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Abstract

This paper develops a utility model for evaluating lotteries. In

estimating utility, risk averse people use an asymmetric loss function.

Expected utility is seen as a special case that is a good approximation

of the general case in some cases. The model resolves several paradoxes

and makes easily falsifiable predictions. When used in hypothesis

testing, the model allows researchers to directly specify their attitudes

toward risk.

The model is advantageous for two reasons. First, it is based on

established principles of probability; second, it resolves several well-

known paradoxes.

Keywords: choice under uncertainty, non-expected utility the-

ory, risk aversion, Allais paradox, Ellsberg paradox, St. Peters-

burg paradox, Equity Premium Puzzle, decision theory.
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1 Introduction

Suppose a lottery L hasM outcomes numbered m = 1, 2, . . .M ,

and outcome bm occurs with probability pm,
P

pm = 1. The

elementary utility of an outcome b is u(b). The most common

way of calculating the utility of the lottery is using the expected

utility theory, which states that the utility of a lottery is the

expected elementary utility:

UE (L) = Eu =
MX
m=1

pmu(bm). (1)

There are several problems with expected utility. Aside from

the theoretical problems, there are more practical ones as well.

For example, expected utility fails to explain several well known

paradoxes, such as the Allais paradox, Ellsberg paradox, St.

Petersburg paradox, and the Equity Premium Puzzle.

In this paper, I take a different approach. The utility of a

lottery, after the lottery’s outcome is known, is the elementary

utility of the outcome. That is, if we know that the lottery’s out-

come is bm, then U(L) = u(bm). Before the outcome is known,

the utility of a lottery is a random variable. What people mean

when they refer to the utility of a lottery is actually a point
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estimate of the random variable. This approach has two advan-

tages. First, it is based on established principles of probability;

second, it resolves several well-known paradoxes.

Expected value is the optimal estimator under quadratic loss,

which is a symmetric loss function. In my view, a symmetric loss

function reflects risk neutrality. A risk averse individual uses

an asymmetric loss function in which higher loss comes from

overestimating utility. This causes his estimates of utility to be,

in general, less than expected utility.

In section 2, I describe the model. In section 3, I look at

several well-known paradoxes. Finally, in section 4, I discuss

the model in the context of hypothesis testing.

2 Utility

Suppose a person plans to play some lottery a total of n times,

and that outcome bm occurs xm times. The total utility from all

n games is:

nŨ(L) =
MX
m=1

xmu (bm) . (2)

Define the utility of the lottery as the average per-game utility
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after n games. That is,

Ũ(L) =
MX
m=1

³xm
n

´
u (bm) . (3)

In the above equations, since counts xm are random vari-

ables, so is Ũ(L). When evaluating lotteries, people estimate

the utilities of those lotteries. I denote the random variable by

Ũ (L) and its estimate by by U(L). Risk neutral individuals care

about overestimating and underestimating utility equally: they

have a symmetric loss function. For instance, people who mini-

mize expected quadratic loss, estimate the utility of a lottery by

the expected value over elementary utilities. Risk averse indi-

viduals would rather underestimate utility than overestimate it:

they have an asymmetric loss function in which overestimation

is penalized more than underestimation.

If the probabilities pm are known, then counts {xm} have the
Multinomial distribution as follows:

{xm} |n, {pm} ∼Mult (n, {pm}) . (4)

In the case when there are M = 2 possible outcomes, this

reduces to the Binomial distribution.
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Sometimes, the probabilities pm themselves are unknown.

This is not a problem if their distribution is known. Suppose

the probabilities {pm} are a priori Dirichlet distributed with
parameter vector {αm}. (In case M = 2, this is the same as

the Beta distribution.) We observe k outcomes. In these ob-

servations, outcome bm occurs ym times. Then, the posterior

distribution of the probabilities is Dirichlet:

{pm} | {ym} ∼ D ({αm + ym}) . (5)

From this, when probabilities pm are not known, counts xm

have the Multinomial-Dirichlet distribution.

