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Abstract

We study certain classes of supermodular and submodular games which are sym-

metric with respect to material payo¤s but in which not all players seek to maximize

their material payo¤s. Speci…cally, a subset of players have negatively interdependent

preferences and care not only about their own material payo¤s but also about their

payo¤s relative to others. We identify su¢cient conditions under which members of

the latter group have a strategic advantage in the following sense: at all intragroup

symmetric equilibria of the game, they earn strictly higher material payo¤s than do

players who seek to maximize their material payo¤s. We show that these conditions are

satis…ed by a number of games of economic importance, and discuss the implications

of these …ndings for the evolutionary theory of preference formation and the theory of

Cournot competition.
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1 Introduction

A fundamental ingredient of most economic models is the hypothesis of independent prefer-

ences: agents choose their actions with the sole purpose of maximizing their own material

payo¤s regardless of how their actions a¤ect the payo¤s of other individuals. While this

postulate is seldom given explicit justi…cation, it appears to be based on the intuition that

those individuals who are willing to make material sacri…ces to a¤ect the payo¤s of others

will lose wealth relative to those who are unwilling to do so, with the eventual consequence

that the latter will come to dominate the economy. In this case, the maximization of one’s

own material payo¤s would simply be a pre-condition for survival in an environment where

a competitive selection process is at work. While this intuition may be persuasive in the

context of perfectly competitive environments, it can be seriously misleading when applied

to strategic settings, for it is not generally true in such environments that agents who pur-

sue the maximization of their own material payo¤s will obtain higher material payo¤s in

equilibrium than symmetrically placed individuals who maximize other objective functions.

Indeed, at least in some strategic environments, the reverse may be true.

This last point has been demonstrated in the literature mostly by means of particular

speci…cations of Cournot oligopoly models. For instance, Vickers (1984) and Fershtman and

Judd (1987) have shown in the context of such models (with linear demand and cost func-

tions) that a …rm whose objective function gives a positive weight to its relative pro…ts or

sales will outperform the absolute pro…t maximizers in terms of absolute pro…ts. It can also

be shown that similar results obtain in some other strategic environments, such as common

pool resource and public good games (Koçkesen et al., 1997), in which agents with negatively
interdependent preferences (that is, those who care about both absolute and relative pay-

o¤s) may well obtain greater absolute payo¤s in equilibrium than do symmetrically placed

absolute payo¤ maximizers. In such environments, interdependent preferences may be said

to yield a strategic advantage to those who possess them.

While it is useful to know that interdependent preferences yield a strategic advantage

in the particular examples that have been considered in the literature to date, it is di¢cult

to judge the broader signi…cance of such …ndings without some assessment of the extent

to which such results can be generalized. Our purpose in this paper is to provide a fairly

general analysis of the issue, and to show that the cases in which negatively interdependent

preferences yield an unambiguous strategic advantage over independent preferences are far

more common than one might at …rst expect. We consider the general classes of supermod-

ular and submodular games in which only a subset of players have independent objective

functions whereas the rest have negatively interdependent preferences. Informally stated, we

identify several sets of su¢cient conditions under which the members of the latter group have

a strategic advantage in the following sense: at all intragroup symmetric equilibria, the in-
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terdependent individuals earn higher material payo¤s than do players who seek to maximize

their own material payo¤s. We also show that there are simple symmetric games in which

players with independent preferences unambiguously outperform those with interdependent

preferences in terms of absolute payo¤s.

These …ndings may be considered interesting in their own right, since they relate the

familiar notions of strategic complementarities and substitutabilities to the possibility that

an envious concern with the payo¤s of others may lead one to have greater absolute payo¤s

in equilibrium than those obtained by (absolute) payo¤ maximizers. Moreover, these results

achieve a useful level of generality, for it turns out that our su¢ciency conditions are satis…ed

by a number of games which play central roles in various branches of economic theory,

including the Cournot oligopoly, input and public good games, search models and arms

races.

The main …ndings of this paper …nd immediate application in at least two contexts.

Our …rst application concerns the theory of preference formation. Evolutionary models of

preference formation are typically based on the assumption that the selection dynamics are

payo¤ monotonic: the population share of those endowed with preferences that are more

highly rewarded materially increases relative to the population share of those who are less

highly rewarded (see, among others, Rogers, 1994, Bergstrom, 1995 and Robson, 1996). In

the presence of such payo¤ monotonic selection dynamics, our results enable us to identify

the evolutionary stability properties of absolute payo¤ maximizing behavior. Speci…cally,

with respect to the economic environments studied here, we are able to show that the long

run population composition cannot be a monomorphic one composed only of absolute payo¤

maximizers. While this does not preclude the persistent presence of independent agents

in the population, it calls into question the common practice of modeling economic agents

exclusively as absolute payo¤ maximizers.

Secondly, our …ndings have some interesting implications for the analysis of oligopolistic

industries. This stems from the fact that executive managers may in some circumstances

either choose or be given incentives by owners to incorporate relative pro…t (or market share)

concerns into their decision making. For example, when shareholders cannot calculate the

potential pro…ts of the …rm under di¤erent action choices, managers may well seek to occupy

a higher rank in the industry distribution of pro…ts so as to demonstrate their success.

Alternatively, as advanced by several authors, there may exist informational reasons for

owners to provide incentives to their managers that cause the latter to be concerned with

the …rm’s performance relative to those of similarly situated competing …rms. In particular, if

managers’ e¤orts are unobservable by owners and there is some common uncertainty a¤ecting

all …rms in the industry, owners may bene…t from making their managers’ compensation

contingent upon relative as well as absolute pro…ts (Holmström, 1982, and Nalebu¤ and
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Stiglitz, 1983). As a corollary of our results, we …nd here that such contracts may yield an

unplanned strategic advantage to a …rm in terms of its absolute pro…ts. Since this advantage

is not based on technological or marketing superiority, it helps provide a novel explanation

for the evident inequality of market shares even in industries which are composed of …rms

operating with very similar technologies.

The paper is organized as follows. In Section 2 we introduce our general framework and

formalize the nature of the present inquiry. Section 3 contains our main results which iden-

tify certain classes of supermodular and submodular games in which interdependent agents

have a strategic advantage over independent agents in all intragroup symmetric equilibria.

Examples of several commonly studied games that belong to these classes are also presented

in this section. Finally, in Section 4 we elaborate on the implications of our main …ndings for

the theories of preference formation and Cournot competition. We conclude with a discussion

of directions for future research, and an appendix containing the proofs of our results.

2 The Framework

Since our ultimate aim is to compare the performances of di¤erent preference structures in

terms of monetary outcomes, we shall concentrate on games in strategic form in which no

player has an a priori advantage in terms of the primitives of the game. Consequently, our

focus will be exclusively on symmetric games. Given any integers n > 2 and ` > 1; we let ¡

stand for a symmetric n-person normal form game with an `-dimensional action space. That

is,

¡ = (X;f¼rgr=1;:::;n)
where X µ R` and ¼r : Xn ! R are the action space and the absolute payo¤ function of

player r; and where we have

¼r(x1; :::; xn) = ¼¾(r)(x¾(1); :::; x¾(n)) 8xr 2 X and r = 1; :::; n (1)

for any swap operator ¾ on f1; :::; ng:1 As is usually done in applied and experimental game

theory, we interpret ¼r as the material payo¤ function of player r:Moreover, we assume that

¡ satis…es the following nonnegativity conditions:

¼r(x) > 0 8x 2 Xn and r = 1; :::; n: (2)

These conditions allow us interpret the notion of “relative payo¤s” in the usual sense.2

Finally, we denote the class of all ¡ that satisfy (2) by G, and let N(¡) stand for the set of
1A swap operator ¾ on f1; :::; ng is a permutation on f1; :::; ng such that jfr : ¾(r) 6= rgj = 2:
2When ¼r is bounded from below, the requirement in (2) is not restrictive. For by adding jinfx2X ¼r(x)j

to ¼r, we obtain a new game which satis…es (2) and which is strategically equivalent to the original game;
see the examples given in Section 3.3.
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all Nash equilibria of ¡ 2 G.

In what follows, we endow R` with a partial order % to obtain an ordered vector space.3

In fact, we shall often take X to be a chain, i.e., assume that % linearly (completely) orders

X. We note that the linearity of the order % does not turn out to be demanding as a

structural assumption in many applications. Indeed, in numerous economic contexts ` is

taken to be 1; i.e. X µ R; in which case there is a natural linear order on X: Therefore,

insofar as such games are concerned, the assumption that X is completely ordered is without

loss of generality. On the other hand, when ` > 1; depending on the economic context, one

may linearly order X by means of any completion of the coordinatewise ordering such as the

lexicographic, leximin or leximax orderings.

Throughout this paper we assume that the set of players consists of two di¤erent types,

namely, independent and (negatively) interdependent players. The independent players are

those who are absolute payo¤ maximizers in the usual sense; the objective function of an

independent player i is precisely her own monetary payo¤ function ¼i: On the other hand,

(negatively) interdependent players are concerned not only with their absolute payo¤s, but

also with how their absolute payo¤s compare with the average payo¤ in the game. Let

¹¼ ´ 1
n

P
¼r denote the average (absolute) payo¤ function on Xn, and de…ne the relative

payo¤ of player j as follows:4

½j =

8
>><
>>:

¼j
¹¼
; if ¼j > 0

0; if ¼j = 0:

The objective function of an interdependent player j is given by x 7! F (¼j; ½j) where F

is an arbitrary strictly increasing real function on R2
+: This particular way of representing

negatively interdependent preferences has recently been proposed and axiomatically char-

acterized by Ok and Koçkesen (1997). In particular, when ¡ is played between individuals

(as opposed to, say, …rms), the preferences represented in this form can be interpreted as a

compromise between the standard case where one is assumed to care only about her mone-

tary earnings ¼j , and the extreme case where she is concerned exclusively with her relative
payo¤ in the game, i.e., with ½j (the latter case corresponds to Duesenberry’s relative income

hypothesis.)5 If, on the other hand, ¡ is an oligopoly game, then an interdependent player

3A partial order % on R` is a relation on R` which is re‡exive, transitive and antisymmetric. (As usual,
we write Â for % n =.) We say that (R`;%) is an ordered vector (or Riesz) space; if % is a partial order,
and if, for any x; y 2 R` with x % y; we have x + z % y + z and ¸x % ¸y for all z 2 R` and ¸ > 0:

4We use the convention of setting ½j(x) = 0 whenever ¼j(x) = 0 to avoid the di¢culty of evaluating the
indeterminate form 0=0:

5Special cases of this representation of interdependent preferences are utilized in numerous economic
contexts ranging from models of optimal income taxation to experimental bargaining games. We refer the
reader to the references cited in Ok and Koçkesen (1997) and Koçkesen et al. (1997).
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with such an objective function can be thought of as a …rm (or manager) who targets the

maximization of not only its pro…ts but also its pro…t share in the industry.

