factor is introduced in the case 5

in Table II. The innovation factor 5(c) s(+1, t ≥ 25) = 6 is large enough for the product A to retake the

market while 5(a) s(+1, t ≥ 25) = 2 and 5(b) 4 are too small. In the case 5(d), the product B still always

takes over the market, that is, the time t = 35 is too late for the product A with the innovation factor given

as 6 or the innovation factor s(+1, t ≥ 35) = 6 is too small for introducing at t = 35 to retake the market.

These results suggest that both the timing and size of the innovation factor matter for an inferior product

in order to retake the market. The last columns show equilibria that are approximated by the mean-field

theory in Sec. V.
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Figure Captions

FIGURE 1

Numerically solved pX(t) (square dots) in Eq. (1) with the initial value pX(1)=20/1012 and the parameter

λ=0.32 and the value pX(t) (black circles) that is obtained as a result of the cellular-automata based

simulation with the initial value pX(1)=20/1012 and the parameters ν=1 and ξ = 0.5. The two curves are

almost identical, and it suggests that pX(t) obtained from the simulation could be described by the logistic

equation in Eq. (1). This fact will be utilized later in Sec. V where a mean-field theory is conducted.

FIGURE 2

The results from the simulations in the case 5 with the innovation factor. (a) The trajectories of {pA(t), pB(t)}

on the pA(t)-pB(t) plane with (triangle dots) and without (black circles) the innovation factor s(+1, t ≥ 25) =

6, respectively. (b) The overall mean utilities corresponding to the case with the innovation factor in Fig.

2(a). The ex and square dots are for UA(t) and UB(t), respectively.

FIGURE 3

The results from the mean-field approximation that are corresponding to the case in Figs. 2. The parameters

a (= b), k (= k′), and p(+1) (= p(−1)) are chosen as 0.08, λ/2=0.16, and 1, respectively. (a) The trajectories

of {pA(t), pB(t)} to A∗ and B∗ on the pA(t)-pB(t) plane with and without the innovation factor s(+1, t ≥

25) = 6, respectively. (b) The overall mean utilities corresponding to the Fig. 3(a) where the product A

successfully retakes the market.
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