Note that, if the probabilities pm are known, as the number

of games n approaches infinity, by the frequentist definition of

probability, the weights
¡
x
n

¢
approach the probabilities p. Thus,

lim
n→∞ Ũ (L) = UE (L) . (6)

So, any reasonable estimator of Ũ(L) must also approach

expected utility UE(L). In other words, expected utility the-

ory can be thought of in two ways. First, it accurately reflects

preferences of risk neutral individuals with symmetric quadratic
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loss. Second, it is a limiting case when the number of games n

approaches infinity and there is no uncertainty.

2.1 Loss function

A loss function C(Ũ , U) expresses the loss that an individual ex-

periences from estimating random utility Ũ by some estimate U .

To find the optimal estimate, the individual minimizes expected

loss. If f(Ũ) is the probability mass function of Ũ , then

E
h
C
³
Ũ , U

´i
=
X
Ũ

C
³
Ũ , U

´
f(Ũ) (7)

U = argmin
U

E
h
C
³
Ũ , U

´i
(8)

Each individual may have his own unique loss functionC (·, ·).
When discussing attitudes toward risk, we are interested in how

loss function penalizes overestimation as opposed to underes-

timation of utility. Let ∆ > 0 be some constant. If a per-

son is indifferent between overestimating and underestimating

utility, that is, if C(U,U + ∆) = C(U,U − ∆), I call him

risk neutral. If a person is more afraid to overestimate util-

ity, that is, if C(U,U + ∆) > C(U,U − ∆), then he is risk
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averse. Finally, if he is more afraid of underestimating utility,

C(U,U +∆) < C(U,U −∆), then he is risk loving.

To perform calculations, we need to define a specific loss func-

tion. In this paper, I use the following asymmetric loss:

Ca

³
Ũ , U

´
=

⎧⎨⎩
³
Ũ − U

´a
if Ũ ≥ U

ca

¯̄̄
Ũ − U

¯̄̄a
if Ũ < U

, (9)

where a ≥ 0 and ca ≥ 0 are constants. ca > 1 reflects risk

aversion, while ca = 1 reflects risk neutrality. When a→ 0 and

c0 = 1, the loss function is called the all-or-none loss; when

a = 1, it is the asymmetric linear loss; when a = 2, this is the

asymmetric quadratic loss; when a = 2 and c2 = 1, it is the

usual quadratic loss.

Because a defines the general shape of the loss function, I call

it the type of loss; because ca defines the degree of asymmetry,

I call it risk aversion.

For linear (type 1) loss, there is an analytical solution for

the best estimator U . Define q = (1 + c1)
−1; the best estimator

under type 1 loss is the q-th quantile of Ũ . Thus, for symmetric

linear loss, the best estimator is the median of Ũ . If the loss is

symmetric quadratic (a = 2, c2 = 1), then the best estimator
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is the expected value of Ũ . For arbitrary values of a and ca,

however, I don’t know of a general analytical solution, but find

best estimates numerically.

The type of loss and risk aversion that people commonly have

need to be determined experimentally. In this paper, I concen-

trate on three types of loss. I use the linear (type 1) loss because

there is an analytical solution for the best estimator under this

loss. A problem with this loss is that for discrete random vari-

ables, the estimator of utility U (L) is not a continuous function

of risk aversion c1. Quadratic (type 2) loss is also attractive,

because symmetric quadratic loss is used so often. But because

there is no analytical solution for it, I don’t use it for the more

complicated problems, such as the Equity Premium Puzzle of

section 3.4. Finally, sometimes, type 2 loss produces estimates

that are too high to be of interest, while type 1 produces esti-

mates that are two low to be of interest. This is the case with

the St. Petersburg paradox of section 3.3. In that case, I use

type 1.5 loss.
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2.2 Risk aversion

Here, I suggest a couple of thought experiments which can help

each person find his own value of risk aversion ca. This is done

by imagining lotteries the values of which the person knows for

himself. For example, suppose the utility of a lottery has the

Discrete Uniform distribution, as follows: it is −1 with proba-
bility 50% and 1 with probability 50%. In a person’s view, the

utility of this lottery is U . Then, for a > 1, his risk aversion ca

is

ca = (1− U)a−1 (1 + U)1−a. (10)

Selected values of risk aversion ca are tabulated in table 1.