Let us then assume that precisely k 2 f1; :::; n¡1g many players in ¡ 2 G are independent.

We de…ne the n-person normal form game

¡F (k) = (X; fprgr=1;:::;n)

with

pr ´

8
><
>:

¼r; if r 2 Ik

F (¼r; ½r) ; if r 2 Jk
(3)

where

Ik ´ f1; :::; kg and Jk ´ fk + 1; :::; ng;

and F : R2
+ ! R is any strictly increasing function.6 Clearly, in ¡F (k); the set of all

independent players is Ik; and the set of all interdependent players is Jk: (By de…nition,

there are jIkj = k many independent players, and jJkj = n¡ k many interdependent players

in ¡F (k).) The crucial interpretation is that, while we only observe the payo¤s associated

with the game ¡ as outsiders, the associated players actually engage in playing ¡F (k) instead

of ¡:

In this paper, we wish to analyze the nature of Nash equilibrium of an arbitrary ¡F (k):

However, it must be noted at the outset that there are two immediate di¢culties that

we shall often assume away in the general analysis that follows. First, the existence of a

Nash equilibrium of ¡F (k) is rather di¢cult to establish in general. Even if we posit the

standard requirement of quasiconcavity of ¼r in xr for all r (along with continuity of ¼r;

and compactness and convexity of X), the payo¤ function pj; j 2 Jk; need not inherit this

property. Even the deeper existence theorems established in the literature (such as those of

Topkis, 1979, Nishimura and Friedman, 1981, and Dasgupta and Maskin, 1986) are generally

not helpful in settling this existence problem. It appears that the best strategy at this stage

is to ignore this problem, and search for some qualitative properties of the equilibria of

¡F (k); when it exists. In fact, in many examples of economic interest (such as Cournot and

Bertrand oligopolies, common pool resource and public good games, arms races, etc.) one

can directly verify that the set of equilibria of ¡F (k) is nonempty, and hence our line of

attack turns out to be fruitful.

The second di¢culty is the analytical intractability of certain non–symmetric equilibria

of an arbitrary ¡F (k). The analysis is greatly simpli…ed when we focus instead on the

6As the proofs given in the appendix will readily reveal, our entire development remains intact if each pj

was de…ned in terms of a strictly increasing Fj for all j 2 Jk where Fj1 6= Fj2 was allowed for any j1 6= j2:
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intragroup symmetric Nash equilibria of a given game ¡F (k); denoted Nsym(¡F (k));

which is de…ned as

Nsym(¡F (k)) ´ f([a]k; [b]n¡k) 2 N(¡F (k)) : a; b 2 Xg

where [t]l denotes the l¡replication of the object t.7 One could, of course, advance a

“focal point” argument to justify interest in Nsym(¡F (k)): Perhaps more importantly, we

shall observe that in most of the economic examples considered below, we actually have

N(¡F (k)) = Nsym(¡F (k)) so a focus on intragroup symmetric equilibria is unrestrictive.

This is trivially the case in all two person games.

Finally, let us clarify what we mean by “studying the nature of Nsym(¡F (k))” given a

¡ 2 G. Put precisely, we are interested in identifying some general subclasses of G where

interdependent players have a de…nite strategic advantage over the independent players in

terms of monetary payo¤s, that is, where

¼j(x̂) > ¼i(x̂) 8(i; j) 2 Ik £ Jk and x̂ 2 Nsym(¡F (k)): (4)

There are several concrete economic motivations behind this inquiry as already hinted in

the previous section. Indeed, whether or not interdependent players (who do not directly

maximize their absolute payo¤s) obtain higher (or strictly higher) absolute payo¤s than all

independent players (who do target the maximization of their absolute payo¤s) is a question

of great interest in evolutionary theories of preference formation. The same inquiry also turns

out to be quite relevant with respect to some recent approaches in oligopoly theory where

the distinction between managerial incentives and the objectives of the …rm is explicitly

modeled. Such applications of our basic analysis will be discussed in some detail in Section

4.

3 Main Results

3.1 Supermodular Games

An n-person normal form game ¡ 2 G is said to be supermodular wheneverX is a sublattice

of R` and

¼r(x _ y) + ¼r(x ^ y) > ¼r(x) + ¼r(y) 8x; y 2 Xn and r = 1; :::; n,

7By an immediate application of the symmetry condition (1) we have

¼i1(x̂) = ¼i2(x̂) 8i1; i2 2 Ik; and ¼j1(x̂) = ¼j2(x̂) 8j1; j2 2 Jk

whenever x̂ 2 Nsym(¡F (k)); this observation will prove extremely useful in what follows.
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where x _ y is the lowest upper bound of fx; yg in X (with respect to %) and x ^ y is the

greatest lower bound of fx; yg in X: We say that ¡ is strictly supermodular if the above

inequality holds strictly for all r and x; y 2 Xn such that fx _ y; x ^ yg 6= fx; yg:
Supermodular games correspond to games in which the actions of two distinct players

are strategic complements in the sense that the best response correspondences of the players

are increasing (Bulow et al., 1985). It is well known that if ¼r is C2; then ¡ is supermodular

if and only if @2¼r=@xr@xq > 0 for all r 6= q (Topkis, 1978). Moreover, any supermodular

¡ 2 G has at least one symmetric equilibrium, provided that X is compact, and ¼r(¢; x¡r) is

upper semicontinuous for all x¡r 2 Xn¡1 (Topkis, 1979, and Vives, 1990).8,9

We next introduce another interesting subclass of G that we will work with.

Definition. An n-person normal form game ¡ 2 G is said to be positively (nega-
tively) action-monotonic if, for all x 2 Xn;

xr Â (Á) xq implies ¼r(x) > ¼q(x):

Action-monotonicity is a curious property that requires a tight connection (a certain kind

of isotonicity) between payo¤s and actions. While it is not a standard condition for normal

form games, action-monotonicity is nevertheless satis…ed by a wide variety of symmetric

games. In general, any ¡ 2 G with

¼r(x) = ª(xr; Ã(x)); r = 1; :::; n

where ª : X £ R ! R+ is strictly increasing (decreasing) in the …rst component and Ã :

Xn ! R is symmetric, is positively (negatively) action-monotonic. We shall observe below

that several widely studied symmetric games, including common pool resource extraction

and public good games, and Cournot oligopolies with constant average costs, are special

cases of this general formulation.

The …rst main result of this section provides an answer to the general question stated

in the previous section within the broad class of all action-monotonic strictly supermodular

games:

Theorem 1. Let k 2 f1; :::; n ¡ 1g and take any strictly increasing F : R2
+ ! R: Let

¡ 2 G be strictly supermodular with X being any chain. If ¡ is action-monotonic, then for

any x̂ 2 Nsym(¡F (k)) with x̂1 6= x̂n; we have

¼j(x̂) > ¼i(x̂) 8(i; j) 2 Ik £ Jk:
8Unless otherwise is explicitly stated, all references to topological properties are to be considered in terms

of the Euclidean topology throughout this paper.
9¼r : X ! R is said to be upper (lower) semicontinuous, if, for any x; xm 2 X; m = 1; :::; limxm = x

implies that lim sup¼r(xm) 6 ¼r(x) (lim inf ¼r(xm) > ¼r(x); resp.)
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Theorem 1 states that at any intragroup symmetric equilibrium of an action monotonic

strictly supermodular game, the absolute payo¤s to interdependent players are strictly

greater than those to independent players, unless both groups take the same equilibrium

action. There are indeed examples of commonly studied games which satisfy the require-

ments of the theorem and in which strict inequality of payo¤s obtains; a number of these are

discussed in Section 3.3 below.

Remark 1. Milgrom and Shannon (1994) have introduced a weakening of the super-

modularity concept, namely quasisupermodularity, which is nevertheless strong enough to

allow fruitful analysis (especially when X is a chain): an n-person normal form game ¡ 2 G
is said to be quasisupermodular, if ¼r(x) > (>)¼r(x ^ y) implies ¼r(x _ y) > (>) ¼r(y);
for all x; y 2 Xn and r = 1; :::; n: We note that Theorem 1 remains valid when we replace

strict supermodularity with quasisupermodularity, provided that k 2 f1; :::; n ¡ 2g: That

this claim is true becomes apparent upon close inspection of the proof of Theorem 1 which

is given in the appendix. k

The signi…cance of Theorem 1 is limited, however, by the fact that it deals only with

intragroup symmetric equilibria. The following corollary, in contrast, keeps the hypotheses

of linear ordering and action-monotonicity of Theorem 1, but deals with all Nash equilibria

for the special case when there is only one interdependent player.

Corollary 1. Let F : R2
+ ! R be any strictly increasing function. For any action-

monotonic and strictly supermodular ¡ 2 G where X is any chain, and for any x̂ 2 N(¡F (n¡
1)) with x̂i 6= x̂n for some i 2 In¡1;

¼n(x̂) >
1

n ¡ 1

n¡1X

i=1

¼i(x̂):

Corollary 1 states that in the special case when only one of the players has interdependent

preferences, this player earns a payo¤ that is at least as high as the average payo¤ earned by

the remaining (independent) players. Unless all players choose the same action, moreover,

the interdependent player earns a strictly higher level of absolute payo¤s than the popula-

tion average. As we shall see in the next section, this is important from an evolutionary

perspective, since it implies that the extinction of players with interdependent preferences

cannot occur under any payo¤ monotonic evolutionary selection dynamics.

Remark 2. (a) Corollary 1 remains valid if we take X to be any lattice in R`, but

assume that maxfx̂i : i 2 In¡1g 6= ; for all x̂ 2 N(¡F (n¡ 1)):
(b) The following generalization of Corollary 1 is also true: Let k 2 f1; :::; n¡ 1g; let X be

any chain, take any strictly increasing F : R2
+ ! R; and let ¡ 2 G be action-monotonic and
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strictly supermodular. If x̂ 2 N (¡F (k)) and x̂k+1 = ¢ ¢ ¢ = x̂n with x̂i 6= x̂n for some i 2 Ik;
then

1

n¡ k

nX

j=k+1

¼j(x̂) >
1

k

kX

i=1

¼i(x̂):

As with Corollary 1, this observation (the proof of which is given in the appendix) has

implications in the context of evolutionary preference formation dynamics; see Section 4.1

below. k

Theorem 1 and its corollary rely on the property of action monotonicity, which a number

of important supermodular games do not satisfy. Fortunately, this requirement can also be

relaxed for the case in which only one of the players has interdependent preferences.

Theorem 2. Let F : R2
+ ! R be any strictly increasing function. For any strictly

supermodular ¡ 2 G where X is any lattice, and for any x̂ 2 Nsym(¡F (n¡ 1)) with x̂1 6= x̂n;

¼n(x̂) > ¼i(x̂) 8i 2 In¡1:

It is worth noting that Theorem 2 dispenses with two restrictive hypotheses of Theo-

rem 1. Indeed, X need not be linearly ordered for Theorem 2 to work; any partial or-

der on R` (like the familiar vector dominance) would do. Moreover, this result covers all

strictly supermodular games, including those that violate action-monotonicity. In particu-

lar, Theorem 2 shows that the interdependent player unambiguously holds the upper hand

in any strictly supermodular two-person game ¡ 2 G with X being any lattice in R`; for

Nsym(¡F (1)) = N (¡F (1)). Finally, we note that while Theorem 2 refers only to the proper-

ties of intragroup symmetric equilibria, this is not restrictive in models where independent

players always choose the same equilibrium action. The examples given in Subsection 3.3

will show that this observation is at times quite useful.

We conclude this section by demonstrating that action-monotonicity alone is not su¢cient

to yield any of the above results. In particular, the following example illustrates the crucial

role played by supermodularity in Theorems 1 and 2.

Example. Consider the two-person normal form game ¡ 2 G represented by the bimatrix
2
64

(1; 1) (1; 1=2) (3; 2)

(1=2; 1) (1; 1) (2; 0)

(2; 3) (0; 2) (2; 2)

3
75 :

Here the strategy space of each agent is the chain f1; 2; 3g: This game is easily checked

to be (negatively) action monotonic but not supermodular. It has three Nash equilibria,

N(¡) = f(1; 3); (3; 1); (2; 2)g. Taking F (z1; z2) = z1z2 for all z1; z2 > 0; and adopting the
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convention of treating the column player as player 2, the game ¡F (1) is represented by the

bimatrix 2
64

(1; 1) (1; 1=3) (3; 8=5)

(1=2; 4=3) (1; 1) (2; 0)

(2; 18=5) (0; 4) (2; 2)

3
75 :

Clearly, N(¡F (1)) = f(1; 3)g; and ¼1(1; 3) = 3 > 2 = ¼2(1; 3): We therefore conclude that in

this game the player with interdependent behavior is subject to a strategic disadvantage.k

Example 1 illustrates that action monotonicity is in fact consistent with the possibility

of interdependent players having a strategic disadvantage against independent players. It

should thus be formally clear that our main inquiry (that is, determining a general subclass

of G the members of which satisfy (4)) is not a trivial one. On the other hand, we know

from Theorem 1 that action monotonicity together with strict supermodularity is su¢cient

for interdependent players to have a strategic advantage over the independent players. Al-

ternative su¢cient conditions for the strategic advantage of interdependent players may be

found, however, that do not rely on supermodularity. The following section deals with the

case of submodular games.

3.2 Submodular Games with Spillovers

As explored by Cooper and John (1988), among others, a wide variety of economically

interesting games exhibit a negative (or positive) spillover e¤ect. In such games, an increase

in the level of action taken by a player decreases (or increases) the absolute payo¤s of all

other players. The strong form of this property is, however, too demanding, for it is not

satis…ed by games in which players have at least one potential action which would nullify the

in‡uence of other players. For instance, in the classical Cournot model of oligopoly, a …rm

may completely annihilate the e¤ect of quantity choices of other …rms on its pro…ts simply

by choosing to shut down. For this reason, we shall work here with a slightly weaker notion

of the spillover e¤ect (which will later be seen to be present in the Cournot game).

Definition. Let

A ´ fx 2 Nsym(¡F (k)) : F : R
2
+ ! R is strictly increasing and k = 1; :::; n¡ 1g:

An n-person normal form game ¡ 2 G is said to have negative spillovers, if for any x 2 A,

t1 Â xr Â t2 implies ¼q(x¡r; t
1) < ¼q(x) < ¼q(x¡r; t

2)

for all r and q 6= r. Games with positive spillovers are de…ned dually.
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It turns out that in games with negative spillovers, there is a tight connection between

action monotonicity and the possibility of ¼j(¹x) > ¼i(¹x) holding for all i 2 Ik and all j 2 Jk:
The following proposition aims to drive this point home.

Lemma 1. Let k 2 f1; :::; n¡ 1g and take any strictly increasing F : R2
+ ! R: For any

¡ 2 G with negative spillovers and any x̂ 2 Nsym(¡F (k));

¼j(x̂) > (>)¼i(x̂) 8(i; j) 2 Ik £ Jk

holds only if x̂j % (Â) x̂i for all (i; j) 2 Ik £ Jk: Moreover, if k = n ¡ 1; then, for any
i 2 In¡1;

¼n(x̂) > (>) ¼i(x̂) if and only if x̂n % (Â) x̂i:

This lemma shows that positive action-monotonicity at the equilibrium action pro…le is

essentially a necessary condition for (4) to hold in the case of games with negative spillovers.

It can be shown similarly that negative action monotonicity at the equilibrium action pro…le

is a necessary condition for (4) to hold for games with positive spillovers.

Given that X is a sublattice of R`; an n-person normal form game ¡ 2 G is said to be

submodular if

¼r(x _ y) + ¼r(x ^ y) 6 ¼r(x) + ¼r(y) 8x; y 2 Xn and r = 1; :::; n.

We say that ¡ is strictly submodular if the above inequality holds strictly for all r and

x; y 2 Xn such that fx_y; x^yg 6= fx; yg: In contrast with supermodular games, submodular

games are those in which actions of any two players are strategic substitutes in the sense

that the best response maps of all players are decreasing (Bulow et al., 1985).

Finally, we shall need the following concept for the analysis of this subsection.

Definition. An n-person normal form game ¡ 2 G is called symmetric in equilib-
rium if it does not possess an asymmetric Nash equilibrium, i.e. x̂ 2 N (¡) implies that

x̂i = x̂j for all i 6= j:

While symmetry in equilibrium is admittedly a demanding property, it is satis…ed by

a variety of commonly studied symmetric games such as the stag hunt game, prisoner’s

dilemma, the common pool resource game, many symmetric Cournot and Bertrand oligopoly

models, and public good games. In fact, for strictly submodular games, this property is

nothing other than the requirement of uniqueness of equilibrium:

Lemma 2. Let ¡ 2 G be a strictly submodular game such that N(¡) 6= ;: Then, ¡ is
symmetric in equilibrium if, and only if, it has a unique equilibrium.

12



Our main result takes as primitives those games in G where the common strategy set of

the players is convex and compact, and the payo¤ function of the rth player is continuous

and quasiconcave in xr, for all r:10 Denoting the class of all such games by G0; we are now

ready to state

Theorem 3. Let ¡ 2 G0; k 2 f1; :::; n¡1g and take any strictly increasing F : R2
+ ! R:

If ¡ is a positively (negatively) action monotonic and strictly submodular game with negative

(positive) spillovers, and is symmetric in equilibrium, then, for any x̂ 2 Nsym(¡F (k)) such
that x̂1 6= x̂n and ¼r(x̂) > 0 for all r; we have

¼j(x̂) > ¼i(x̂) 8(i; j) 2 Ik £ Jk:

In words, if a positively (negatively) action monotonic strictly submodular game with neg-

ative (positive) spillovers satis…es symmetry in equilibrium, then the interdependent players

have a strategic advantage over the independent players in that at any intragroup symmetric

equilibrium of the game they earn strictly greater absolute payo¤s than independent play-

ers, provided that both groups take distinct equilibrium actions. The examples of the next

subsection will illustrate the power of this observation.