Based on this thought experiment, for type 1.5 loss, risk aversion

c1.5 between 1.5 and 2.0 seems reasonable; for type 2 (quadratic)

loss, risk aversion c2 of 2.3 to 4.0 seems reasonable.

Let’s perform a similar thought experiment with another lot-

tery. Suppose the utility of a lottery has the Standard Normal

distribution and that a person values this lottery at U . For type

1 (linear) loss, the corresponding risk aversion is
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Utility U Type of loss a
1.5 2.0

0.0 1.0 1.0
−0.1 1.1 1.2
−0.2 1.2 1.5
−0.3 1.4 1.9
−0.4 1.5 2.3
−0.5 1.7 3.0
−0.6 2.0 4.0
−0.7 2.4 5.7
−0.8 3.0 9.0
−0.9 4.4 19.0

Table 1: Risk aversion ca corresponding to selected values of Discrete Uniform
utility described in the text.

c1 =
1

Φ (U)
− 1, (11)

where Φ (·) is the cumulative density of the Standard Normal.
For other types of loss function, I do not know of an analytical

solution for risk aversion. I solve for risk aversion numerically

and tabulate the values in table 2. Based on this thought exper-

iment, the following values of risk aversion ca don’t seem very

high: for linear (type 1) loss, c1 = 6; for type 1.5 loss, c1.5 = 9;

for quadratic (type 2) loss, risk aversion c2 = 13 does not seem

very high.

The above thought experiments are done just to get the feel

for the correct magnitude of risk aversion. In this paper, I use
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Utility U Type of loss a
1.0 1.5 2.0

0.0 1.0 1.0 1.0
−0.5 2.3 2.9 3.6
−0.8 3.8 5.5 7.7
−1.0 5.4 8.7 13.1
−1.2 7.8 13.8 22.4
−1.5 14.1 28.4 52.5

Table 2: Risk aversion ca corresponding to selected values of Standard Nor-
mal utility described in the text.

low values of risk aversion to illustrate that even a small de-

viation from the standard symmetric loss approach (which is

implied by expected utility) can resolve a number of apparent

problems. Thus, when applying quadratic loss to discrete util-

ities, I use c2 = 3.0 (see table 1); when applying linear loss to

the Normal distribution, I use c1 = 3.8 (see table 2); when the

intermediate, type 1.5, loss is needed, as for the St. Petersburg

paradox, I use c1.5 = 1.7 (table 1). Actually, the paradoxes dis-

cussed below are resolved under a wide range of values of a and

ca. Using higher risk aversions ca resolves them even more easily.

2.3 Buying and selling

When a person buys a lottery, he will receive one of its potential

outcomes; when he sells a lottery, he will have to pay out one of
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its potential outcomes.1 That is, from the seller’s point of view,

all the outcomes are negated. This means that, if a person is

not risk neutral, his estimated utility of a lottery as a buyer is

not equal to the (negative) estimated utility as a seller.

For example, consider a lottery with two equally likely out-

comes: b1 = 0, b2 = 1; the lottery will be played once (n = 1). A

person’s elementary utility is u (b) = b; he has quadratic (type

2) loss and a risk aversion of c2 = 3.0. If the person is consid-

ering buying the lottery, he evaluates it at 0.25; that is, he is

willing to pay 0.25 or less for playing the lottery once. If, on

the other hand, the person is considering selling the lottery, he

evaluates it at −0.75. This means that he requires a payment
of 0.75 or more if he will have to make the payments specified

by the lottery.

2.4 Backward induction

If, by picking one of several lotteries, a person commits to play-

ing it n times, everything is straightforward: the person calcu-

lates the utility U(L) of playing each lottery n times, and picks

the lottery with the greatest utility.
1The terms going long a lottery and going short a lottery might be more accurate.
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Suppose, however, that the person knows that he will play n

times, but he can decide which lottery to play before each game.

Then, he does not choose a single lottery, but rather chooses a

lottery path. This is easily done with backward induction.

The person knows that during the last game, game n, he will

pick the lottery with the greatest one-game utility. Thus, when

making the choice for game n − 1, he already knows his choice
for game n. Similarly, when choosing the lottery for game n−2,
he already knows his choices for the last two games. In this

way, the person can calculate the best path of lotteries for all n

games. I use this logic in the Equity Premium Puzzle of section

3.4.

3 Paradoxes

The “paradoxes” discussed below are situations in which the

standard expected utility theory predicts one outcome, while we

observe another outcome in experiments. This points to a failure

of the theory to make correct predictions in some circumstances.

I resolve the paradoxes by showing that if the model developed in

this paper is used, the predicted and observed outcomes match.
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3.1 Allais paradox

Here is a usual statement of the Allais paradox. A person is

asked to choose between the following two lotteries:

Gamble A Receive $1M (one million dollars) with 100% prob-

ability.

Gamble B Receive $5M with 10% probability, $1M with 89%

probability, or nothing with 1% probability.

He is also asked to choose between the following two lotteries:

Gamble C Receive $1M with 11% probability, and nothing

with 89% probability.

Gamble D Receive $5M with 10% probability, and nothing

with 90% probability.

It is observed that most people choose A over B and choose

D over C. However, according to expected utility theory, if a

person prefers A over B, he must also prefer C over D.

Denote the possible outcomes as b = {0, 1, 5}. Preferring A

to B means that the difference in utilities of these lotteries must

be greater than zero. In expected utility terms, that difference

is
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UE(A)− UE(B) = 0.11u(1)− 0.10u(5)− 0.01u(0). (12)

Likewise, the difference between expected utilities of D and

C is

UE(D)− UE(C) = 0.10u(5) + 0.01u(0)− 0.11u(1). (13)

In other words, these expected utility differences have the

opposite sign

UE(A)− UE(B) = − (UE(D)− UE(C)) . (14)

Thus, according to expected utility, if a person prefers A to

B, it is impossible that he prefers D to C.

Here is a resolution of the paradox. Since the potential pay-

offs are so large compared to the resources of most players, sup-

pose that the lotteries are only offered once: n = 1. To reflect

decreasing marginal utility of money, let the utility of each out-

come b = {0, 1, 5} be logarithmic: u(b) = ln(v+b), where v > 0 is
a constant that reflects player’s resources. I set v = 10−3, which
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U(L) UE(L)
A 0.001 0.001
B −0.05 0.09
A−B 0.05 −0.09
C −6.61 −6.06
D −6.63 −6.15
D − C 0.02 0.09

Table 3: Allais utilities as estimated under asymmetric quadratic (type 2)
loss, and by expected value. The paradox disappears under asymmetric loss.

corresponds to the player having about a thousand dollars.

Under quadratic loss with c2 = 3.0, the paradox disappears.

Refer to table 3 which shows that A is in fact preferred to B at

the same time as D is preferred to C.

According to the model developed here, I predict that if peo-

ple are explicitly told that they can play the lotteries a very

large number of times, then they will make choices consistent

with expected utility.

3.2 Ellsberg paradox

Here is a usual statement of the Ellsberg paradox. An urn con-

tains 300 balls: 100 are red; of the rest, some are blue and some

are green. A person draws a random ball from the urn and is

asked to choose between the following lotteries:
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Gamble A Receive $1 if the ball is red.