Remark 3. Lemma 1 has demonstrated the necessity of action monotonicity for the

conclusion of Theorem 3 to hold. Since we think of submodular games with spillovers as

primitives in the above analysis, the only question about the tightness of this result con-

cerns the relaxation of the symmetry in equilibrium condition. To see that this condition

too cannot be completely relaxed in Theorem 3, consider the following “hawk-dove” game

represented by the bimatrix "
(10; 10) (5; 15)

(15; 5) (1; 1)

#

and de…ne ¡ as its mixed strategy extension. One can easily verify that ¡ satis…es all the

hypotheses of Theorem 3 except for symmetry in equilibrium, and that ((1; 0); (0; 1)) 2
Nsym(¡F (1)) where F (z1; z2) = z1z2 for all z1; z2 > 0: Hence there exists an equilibrium in

which the player with interdependent preferences obtains a strictly lower absolute payo¤. k
10We note that assuming compactness of X is often less restrictive than assuming completeness of X as

a chain (i.e. postulating that fsupY; inf Y g ½ X for all Y µ X), provided that % is a completion of the
coordinatewise ordering. For instance, since the order topology derived from the lexicographic ordering is
…ner than the Euclidean topology, and since a chain is compact in its order topology i¤ it is complete (Birkho¤,
1963, p.242, Theorem 12), every complete chain w.r.t. the lexicographic ordering must be compact in the
Euclidean topology. It is also worth noting that if X is a complete lattice with respect to the coordinatewise
ordering, then, and only then, it is compact in the Euclidean topology (see Frink, 1942, Theorems 5 and 9).
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In closing, we note that one can again relax the requirement of action-monotonicity when

there is only one interdependent player in the game. The following is then a counterpart to

Theorem 2.

Theorem 4. Let F : R2
+ ! R be any strictly increasing function. If ¡ is a strictly

submodular game with negative or positive spillovers, and is symmetric in equilibrium, then,
for any x̂ 2 Nsym(¡F (n¡ 1)) such that x̂1 6= x̂n and ¼r(x̂) > 0 for all r; we have

¼n(x̂) > ¼i(x̂) 8i 2 In¡1:

Theorem 4 provides su¢cient conditions for the single player with interdependent pref-

erences to have a strategic advantage with respect to the remaining players in submodular

games. As with Theorem 2, this result has evolutionary implications. For any game which

satis…es the conditions of the Theorem, a population consisting exclusively of players with in-

dependent preferences will be vulnerable to invasion by the emergence of a single player with

negatively interdependent preferences, under any payo¤ monotonic evolutionary selection

dynamics. This intuition will be formalized in Section 4.1 below.

3.3 Examples

The usefulness of the results presented in the previous section hinges on the degree to which

they may be applied to games of economic interest. In this subsection we present three

classes of such examples.

I. Input and Public Good Games. Consider an n-person game ¡ 2 G with X = [0; !],

0 < ! < 1; where the absolute payo¤ function of player r is additively separable and

de…ned on Xn as

¼r(x) = u(! ¡ xr) + v
Ã

nX

q=1

xq

!
; r = 1; :::; n:

We assume that u and v are strictly positive-valued, strictly increasing C2 functions on

[0; !] and [0; n!] respectively, with u00 < 0; u0(0+) = 1 and u0(!) < v0 (0). The last two

conditions guarantee that the symmetric Nash equilibria of ¡ are interior: We show below

that all equilibria of ¡ are in fact symmetric.

Here, ! stands for the private endowment of agent r; and the action xr is interpreted as

her input (e¤ort) supply to a shared production process or her contribution to the provision

of a public good. In turn, the function u is thought of as the utility provided by privately

consuming own input (or the utility of private consumption good), and the function v as

the utility of jointly produced good (or the public good, respectively). In accordance with
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the general analysis presented in the previous subsections, we assume in what follows that

players k + 1 to n maximize an objective function of the form (3) for some di¤erentiable F

with F1; F2 > 0:

It is easy to see that ¡ is negatively action monotonic and has positive spillovers. To see

that ¡ is symmetric in equilibrium, take any x̂ 2 N(¡) and let x̂r < x̂q for some players r

and q. We must then have @¼r(x̂)=@xr 6 0 6 @¼q(x̂)=@xq while u00 < 0 implies that

@¼r(x̂)

@xr
= ¡u0(! ¡ x̂r) + v0

Ã
nX

s=1

x̂s

!
> ¡u0(! ¡ x̂q) + v0

Ã
nX

s=1

x̂s

!
=
@¼q(x̂)

@xq
:

Hence ¡ is symmetric in equilibrium, and the conditions u0(0+) = 1 and u0(!) < v0 (0)

ensure that any equilibrium x̂ is interior, i.e., x̂ 2 (0; !)n for any x̂ 2 N(¡). The same

reasoning also shows that x̂i1 = x̂i2 for all i1; i2 2 Ik and all x̂ 2 N(¡F (k)). (Notice that the

last observation implies that Nsym(¡F (n¡ 1)) = N(¡F (n ¡ 1))). Finally, we claim that the

equilibrium actions of independent and interdependent agents are di¤erent from each other,

i.e., x̂i 6= x̂j for any (i; j) 2 Ik £ Jk and any x̂ 2 Nsym(¡F (k)): Note that x̂i 2 [0; !) for

all i 2 Ik since u0(0+) = 1: Now suppose that for each player i 2 Ik, we have x̂i 2 (0; !)
so that @¼i(x̂)=@xi = 0: If there was an (i; j) 2 Ik £ Jk such that x̂i = x̂j ; we would have

@¼i(x̂)=@xi = @¼j(x̂)=@xj = 0: But this cannot hold, for otherwise

@pj(x̂)

@xj
= ¡ ¼jF2

¹¼
P
¼q

ÃX

q 6=j

@¼q
@xj

!¯̄
¯̄
¯
x=x̂

< 0;

while we must have @pj(x̂)=@xj = 0 since x̂j = x̂i 2 (0; !): Hence, when independent players

take an interior action, x̂i 6= x̂j for any (i; j) 2 Ik £ Jk and any x̂ 2 N (¡F (k)): Finally

suppose that for each player i 2 Ik, we have x̂i = 0. If it were also the case that for each

player j 2 Jk, we have x̂j = 0, then x̂ could not be an equilibrium since u0(!) < v0 (0)

and independent players could bene…t from a unilateral deviation. Hence x̂i 6= x̂j for any

(i; j) 2 Ik £ Jk and any x̂ 2 Nsym(¡F (k)):

Now, if v is strictly convex (concave), then the game is strictly supermodular (submodular)

and since we have established above that x̂1 6= x̂n for any x̂ 2 Nsym(¡F (k)); we may use

Theorem 1 (Theorem 3) to conclude that at any intragroup symmetric equilibrium the agents

with interdependent preferences obtain strictly higher absolute payo¤s than do agents with

independent preferences. Moreover, since we have found above that Nsym(¡F (n ¡ 1)) =

N(¡F (n¡1)), if there is only one interdependent player in the game, it follows from Theorem

2 (Theorem 4, resp.) that this player receives a strictly higher absolute payo¤ than any

independent agent at any Nash equilibrium of ¡F (n ¡ 1): k

II. Diamond-type Search Models. Here we consider a standard search model (cf. Diamond,

1982, and Milgrom and Roberts, 1990) that is characterized by a game ¡ 2 G in which
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X = [0; »] ; 0 < » < 1; and xr 2 X is interpreted as the search e¤ort by player r: The

absolute payo¤ function of player r on Xn is given as

¼r(x) = xrf

ÃX

q 6=r
xq

!
¡ C(xr) +K; r = 1; :::; n

where K is a constant, and f and C are twice di¤erentiable functions with

f 0 > 0; C 0 > 0; C 00 > 0; C 0(») > f((n¡ 1)»); f(0) > C 0(0) and K > C(»):11

As usual, we interpret C as standing for the private cost of search e¤ort.

It is easy to verify that while ¡ is supermodular, it is not action monotonic, and therefore,

Theorem 1 does not apply to this game. Yet, from Theorem 2 we can deduce the following:

if there is only one interdependent player in ¡; then she earns strictly higher absolute payo¤s

than any other independent player at any intragroup symmetric equilibrium. In fact, this

applies to any equilibrium since we again have Nsym(¡F (n ¡ 1)) = N(¡F (n ¡ 1)) for any

strictly increasing F . To see this, suppose for contradiction that x̂i1 > x̂i2 for any i1; i2 2 In¡1
where x̂ 2 N(¡F (n ¡ 1)): But C 0(») > f((n ¡ 1)») and f(0) > C 0(0) together imply that

(x̂i1; x̂i2) 2 (0; »)2 so that we must have

f

ÃX

r 6=i1
x̂r

!
¡ C 0(x̂i1) = 0 and f

ÃX

r 6=i2
x̂r

!
¡ C 0(x̂i2) = 0:

But these equations cannot hold simultaneously, for, given that f 0 > 0 and C 00 > 0; the

hypothesis x̂i1 > x̂i2 implies that f (
P

r 6=i1 x̂r) < f (
P

r 6=i2 x̂r) and C 0(x̂i1) > C
0(x̂i2): Further-

more, by a reasoning similar to the one used in the previous example we can show that the

interdependent agent’s equilibrium action is di¤erent from that of any of the independent

agents. We thus obtain the following result: when there is only one interdependent player

in the population, at any equilibrium of the Diamond-type search model considered above,

the interdependent player obtains strictly higher payo¤s than everybody else. k

III. Arms Races.12 Two countries are engaged in an arms race. The associated game ¡ is

assumed symmetric with X = [0; ³]; 0 < ³ < 1; and

¼r(x) = B(xr ¡ x¡r)¡ C(xr) 8x 2 X2 and r = 1; 2:

An action for a country is a level of military expenditure. We assume that B : [¡³; ³] ! R

and C : X ! R+ are twice continuously di¤erentiable and satisfy:

B0 > 0; B00 < 0; C 0 > 0; C 00 > 0 and C 0(³) > B0(0) > C 0(0):

11The constant K > C(») is introduced into the payo¤ function just to ensure that ¼r(x) > 0 for all
x 2 [0; »]n and r = 1; ::; n: Obviously, this does not alter the strategic structure of ¡ in any way.