Gamble B Receive $1 if the ball is blue.

He also has to choose between the following two lotteries:

Gamble C Receive $1 if the ball is not red.

Gamble D Receive $1 if the ball is not blue.

People usually prefer A to B and C to D. However, if we use

expected utility theory, it appears that a person who prefers A

to B has to also prefer D to C. Let pR be the probability of

a red ball and pNR be the probability that the ball is not red.

Then, under expected utility theory, preferring A to B implies

that, in the person’s view, pR > pB. But preferring C to D

implies that, in his view, pNR > pNB. Since pNR = 1− pR, both

of these inequalities cannot be true. The key to resolving this

paradox is to realize that people are not estimating probabilities

at all, they are estimating lotteries.

Consider these lotteries with the model presented in this pa-

per. A person plans to play his chosen lottery n times; xR is the

number of times he draws a red ball. Letting the utility of no

payment be zero, u (0) = 0, the random utility of A is
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Ũ(A) =
xR
n
u(1). (15)

The estimate of this utility is the same thing but with xR

replaced by its estimate x̂R. Thus, utilities of A and B are

U (A) =
x̂R
n
u (1) (16)

U (B) =
x̂B
n
u (1) (17)

Since drawing any ball is equally likely, the person knows

that the probability of a red ball is pR = 100
300 =

1
3. From this,

he knows the distribution of the number of red draws xR: it is

Binomial with parameters n and pR =
1
3.

xR ∼ B

µ
n, pR =

1

3

¶
. (18)

On the other hand, he does not know the probability of a

blue ball pB. The person might believe that the probability

pB is distributed according to some probability function. Since

probability pB can be anything between 0 and 2
3, the person

might think that pB is distributed Uniformly between 0 and 2
3.

If f (pB) is the probability density of pB, then the distribution
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of the number of blue balls is

f (xB) =

Z 2
3

0

B (n, pB) f (pB) dpB. (19)

If f (pB) is in fact Uniform, the expected number of red draws

xR is equal to the expected number of blue draws xB: E [xR] =

E [xB]. However, the variance of blue draws is greater than the

variance of red draws: V ar (xB) > V ar (xR). This is because

the probability of red draws is certain, while the probability of

blue draws is not. The added uncertainty adds to the variance.

Under asymmetric loss, with equal expected values and unequal

variances, the estimate x̂B is less than x̂R. Because of this, the

person prefers A over B.

The same logic applies to the second pair of lotteries. Let

xNR be the number of non-red draws. Then, because of equal

expected values and unequal variances, the estimate of the num-

ber of non-blue draws is less than the estimate of the number

of non-red draws: x̂NB < x̂NR. And so, U(A) > U(B) and

U (C) > U (D).

As a numerical example, let’s say that u(1) = 1, u(0) = 0,

and the number of games is n = 20. I use quadratic loss with

risk aversion c2 = 3.0. The lottery utilities are shown in table
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U(L)
A 0.29
B 0.24
A−B 0.05
C 0.62
D 0.57
C −D 0.05

Table 4: Ellsberg utilities.

4. As the table shows, A is preferred to B while C is preferred

to D.

3.3 St. Petersburg paradox

Here is a discussion of the St. Petersburg paradox based on

(Martin 2001). A fair coin is flipped until it comes up heads for

the first time. Let k be the toss on which this happens. Then,

the St. Petersburg lottery pays $2k. The question is, how much

would someone be willing to pay for playing this lottery? The

expected value of the lottery is infinite:

EV =
1

2
21 +

1

4
22 + . . . =∞. (20)