12The present formulation of this example is again taken from Milgrom and Roberts (1990).
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In addition, assume that for any pair of actions (x1; x2) in X2, B(x1 ¡x2)¡C(x1) > 0 (this

is simply to ensure that payo¤s are positive at all admissible action pro…les). Now suppose

that country 2 decides to act aggressively and thus aims at maximizing an objective function

of the type (3) for some di¤erentiable F with F1; F2 > 0. Country 1 simply maximizes its

own material payo¤ ¼1.

It is easy to see that strict concavity of B guarantees that ¡ is strictly supermodular.

Therefore, while ¡ need not be action-monotonic (so that Theorem 1 need not apply), by

using Theorem 2 we may conclude that ¼2(x̂) > ¼1(x̂) for all x̂ 2 N(¡F (1)) with x̂1 6= x̂2:
However, since C 0(³) > B0(0) > C 0(0); we have x̂1 2 (0; ³) so that, by a similar reasoning

used in the analysis of input games above, we can show that no x̂ 2 N(¡F (1)) can satisfy

x̂1 = x̂2. Hence ¼2(x̂) > ¼1(x̂) holds for all x̂ 2 N(¡F (1)). In other words, the country

with the interdependent preferences has a strictly higher payo¤ at any equilibrium. Since

the present game is with negative spillovers, Lemma 1 allows us to say more: the country

with the interdependent objective function will be the one that is more heavily armed at any

equilibrium. This is certainly in line with the intuition that country 2 is a more aggressive
player than country 1. k

4 Economic Applications

4.1 Theory of Preference Formation

An important question in the theory of individual preferences that has recently received some

attention is whether individuals are indeed absolute payo¤ maximizers as is usually assumed

in conventional economic models (see Frank, 1987, Bolton, 1991, Cole et al., 1992, Bisin

and Verdier, 1996, and Koçkesen et al., 1997, among others.) The alternative hypothesis is

that an individual’s well-being is determined not only by the intrinsic utility of her material

consumption, but also her relative material standing in the society; the so-called relative
income hypothesis (or keeping up with the Joneses e¤ect). There is now substantial evidence

suggesting that the “relative standing” concern of individuals is indeed a fact of life (see

Frank, 1987, Clark and Oswald, 1996, and references cited therein).

One way in which the nature of individual preferences can be explained is by an appeal

to evolutionary arguments. The evolutionary theory of preference formation is based on

the premise that individual preferences come to being as a result of an unplanned process

of transmission in which children inherit the preferences of their parents or peers either by

genetic transmission, imitation or socialization. The population composition is typically

assumed to evolve according to an (absolute) payo¤ monotonic evolutionary selection dy-

namic: those behaviors which yield the highest material rewards are replicated with greatest
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frequency from one generation to the next. If one type of behavior persistently outperforms

all others, it will be the sole surviving behavior in the long run.13 Indeed, Friedman (1953)

justi…ed the independence of preferences by claiming that a pattern of behavior that does

not maximize one’s own material payo¤s will eventually be driven to extinction. Based

on the results of the previous section, the validity of this evolutionary argument is clearly

questionable in a great many strategic environments. In this section, by a straightforward

application of our previous results, we shall demonstrate formally that evolution may well

favor the emergence of at least some individuals with interdependent preferences as opposed

to a homogeneous population of absolute payo¤ maximizers.

Consider a discrete time overlapping generations scenario in which each person lives for

two periods and asexually produces a …nite number of children in the second period of her

life. In period ¿ ; there are n¿ many individuals in the society who are in the …rst period of

their lives. These individuals interact with each other through playing an n¿ -person game

¡¿ 2 G¿ , where G¿ is the set of all n¿ -person symmetric games that have `-dimensional

action spaces and that satisfy (2):14 Suppose that at some period ¿ 0, all individuals in

the population have independent preferences, that is, they seek to maximize their absolute

payo¤s. Suppose further that in the subsequent period ¿ 0 + 1, one of the young individuals

turns out (for instance by random mutation) to have negatively interdependent preferences.

The question that we wish to address is the following: if the population composition evolves

under pressure of di¤erential material payo¤s, as is normally assumed, will it tend to return to

it’s original monomorphic state or diverge further from it? In other words, is a monomorphic

population of absolute payo¤ maximizers locally stable under payo¤ monotonic evolutionary

selection dynamics if the emergence of individuals with negatively interdependent preferences

is permitted? The answer, of course, depends on the particular structure of f¡¿g1¿=1 and

the postulated selection dynamics. The results of the previous section, however, allows us

to give a negative answer to this question under considerably general circumstances.

The idea that a monomorphic population of absolute payo¤ maximizers is locally stable

under all payo¤ monotonic selection dynamics is captured by the following stability concept.

Definition. Let ¡¿ 2 G¿ ; ¿ 2 N; and take any strictly increasing F : R2
+ ! R:We say

that independent preferences are evolutionarily F -stable if, for all ¿ , there exists some

13There are several applications of this approach in the economics literature, including the evolution of risk
aversion, altruism among kin, and systematic expectational biases; see Koçkesen et al. (1997) for references.

14The evolutionary scenario considered here is one in which each individual interacts with each other
member of the population in each period (the “playing the …eld” model). An alternative would be to
consider interaction that occurs in randomly matched subgroups drawn from the population in each period.
The case of pairwise random matching is explored in Koçkesen et al. (1997).
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x 2 N(¡¿F (n¿ ¡ 1)) such that

¼n¿ (x) <
1

n¿ ¡ 1

n¿¡1X

i=1

¼i(x):

They are said to be evolutionarily unstable if they are not evolutionarily F -stable for any
strictly increasing F .

This particular notion of evolutionary stability is a straightforward re‡ection of the corre-

sponding …nite population stability concepts advanced by Scha¤er (1989) and Vega-Redondo

(1996, p. 32) in our framework. It says that independent preferences are evolutionarily unsta-

ble if an originally monomorphic population composed only of independent agents does not

stand a chance of expelling any mutant negatively interdependent behavior.15 Needless to

say, given a particular game sequence f¡¿g1¿=1; if independent preferences were evolutionarily

unstable in the sense de…ned above, then they would be unstable under any deterministic

(absolute) payo¤ monotonic selection dynamics (such as the replicator dynamics) which

require that the share of independent agents in the population grows if and only if they

obtain, on average, higher absolute payo¤s than interdependent agents in the stage game.

Our notion of evolutionary instability is therefore quite a general one subsuming most of the

instability concepts used in evolutionary game theory. Moreover, it does not require us to

address the problem of equilibrium selection: if independent preferences are evolutionarily

unstable, then, regardless of which equilibrium is selected in each period, there will be no

pressure on the population composition to return to its initial monomorphic state once a

player with negatively interdependent preferences of any kind has emerged.

Before stating the main result of this section, we introduce the following re…nement of

G¿ :

G¿¤ ´ f¡¿ 2 G¿ : x1 = ¢ ¢ ¢ = xn¿¡1 for all x 2 N (¡¿F (n¿ ¡ 1)) and all strictly increasing Fg,

for all ¿ 2 N. The class G¿¤ is a re…nement of G¿ which requires that all independent agents

take the same action at any equilibrium of ¡¿F (n¿ ¡ 1). This requirement is completely

unrestrictive in most of the economic applications discussed in this paper. For instance,

in all the n¿ -person games considered in Section 3.3 (along with the Cournot oligopoly

discussed next), all independent agents take the same equilibrium actions no matter how

many interdependent agents are in the population. All these games are thus members of G¿¤ .
We are now ready to state the following

Proposition 1. Let ¡¿ 2 G¿¤ for all ¿ 2 N; and assume that the action space of ¡¿ is

a lattice. Independent preferences are evolutionarily unstable if, for all ¿ ,
15Since the population is …nite in our framework, we follow Scha¤er, 1989, in formalizing the notion of “a

small deviation from independent behavior” by the mutation of a single agent.
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(i) ¡¿ is strictly supermodular; or

(ii) ¡¿ belongs to G¿0 , is strictly submodular and symmetric in equilibrium, and has neg-
ative or positive spillovers.16

Proof. Since ¡¿ 2 G¿¤ , we have Nsym(¡
¿
F (n ¡ 1)) = N(¡¿F (n ¡ 1)) for all ¿ ; n 2 N and

all strictly increasing F: The claims are thus established upon applying Theorems 2 and 4,

respectively. Q.E.D.

Proposition 1 shows that in a great variety of economic circumstances (which include

all of the games presented in Section 3.3), there are evolutionary reasons to believe that

the population will not be composed only of absolute payo¤ maximizers in the long run;

one should expect the presence of at least some individuals with negatively interdependent

preferences.17 Moreover, even when preferences are acquired as a result of the deliberate

socialization e¤orts of parents who seek to inculcate preferences in their children with a view

to providing them with greater material payo¤s in their adult lives, the resulting population

dynamics will be payo¤ monotonic and the above result applies. At the very least, this calls

into question the almost universal practice of modeling economic agents as absolute payo¤

maximizers.

4.2 The Cournot Oligopoly

Objective functions which incorporate relative payo¤ concerns are particularly easy to justify

in the case of …rms which separate management from ownership. In the presence of some

common uncertainty which a¤ects all …rms within an industry, the performance of other …rms

may provide valuable information about a manager’s ability or e¤ort which is otherwise

unobservable to the owners. Owners may therefore bene…t from writhing contracts with

managers in which the compensation of the latter is based, in part, on the performance

of their …rm relative to that of other …rms, or relative to some industry average.18 This,

in turn, would provide an incentive for managers (even if they are themselves absolute

payo¤ maximizers) to pursue the maximization of objective functions which have the form

16By Corollary 1, the same conclusion also holds for all strictly supermodular and action monotonic
¡¿ 2 G¿nG¿

¤ where the related action spaces are arbitrary chains in R`.
17In fact, in the context of certain speci…c games, more can be said. For instance, if the individuals

are playing standard commons or public goods games (not necessarily with additively separable payo¤
functions), then one can show that the unique stable population composition with respect to any absolute
payo¤ monotonic dynamics is monomorphic with all individuals being interdependent. For a proof and
various extensions of this result, see Koçkesen et al. (1997).