From this, it might appear that people would be willing to pay

an infinite amount of money for the lottery, which is obviously

wrong. One flaw with the above presentation of the paradox is
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that it is made in terms of payoffs, not utilities. In fact, the first

solution of the paradox, proposed by Bernoulli, is that people

perceive payoffs in terms of utilities which are increasing, but at

a decreasing rate. Under this solution, the utility of the lottery

is

UE (L) =
1

2
u
¡
21
¢
+
1

4
u
¡
22
¢
+ . . . <∞. (21)

However, we can easily circumvent this solution by making

the payoffs not 2k, but higher. If u−1 (·) is the inverse of the
elementary utility function, let’s make the payoff u−1

¡
2k
¢
. In

this case, the expected utility of the lottery is infinite, and so

it appears, once again, that people should be willing to pay an

infinite amount for it.

Now, consider this lottery in the framework presented here.

For simplicity, let the utility of an outcome be equal to the

outcome: u(b) = b. Under quadratic (type 2) loss, the value of

utility diverges to infinity, regardless of what the risk aversion c2

is. Under linear (type 1) loss with either risk neutrality or risk

aversion (c1 ≥ 1), the utility U(L) is always 2. While this is one
possible answer, it is rather uninteresting. It could be argued

that the answer is simply an artifact of the fact that the linear
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loss produces discontinuous estimates when applied to discrete

distributions.

Consider now a type of loss that is between the two types dis-

cussed above, namely, the type 1.5 loss. Under this loss function,

the utility of the lottery converges to a value greater than 2. For

example, if the number of games is n = 1 and the risk aversion

is c1.5 = 1.7, the utility of the lottery converges to U(L) ≈ 3.85.

3.4 Equity premium puzzle

This section provides some insight into the Equity Premium

Puzzle. The difference between the return on equities and the

return on almost riskless bonds is called the equity premium.

Because equities are risky while bonds are not, expected eq-

uity premium is positive. In the United States and some other

countries, when viewed through the lens of various asset pric-

ing models, the premium seems excessive. According to asset

pricing models, which use expected utility theory, risk aversion

required to sustain such a large premium is unrealistically high

(Obstfeld & Rogoff 1996, p. 310). There are two possible ex-

planations for this paradox: either the asset pricing models do

not accurately describe human behavior, or people are, in fact,
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extremely risk averse, at least in some situations.

The classic paper on the subject is (Mehra & Prescott 1985).

The paper examines real returns on stocks and almost riskless

bonds between the years 1889 and 1978. The average real re-

turn on stocks was 6.98% per year, while on bonds, it was 0.8%

per year. Thus, the equity premium is 6.98% − 0.8% = 6.18%

per annum. But, according to asset pricing models, which use

expected utility theory, under reasonable values of risk aversion,

equity premium should not be greater than about 1% or 2%.

Similarly large equity premiums are present in other data as

well. (Shiller 2000) gives annual data on Stocks, Bonds, and the

Consumer Price Index between the years 1871 and 1997.2 Stocks

data consists of January values of the Standard and Poor’s Com-

posite index and yearly dividend data for those stocks. Bonds

data is the total nominal return from investing in January and

then reinvesting in July at the six month prime commercial pa-

per rate. Based on the (Shiller 2000) data, I calculate real re-

turns for holding Stocks and Bonds. Rate r is the real annual

return; Logarithm Return (LR) is ln (1 + r). The calculated sta-

tistics are in table 5. According to this data, the equity premium
2Thanks to John Nuttall of University of Western Ontario for providing the data.
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Return r Log return ln (1 + r)
Mean Std dev Mean µ Std dev σ

Stocks 0.0860 0.1750 0.0689 0.1669
Bonds 0.0296 0.0681 0.0270 0.0658

Correlation coefficient
Stocks-Bonds 0.107 0.129

Table 5: Returns on Stocks and Bonds from 1871 to 1997.

is 8.60%− 2.96% = 5.63%, still much greater than 2%.
I use the model developed in this paper, with a relatively

low value of risk aversion, to predict investor behavior in two

cases: when the returns are as described by the data; and when

returns are such that the equity premium is 2%. I find that

the predicted investor behavior if returns are as observed seems

reasonable, while behavior when equity premium is set to 2%

seems very unreasonable.