18See, among others, Holmström (1979, 1982) and Nalebu¤ and Stiglitz (1983). Gibbons and Murphy
(1990) provide supportive empirical evidence.
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of interdependent preferences.19 The results of Section 3 can thus be used to show that such

contracts may have the unplanned e¤ect of yielding a strategic advantage to a …rm, enabling

it to achieve a higher level of pro…tability than its pro…t-maximizing competitors.

Consider an oligopolistic industry composed of n …rms with identical cost structures

producing a homogenous product. Firm r chooses an output level xr 2 X = [0; ¹Q]; 0 < ¹Q <

1; where ¹Q is interpreted as the capacity limit on a …rm’s output level. The pro…t function

of …rm r is given by

¼r(x) = xrP

Ã
nX

q=1

xq

!
¡ C(xr); r = 1; :::; n;

where the inverse demand function P is a strictly positive and twice di¤erentiable function

on [0; n ¹Q] and the cost function C is a nonnegative, twice di¤erentiable function on [0; ¹Q]:

We make the standard assumptions that demand is downward sloping and average cost is

non-decreasing:

P 0 < 0; C(0) = 0; C 0 > 0; C 00 > 0:

We also assume that the game is strictly submodular:

P 0
Ã

nX

q=1

xq

!
+ xrP

00
Ã

nX

q=1

xq

!
< 0 8x 2 [0; ¹Q]n: (5)

Note that concavity of P would imply (5). Denote the resulting Cournot game by ¡C 2 G,

and make the additional assumptions that P (n ¹Q) > C( ¹Q)= ¹Q, to ensure positive pro…ts for

each …rm at any output pro…le, and P (0) > C 0(0), to ensure that each …rm produces a

strictly positive amount at any Cournot equilibrium. The latter condition also guarantees

that ¡C has the negative spillovers property. Moreover, by means of an argument similar to

that used in the case of input games above, one can show that this game is symmetric in

equilibrium. Since it is easy to verify the existence of an equilibrium, we may conclude by

Lemma 2 that ¡C has in fact a unique equilibrium.

Our …rst result shows that, in the case of a duopoly, one can obtain a particularly strong

result regarding the relative performance of an interdependent …rm in competition with an

independent …rm.

Proposition 2. Take any Cournot duopoly ¡C in which the …rms produce below full
capacity in equilibrium and let F : R2

+ ! R be strictly increasing. Then, at any x̂ 2
19Another reason why interdependent preferences could be of interest for the theory of industrial orga-

nization is the close connection between the relative pro…ts and the market share of a …rm. For instance,
provided that average costs are constant and relative pro…ts are well-de…ned, we have ¼r(x)=¹¼(x) = xr=¹x for
all x: Therefore, negatively interdependent preferences in the context of Cournot competition with constant
average costs encompasses the case of sales or market share maximization on the part of managers.

21



N(¡CF (1)); we have ¼1(x̂) < ¼2(x̂); i.e., the …rm with interdependent preferences obtains a

strictly higher pro…t than does the independent …rm.

Proof. First we show that at any x̂ 2 N(¡CF (1)), x̂1 6= x̂2. Suppose, by way of

contradiction, that x̂1 = x̂2 = a. If a = ¹Q; then by symmetry of ¡C; we must have

N(¡C) = f( ¹Q; ¹Q)g which is outlawed by hypothesis. If, on the other hand, a = 0; then

N(¡C) = f(0; 0)g which contradicts P (0) > C 0(0): Hence, a 2 (0; ¹Q). But then we must have

@¼1(x̂)=@x1 = 0 and @p2(x̂)=@x2 = 0; while these two equations cannot hold simultaneously

as can be veri…ed by a reasoning similar to the one used in the input games example of

Section 3.3. Hence x̂1 6= x̂2 and, since ¡C is strictly submodular with negative spillovers,

and is symmetric in equilibrium, the result follows from Theorem 4. Q.E.D.

A similar result can be established for the Cournot oligopoly model with n …rms which

operate under constant marginal costs. In this case it is easily veri…ed that ¡C is positively

action monotonic and, moreover, that all equilibria of ¡CF (k) are such that all independent

players take the same action. As long as at least one …rm produces under its capacity in any

Cournot equilibrium of ¡C , it can be shown that at any x̂ 2 Nsym(¡CF (k)), x̂i 6= x̂n for all

i 2 Ik, so that the application of Theorem 3 immediately yields ¼i(x̂) < ¼n(x̂) for all i 2 Ik.
Furthermore, in the special case when k = n¡ 1, all Nash equilibria of ¡CF (k) are intragroup

symmetric. Hence, if a single …rm in an industry has an objective function that places some

weight on relative pro…ts, it will be more pro…table in any equilibrium than all of its pro…t

maximizing competitors.

For even a more general class of Cournot oligopoly models in which we relax the assump-

tion of linear cost functions, obtaining similar results requires one additional condition to

ensure that the game is action monotonic.

Proposition 3. Take any Cournot oligopoly ¡C in which the …rms produce below full
capacity in equilibrium20 and let F : R2

+ ! R be strictly increasing. Then, if P (n ¹Q) >
C 0( ¹Q), ¼i(x̂) < ¼j(x̂) holds for all (i; j) 2 Ik £ Jk and all x̂ 2 Nsym(¡

C
F (k)).

Proof. The condition P (n ¹Q) > C 0( ¹Q) guarantees that ¡C is positively action-monotonic.

The same reasoning used in the Proof of Proposition 2 can be used to demonstrate that

x̂1 6= x̂n at all x̂ 2 Nsym(¡
C
F (k)). Since ¡C action monotonic, strictly submodular with neg-

ative spillovers, and is symmetric in equilibrium, the result follows from Theorem 3.Q.E.D.

To summarize, in many Cournot oligopoly models, managers who include relative pro…t

considerations in their decision making process (say, due to incentive contracts) will obtain

20A su¢cient condition for this is P (n ¹Q) + ¹QP 0(n ¹Q) ¡ C 0( ¹Q) < 0.
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higher pro…ts in equilibrium than the industry average.21 In view of Lemma 1, which in the

present context links the pro…ts of a …rm to its production, the results of this section pro-

vide an explanation for the anecdotal observation that some industries (such as the personal

computer industry) are characterized by very unequal markets shares and a high degree of

concentration despite the fact that the constituent …rms operate under remarkably similar

cost structures. This explanation is somewhat novel, since is does not rely on the di¤eren-

tiation of products and advertising activities of …rms which are usually claimed to account

for this phenomenon.

Finally, the …ndings of this section have immediate implications for the long run survival

of …rms within an industry if the entry and exit of …rms occurs on the basis of pro…tability.

The idea of Darwinian selection in industrial dynamics is not a new one; several authors

have argued that competition in an industry resembles biological competition in that more

pro…table practices are replicated more rapidly (see, for instance, Alchian, 1950, Friedman,

1953, and Sha¤er, 1989). Along these lines, our results imply that the …rm behavior that

corresponds to an interdependent objective function will thrive at the expense of absolute

pro…t maximizing behavior in the long run.

5 Concluding Remarks

In this paper we have tried to uncover the generality of the statement that negatively inter-

dependent preferences provide one with a strategic advantage over agents who are motivated

exclusively by a concern with their own material payo¤s. It turns out that there is a broad

class of strategic environments in which such an advantage is found to exist, and that there

is a close connection between this phenomenon and the properties of strategic complemen-

tarity and substitutability in games. The …nding that those with interdependent preferences

earn greater absolute payo¤s than do (absolute) payo¤ maximizers in such environments has

direct implications for theories of preference formation and managerial decision making. In

light of our theoretical results, the assumption of absolute payo¤ maximizing behavior on

the part of individuals or …rms should not be made as routinely as is done in applications of

game theory (on this point, see also Frank, 1987, and Bolton, 1991).

There are a number of directions in which the present work may be extended. The results

of Koçkesen, et al. (1997) prove that the su¢cient conditions provided here for interdepen-

dent players to outperform independent players are not necessary. Therefore, determining

precisely the class of all normal-form games such that this phenomenon occurs remains an

21See also Vickers (1984), Fershtman and Judd (1987) and Sklivas (1987) for a similar conclusion in the
context of closely related models where the separation of the owner and manager incentives are explicitly
modeled.
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open problem. It also remains to be seen whether results analogous to ours can be obtained

in extensive form and dynamic games. Finally, we stress that our entire analysis has been

conducted under the hypothesis of complete information. This is certainly a considerable

limitation; entertaining the notion that interdependent preferences are a plausible alterna-

tive to the standard assumption of independent preferences arguably necessitates that the

game at hand should be modeled as an incomplete information game.22 The incomplete

information issue is an important one which we hope to address in future research.

22As noted by Bolton (1997, p. 1112) in the context of the ultimatum bargaining environment, “... the
marginal rate of substitution between absolute and relative money most likely varies by individual, making
utility functions private information.”
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Appendix: Proofs

Proof of Theorem 1. Assume …rst that ¡ is positively action-monotonic, and take any

x̂ = ([a]k; [b]n¡k) 2 Nsym(¡F (k)). In what follows, we shall show that a - b must hold; this

will yield the claim by virtue of positive action-monotonicity. Let us assume for contradiction

then that a Â b:

Since ¼1 = p1; by de…nition of Nash equilibrium, ¼1([a]k; [b]n¡k) > ¼1(b; [a]k¡1; [b]n¡k) so

that, by using (1) with ¾(1) = n; ¾(n) = 1 and ¾(r) = r for all r =2 f1; ng; we …nd

¼n(b; [a]k¡1; [b]n¡k¡1; a) > ¼n(b; [a]k¡1; [b]n¡k) = ¼n((b; [a]k¡1; [b]n¡k¡1; a) ^ ([a]k; [b]n¡k)):

By strict supermodularity, therefore,

¼n(x̂¡n; a) = ¼n([a]k; [b]n¡k¡1; a) = ¼n((b; [a]k¡1; [b]n¡k¡1; a) _ ([a]k; [b]n¡k))

> ¼n([a]k; [b]n¡k) = ¼n(x̂) (6)

holds. Now suppose ¼n(x̂) = 0: From (2) and (6) it follows that ¼n(x̂¡n; a) > 0; and since F

is strictly increasing,

pn(x̂¡n; a) = F

µ
¼n(x̂¡n; a);

¼n(x̂¡n; a)

¹¼(x̂¡n; a)

¶
> F (0; 0) = pn(x̂)

contradicting that x̂ is a Nash equilibrium. Thus, we assume henceforth that ¼n(x̂) > 0: But

then since pn([a]k; [b]n¡k) > pn([a]k; [b]n¡k¡1; t) for all t 2 X; we have

¼n(x̂)P
¼r(x̂)

>
¼n(x̂¡n; a)P
¼r(x̂¡n; a)

(7)

by (6) and strict monotonicity of F:

By the symmetry of ¡, it is readily observed that

¼n(x̂¡n; a) = ¼1([a]k; [b]n¡k¡1; a) = ¢ ¢ ¢ = ¼k([a]k; [b]n¡k¡1; a)

and ¼k+1([a]k; [b]n¡k¡1; a) = ¢ ¢ ¢ = ¼n¡1([a]k; [b]n¡k¡1; a): But by the hypotheses of a Â b and

positive action-monotonicity, we must have ¼n(x̂¡n; a) > ¼n¡1([a]k; [b]n¡k¡1; a) so that

nX

r=1

¼r(x̂¡n; a) = (k + 1)¼n(x̂¡n; a) + (n¡ k ¡ 1)¼n¡1(x̂¡n; a) 6 n¼n(x̂¡n; a):

(This inequality holds as an equality i¤ k = n ¡ 1.) Therefore using the above inequality

along with (7), we may conclude that

¼n(x̂)P
¼r(x̂)

>
1

n
:
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But by the symmetry of ¡; we have
P
¼r(x̂) = k¼1(x̂)+(n¡k)¼n(x̂); and therefore the above

inequality yields ¼n([a]k; [b]n¡k) > ¼1([a]k; [b]n¡k): However, since a Â b; this contradicts

positive action-monotonicity of ¡; and we are done.

To complete the proof of the theorem, assume now that ¡ is negatively action-monotonic.

De…ne ¡¡ = (f¡Xgi=1;:::;n; f¼¡i gi=1;:::;ng 2 G where ¼¡(x) = ¼(¡x) for all x 2 ¡X: Since,

for all x 2 ¡X; xi Â xj implies ¡xi Á ¡xj ; 23 the negative action-monotonicity of ¡ yields

¼¡i (x) = ¼i(¡x) > ¼j(¡x) = ¼¡j (x) whenever xi Â xj: Hence, ¡¡ is positively action-

monotonic. Therefore, by the …rst part of the theorem established above, we have

¼¡j (x̂) > ¼
¡
i (x̂) 8(i; j; x̂) 2 Ik £ Jk £Nsym(¡

¡
F (k)):

But since Nsym(¡
¡
F (k)) = ¡Nsym(¡F (k)); we then have ¼j(¡x̂) > ¼i(¡x̂) for all i 2 Ik; j 2 Jk

and all ¡x̂ 2 Nsym(¡F (k)): The proof is complete. Q.E.D.

Proof of Corollary 1. We assume that ¡ is positively action-monotonic, for the

case of negative action-monotonicity can be easily settled as in the proof of Theorem 1. If

x̂1 = ¢ ¢ ¢ = x̂n¡1; then the claim follows from Theorem 1. So assume that x̂i 6= x̂i0 for some

i; i0 2 In¡1; and let x̂1 be the maximum of fx̂1; :::; x̂n¡1g w.r.t. %; relabelling if necessary.

(Since% is a linear order,maxfx̂1; :::; x̂n¡1g 6= ;.) We now proceed as in the proof of Theorem

1 to eliminate the trivial case of ¼n(x̂) = 0; and to obtain the corresponding version of (7)

in this case with ¼n(x̂) > 0:

¼n(x̂)P
¼r(x̂)

>
¼n(x̂¡n; x̂1)Pn¡1

i=1 ¼i(x̂¡n; x̂1) + ¼n(x̂¡n; x̂1)
: (8)

(Implicit in this inequality is the fact that ¼n(x̂¡n; x̂1) > 0 which is guaranteed by (6).) But

since x̂1 % x̂i for all i 2 In¡1 and x̂1 Â x̂i for some i 2 In¡1; by positive action-monotonicity,

we have

(n¡ 1)¼n(x̂¡n; x̂1) = (n¡ 1)¼1(x̂¡n; x̂1) >
n¡1X

i=1

¼i(x̂¡n; x̂1)

so that (8) yields ¼n(x̂)=
P
¼r(x̂) > 1=n; and the result follows. Q.E.D.

Proof of Remark 2 (b). Assume that ¡ is positively action-monotonic, w.l.o.g.. Let

x̂1 = maxfx̂i : i 2 Ikg; and notice that claim is immediate by positive action-monotonicity if

x̂n % x̂1: So, let x̂1 Â x̂n: Since we can eliminate the trivial case of ¼n(x̂) = 0 as in the proof

of Theorem 1, let us assume that ¼n(x̂) > 0: We then have

¼n(x̂)P
¼r(x̂)

> ¼n(x̂¡n; x̂1)Pk
i=1 ¼i(x̂¡n; x̂1) + (n¡ k ¡ 1)¼n¡1(x̂¡n; x̂1) + ¼n(x̂¡n; x̂1)

> ¼n(x̂¡n; x̂1)

(k + 1)¼n(x̂¡n; x̂1) + (n ¡ k ¡ 1)¼n¡1(x̂¡n; x̂1)
>
1

n
:

23Since (R`;%) is an ordered vector space, we have xi Â xj ) xi ¡ xj Â ([0]`) ) ¡xj Â ¡xi:
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Here, the …rst inequality is derived in a way analogous to (8), the second inequality follows

from action monotonicity and x̂1 % x̂i for all i 2 Ik; and …nally, the third inequality follows

from action monotonicity and x̂1 Â x̂k+1 = ¢ ¢ ¢ = x̂n. Q.E.D.

Proof of Theorem 2. Let x̂ = ([a]n¡1; b) 2 Nsym(¡F (n ¡ 1)). If a Â b; we can easily

show that ¼n(x̂) and ¼n(x̂¡n; a) = ¼n([a]n) are strictly positive as in the proof of Theorem

1, and then recalling that (7) was obtained above without using the action-monotonicity

property, we may conclude that

¼n([a]n¡1; b)

(n ¡ 1)¼1([a]n¡1; b) + ¼n([a]n¡1; b)
>

¼n([a]n)

(n¡ 1)¼1([a]n) + ¼n([a]n)
=
1

n
(9)

which yields ¼n(x̂) > ¼1(x̂): Assume now that b Â a; and note that we can again show that

¼n(x̂) and ¼n([a]n) are strictly positive by using strict supermodularity as in the proof of

Theorem 1. On the other hand, since ¼1(x̂) > ¼1(b; [a]n¡2; b); we have

¼n(x) > ¼n(b; [a]n¡2; b) (10)

where x = (b; [a]n¡1): But then b Â a implies that

¼n([a]n) = ¼n(x ^ x̂) > ¼n(x̂) (11)

for otherwise, by strict supermodularity, we would …nd

¼n(b; [a]n¡2; b) = ¼n(x _ x̂) > ¼n(x)

which contradicts (10). Yet, (11) and the fact that pn(x̂) > pn([a]n) yield (9), completing

the proof. Q.E.D.

Proof of Lemma 1. Assume that x̂ = ([a]k; [b]n¡k) for some a; b 2 X with a Â b:

Then, by hypothesis, negative spillovers e¤ect, and symmetry of ¡,

¼1([a]k; [b]n¡k) 6 ¼n([a]k; [b]n¡k) < ¼n(b; [a]k¡1; [b]n¡k) = ¼1(b; [a]k¡1; [b]n¡k)

and this contradicts that playing a is a best response for player 1 against ([a]k¡1; [b]n¡k): The

…rst assertion follows by the completeness and antisymmetry of %.

To prove the second assertion, let k = n¡ 1 and notice that all we have to show is that

¼n(x̂) > ¼1(x̂) whenever b Â a: Assume then for contradiction that

b Â a and ¼n([a]n¡1; b) 6 ¼1([a]n¡1; b): (12)

Since ® 7! ®=(¿ + ®) is a strictly increasing mapping in ® > 0 for any ¿ > 0; (12) implies

that
¼n(x̂)

(n¡ 1)¼1(x̂) + ¼n(x̂)
6 ¼1(x̂)

(n¡ 1)¼1(x̂) + ¼1(x̂)
=
1

n
:
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Since b is a best response of player n against [a]n¡1 in ¡F (n¡1); we must have ¼n([a]n¡1; b) >
¼n([a]n): Therefore, by the negative spillovers e¤ect and symmetry of ¡, we have

¼1([a]n¡1; b) < ¼1([a]n) = ¼n([a]n) 6 ¼n([a]n¡1; b)

which contradicts (12). Q.E.D.

Proof of Lemma 2. If ([a]n); ([b]n) 2 N(¡); then

¼1((a; [b]n¡1) ^ (b; [a]n¡1)) + ¼1((a; [b]n¡1) _ (b; [a]n¡1)) = ¼1([a]n) + ¼1([b]n)

> ¼1(b; [a]n¡1) + ¼1(a; [b]n¡1):

Hence, unless a = b; ¡ cannot be strictly submodular. The converse statement trivially

follows from the symmetry of ¡: Q.E.D.