Suppose only two investment vehicles are available: Stocks

and Bonds: V = {S,B}. In the minds of investors, the Loga-
rithm Rates are Normally distributed with statistics as shown in

table 5, and zero correlations across time. Each investor knows

the number of years n that he will invest. For example, this

could be the number of years to retirement. To simplify com-

putations, I use the linear (type 1) loss function. Each investor

knows his risk aversion c1, which could be related to personal-
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ity, family situation, and so on. I assume the relatively low risk

aversion of c1 = 3.8 (see table 2 in section 2.2).

For convenience, let t be the number of years until the investor

stops investing (such as until retirement). Thus, the first year

of investing is t = n while the last year is t = 1. Define the

utility from investing is the logarithm of the total return. In

other words,

Ũ = ln
nY
t=1

(1 + rt) =
nX
t=1

ln (1 + rt) , (22)

where rt is the real return that the investor receives in year

t.

Before the beginning of each year, investors decide what per-

centage of their money to put into each of the investment vehi-

cles. They determine the optimal investment path by backward

induction, as discussed in section 2.4. The utility is Normally

distributed as follows:

Ũ ∼ N

Ã
nX
t=1

µt,
nX
t=1

σ2t

!
, (23)

where µt and σt are mean and standard deviation of the Log-

arithm Return of the investment mix chosen for year t. If πV,t

25



is the fraction invested in V in year t, then

µt =
X
V

πV,tµV (24)

σ2t =

ÃX
V

π2V,tσ
2
V

!
+ 2πS,tπB,tσSσBρSB (25)

The right hand side variables, µV , σV , and ρSB, are taken

from table 5.

Figure 1 shows the proportion of money invested in Stocks,

as a function of time remaining t, for a person with risk aver-

sion c1 = 3.8; the rest of the money is held in Bonds. Until

there are t = 21 years left, the person holds all his money in

Stocks. Starting from t = 20, he gradually begins to shift from

Stocks into Bonds. In t = 8, proportion invested in Stocks falls

below 50%. During the last year of investing, when t = 1, the

proportion is πS,1 = 22%.

Now, suppose that, following asset pricing models, equity

premium was 2%. That is, all the data is as is, except that

the returns of Stocks rS are shifted by −E [rS] + E [rB] + 0.02.

This changes the expected return on Stocks without changing

their risk (standard deviation of return) or correlation to Bonds.
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Figure 1: Optimal investment path under observed equity premium. Pro-
portion invested in stocks versus years to retirement.
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The estimated mean of Logarithm Return for Stocks becomes

µS = E [ln (1 + rS)] = 0.0339. Figure 2 shows the proportion of

money invested in Stocks, as a function of t, under this scenario.

Now, the person starts shifting into Bonds at t = 786; he starts

investing less than 50% in Stocks at t = 312; he starts investing

less than 20% in Stocks at t = 27. Such an investment path is

very unrealistic.

4 Hypothesis testing

In this section, I outline some ideas on how to apply the utility

model presented in this paper to hypothesis testing. Hypoth-

esis testing allows us to tell whether sufficient evidence exists

for some proposition of interest. For example, based on data

related to some quantity β, we might want to know if there is

sufficient evidence that β > 0. The alternate hypothesis, HA, is

the proposition for which we would like to know whether suffi-

cient support exists; the null hypothesis, H0, is the complement

of the alternate. In this example, H0 : β ≤ 0;HA : β > 0.

In conventional hypothesis testing, the size of the test is usu-

ally set to 5%; sometimes, it is also set to either 10% or 1%. The

researcher sets the size of the test somewhat arbitrarily, without
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Figure 2: Optimal investment path if equity premium was 2%. Proportion
invested in stocks versus years to retirement.
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any direct reference to his attitude toward risk. Many times a

null can be rejected at one common level, such as 5%, but not at

another common level, such as 1%. In this situation in particu-

lar, the researcher has to have his preferences well-quantified.