Proof of Theorem 3. This theorem is an immediate consequence of the following

Lemma A. Let ¡ 2 G0; k 2 f1; :::; n ¡ 1g and take any strictly increasing F : R2
+ ! R:

If ¡ is a strictly submodular game with negative spillovers, and is symmetric in equilibrium,
then, for any x̂ 2 Nsym(¡F (k)) with ¼r(x̂) > 0 for all r; we have

x̂j % x̂i 8(i; j) 2 Ik £ Jk:

Proof. Let x̂ = ([a]k; [b]n¡k) 2 Nsym(¡F (k)) for some a; b 2 X: Clearly, since a is a best

response of player 1 against ([a]k¡1; [b]n¡k) in ¡F (k); we have

¼1([a]k; [b]n¡k) > ¼1(t; [a]k¡1; [b]n¡k) 8t 2 X: (13)

We claim that

¼n([a]k; [b]n¡k) > ¼n([a]k; [b]n¡k¡1; t) 8t 2 ft0 2 X : t0 Â bg: (14)

To see this, let us assume for contradiction that

¼n(x̂¡n; t) = ¼n([a]k; [b]n¡k¡1; t) > ¼n([a]k; [b]n¡k) = ¼n(x̂) > 0 (15)

holds for some t 2 X with t Â b: Since ® 7! ®=(¿ + ®) is a strictly increasing mapping in

® > 0 for any ¿ > 0; we must then have

¼n(x̂)Pn¡1
r=1 ¼r(x̂) + ¼n(x̂)

6 ¼n(x̂¡n; t)Pn¡1
r=1 ¼r(x̂) + ¼n(x̂¡n; t)

(16)

But since t Â b; the negative spillovers e¤ect yields ¼r(x̂) > ¼r(x̂¡n; t) for all r 6= n so that

¼n(x̂¡n; t)Pn¡1
r=1 ¼r(x̂) + ¼n(x̂¡n; t)

<
¼n(x̂¡n; t)Pn¡1

r=1 ¼r(x̂¡n; t) + ¼n(x̂¡n; t)
:
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But this inequality, (16) and (15) yield pn(x̂¡n; t) > pn(x̂) which contradicts that x̂ is a Nash

equilibrium of ¡F (k): Therefore, we must conclude that (14) holds.

Now, for any ®; ¯ 2 X; de…ne the correspondences K¯ : X ¶ X and L® : X ¶ X as

K¯(®) ´ argmax
t2X

¼1(t; [®]k¡1; [¯]n¡k) and L®(¯) ´ argmax
t2X

¼n([®]k; [¯]n¡k¡1; t):

We de…ne next the double sequence (am; bm) 2 X2 recursively as follows:

a0 = a; b0 = b; am 2 Kbm(am) and bm 2 Lam¡1(bm); m = 1; 2; :::

Claim 1. (am; bm) is well-de…ned.

Proof of Claim 1. Fix any ®; ¯ 2 X: Since X is a convex compact set, and ¼1 and ¼n are

continuous, K¯ and L® must be nonempty (by Weierstrass’ theorem) and must have closed

graphs (by Berge’s maximum theorem). Moreover, quasiconcavity of ¼1 and ¼n entail that

K¯ and L® are convex-valued. Therefore, by Kakutani’s …xed point theorem, there exist

…xed points of K¯ and L®: Since ® and ¯ were arbitrary in this reasoning, we may conclude

that (am) and (bm) are well-de…ned sequences. k

Let Br : Xn¡1 ¶ X be the best response correspondence of player r. We note that, for

any ®; ¯ 2 X;
Bi([®]k¡1; [¯]n¡k) = K¯(®) 8i 2 Ik (17)

and

Bj([®]k; [¯]n¡k¡1) = L®(¯) 8j 2 Jk (18)

hold by symmetry of ¡:

Claim 2. If a Â b; then a0 Â a1 Â a2 Â ¢ ¢ ¢ and ¢ ¢ ¢ Â b2 Â b1 Â b0.

Proof of Claim 2. Let a Â b: We shall …rst establish that b1 6= b0: If b1 = b; then

b1 2 La(b1) implies by (18) that b 2 Bj([a]k; [b]n¡k¡1) for all j 2 Jk: But then since a 2
Bi([a]k¡1; [b]n¡k) for all i 2 Ik; it follows that ([a]k; [b]n¡k) 2 N(¡); contradicting that ¡ is

symmetric in equilibrium. If, on the other hand, b1 Â b; then (14) yields that

¼n(x̂) > ¼n([a]k; [b]n¡k¡1; b1):

But then by submodularity of ¼n;

¼n([a]k; [b1]n¡k) < ¼n([a]k; [b1]n¡k¡1; b)

which, in turn, contradicts that b1 2 La(b1): We thus conclude that b Â b1:

Next, we claim that a1 % a0: But by (13) and the fact that a1 2 Kb1(a1); we have

¼1([a]k; [b]n¡k) > ¼1(a1; [a]k¡1; [b]n¡k) and ¼1([a1]k; [b1]n¡k) > ¼1(a; [a1]k¡1; [b1]n¡k): Clearly,
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given that b Â b1; if a Â a1; the last two inequalities would contradict the strict submodularity

of ¼1: Therefore, a1 % a must hold. In fact, a1 6= a; for otherwise, a1 2 Kb1(a1) and

b1 2 La(b1) would yield that ([a]k; [b1]n¡k) 2 N(¡); and this would contradict ¡’s symmetry

in equilibrium since then a Â b Â b1 would have to hold. By linearity of %; therefore, we

have a1 Â a0:

Finally, we claim that b1 Â b2: (Since we used (14) in establishing that b0 Â b1; this step

is necessary to be able to complete the proof by induction.) This claim follows from the fact

that b1 2 La(b1) and b2 2 La1(b2) imply that ¼n([a]k; [b1]n¡k) > ¼n([a]k; [b1]n¡k¡1; b2) and

¼n([a1]k; [b2]n¡k) > ¼n([a1]k; [b2]n¡k¡1; b1); respectively. If b2 Â b1 held, given that a1 Â a;

these inequalities would contradict the strict submodularity of ¼n: Moreover, if b1 = b2; then

b1 2 La1(b1) holds, and since a1 2 Kb1(a1); we obtain ([a1]k; [b1]n¡k) 2 N(¡) contradicting

that ¡ is symmetric in equilibrium (because a1 Â a Â b Â b1). We conclude that b1 Â b2:

Proof is completed by a straightforward induction argument. k
Since X is compact, there exist convergent subsequences (avm) and (bvm) such that

(avm; bvm) ! (a¤; b¤) 2 X2 as m ! 1. We now claim that (a¤; b¤) 2 N (¡): To see this,

notice that avm 2 Kbvm (avm) implies that

avm 2 B1([avm ]k¡1; [bvm]n¡k) m = 1; 2; :::

But since X is compact and ¼1 is continuous, B1 must have a closed graph, and therefore,

a¤ = lim
m!1

avm 2 B1
³
lim
m!1

([avm]k¡1; [bvm ]n¡k)
´
= B1([a¤]k¡1; [b

¤]n¡k):

Moreover, by symmetry of ¡; a¤ 2 Bi([a¤]k¡1; [b¤]n¡k) for all i 2 Ik: Similarly, we can show

that b¤ 2 Bi([a¤]k; [b¤]n¡k¡1) for all i 2 Jk: We thus conclude that (a¤; b¤) 2 N(¡) as is

sought. Therefore, if a Â b held, by Claim 2 there would exist an (a¤; b¤) 2 N(¡) with

a¤ Â b¤; contradicting that ¡ is symmetric in equilibrium. Q.E.D.

Remark A. (a) If n = 2; we may drop the hypotheses of convexity of X and quasicon-

cavity of ¼rs from the statement of Lemma A, for then one does not need Kakutani’s …xed

point theorem in proving that (am; bm) is well-de…ned.

(b) Lemma A remains valid if the chain X is any compact convex subset of a locally convex

topological vector space, and ¼rs are continuous with respect to the subspace topology. The

proof of this claim is essentially identical to that of Lemma A, the only major modi…cation

being the use of Tychono¤-Fan …xed point theorem (Berge, 1963, p.251) instead of Kakutani’s

theorem in proving Claim 1.

(c) Continuity of ¼r can be weakened in Lemma A to upper semicontinuity of ¼r and lower

semicontinuity of Vr(y) ´ maxa2X ¼r(x¡r; a) for all x¡r 2 Xn¡1: (Given that ¼r is upper

semicontinuous and X is compact, Vr is well-de…ned on Xn¡1:) For, we have used continuity
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of ¼r above only in proving that K¯ (and L®) is nonempty, and that Br has a closed graph.

But upper semicontinuity of ¼r readily guarantees that K¯ is nonempty. To see that Br has

a closed graph under the above hypotheses as well, take any sequence xm in Xn such that

xm ! x¤ as m ! 1; and let xmr 2 Br(xm¡r) for all m. If x¤r =2 Br(x¤¡r); then it must be

the case that Vr(x¤¡r) > ¼r(x
¤
¡r; x

¤
r): But then using the upper semicontinuity of ¼r; the fact

that xmr 2 Br(xm¡r) for all m; and the lower semicontinuity of Vr; we …nd

¼r(x
¤
¡r; x

¤
r) > lim sup

m!1
¼r(x

m
¡r; x

m
r ) = limsup

m!1
Vr(x

m
¡r)

> lim inf
m!1

¼r(x
m
¡r; x

m
r ) > Vr(x¤¡r) > ¼r(x¤¡r; x¤r);

contradiction.24

Proof of Theorem 4. Immediate from Lemma 1 and Lemma A. Q.E.D.

24Dasgupta and Maskin (1986) use an analogous reasoning in proving their Theorem 2.
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