4.1 The basic utility approach

Let B be a random variable, such as the response to some treat-

ment. u (B) > 0 means that the response is desirable. B can

take on M possible values, subscripted with m = 1, 2, . . . ,M .

A researches has already observed some values of this random

variable. He wants to know that, if the treatment is applied in

the future, the average utility of the treatment will be positive.

The possible values of the random variable {bm} are known,
but their probabilities pm are not. In observations, outcome bm

occurs ym times. The researcher plans to apply this treatment

n times. The utility of the treatment, Ũ (L), is the average per-

application utility. If the researcher’s estimate of this utility is

positive, he concludes that, on average, the treatment produces

desirable results; if the estimate is zero or negative, then the

researcher concludes that, on average, the treatment produces

undesirable results. The researcher explicitly accounts for his
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attitudes toward risk in the estimation process by choosing an

appropriate loss function.

For simplicity, assume that the treatment, if chosen, will be

applied a lot of times (n is very large). Then, the ratios x
n

reduce to the probabilities. But keep in mind that the proba-

bilities themselves are not known but rather follow the Dirichlet

distribution. The random variable utility becomes

Ũ (L) =
MX
m=1

pmu (bm) . (26)

4.2 Sample calculation

Suppose u (B) can be any integer between −10 and 10, all a
priori equally likely. A researcher observes the utilities of k = 20

treatments. These observed utilities are:

−10,−7,−6,−2,−2,−1,−1, 0, 2, 2, 5, 6, 6, 7, 8, 8, 9, 9, 9, 9. (27)

The researches wants to know whether, if he applies the treat-

ment a very large number of times, the average per-application

utility will be positive.

Let µ be the expected value of u (B). In the conventional hy-

pothesis test framework, the researcher would test the following
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hypothesis: H0 : µ ≤ 0;HA : µ > 0. Let µ̂ be the estimator of

expected value µ, and let σ̂ be its (estimated) standard devia-

tion. A priori, if µ = 0, the ratio
µ̂

σ̂
has the t distribution with

20− 1 = 19 degrees of freedom. From this, if the size of the test
is 5%, the critical value of the test statistic is 1.73; if the size is

1%, the critical value is 2.54.

The observed µ̂ is 2.55; the observed σ̂ = 1.30. The obtained

test statistic is 1.97. Thus, the researcher accepts the hypothesis

that µ > 0 at the 5% level, but not at the 1% level. It’s not clear

what decision the researcher should make since there is no direct

correspondence between the size of the test and the researcher’s

attitudes toward risk.

Now, let’s apply the approach developed above. Since a priori

all outcomes are equally likely, set the prior parameter αm = 1

for allm. Figure 3 shows the distribution of utility of treatment,

Ũ (L). The researcher calculates the point estimate of the utility,

U (L), by specifying the parameters a and ca of the loss function

that best reflect his preferences. In this example, the utility is

positive under a wide range of very reasonable parameters. For

instance, if the researcher has quadratic (type 2) loss with a

moderate risk aversion of c2 = 13.1, then utility is U (L) = 0.3;
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Figure 3: Distribution of utility for the sample calculation.

for a higher risk aversion of c2 = 22.4, utility is still positive

at U (L) = 0.1. (See table 2 for risk aversion c2.) A very high

risk aversion of c2 = 52.5 does produce a negative utility of

U (L) = −0.2 though. Whether the researcher decides that the
treatment has a desirable effect depends directly on his easily

quantifiable degree of risk aversion.
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5 Conclusion

The utility model presented here is attractive theoretically since

it is built upon solid probability principles. The model sheds

light on several well-known paradoxes. The model can also be

put to good use in hypothesis testing.
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