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Abstract. The goal of the paper is to study how a menu of options affects de-
cisions of a rational agent facing uncertainty over future payoff streams. Using
the real options approach, we demonstrate that multiple options not only in-
crease the barrier which the underlying stochastic variable has to reach in order
investment became optimal, but cause the investor to be inactive even when the
cost of investment is vanishing. As a technical contribution, the paper suggests
a robust method of solution of a two-point optimal stopping problem.
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1 Introduction

Buridan’s ass: A paradox of medieval logic concerning the behavior

of an ass who is placed equidistantly from two piles of hay of equal size

and quality. Assuming that the behavior of the ass is entirely rational, he

has no reason to prefer one pile to the other and therefore cannot reach a

decision which pile to eat first, and so remains in his original position and

starves to death.

In real life, a decision maker typically faces a menu of options. For example,
individuals have to choose among a variety of retirement plans, or insurance
companies. Oil companies need to decide whether to invest into conventional
(crude oil) or unconventional (tar sands) extraction. Pharmaceutical companies
may target development of new drugs or improvement of the quality of existing
drugs. British Petroleum (BP) Amoco and ARCO had to choose among several
available options before merging together.

1I am thankful for discussions to Dean Corbae, Peter Debaere, Ken Hendricks, Max Stinch-
combe, as well as to Andres Almazan, Aydogan Alti, Lorenzo Garlappi, and other participants
of a brown bag seminar at McCombs School of Business.
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In all the above examples, it is costly to reverse an action, exercising an
option generates a stream of benefits which evolve stochastically, and, in many
instances, options are mutually exclusive. The goal of this paper is to study
how multiple options affect decisions of a rational agent facing uncertainty over
future payoff streams. In particular, we want to determine which option (if any)
will be exercised if a menu of options is available.
Typically, in the real options literature, the optimal exercise strategy is con-
sidered under an assumption that only one option is available at a time, and
the answer is of the form: exercise the option when the underlying stochastic
variable crosses a certain threshold (see, for example, Dixit and Pindyck (1996)
and the bibliography therein). Among exceptions are “polar” options such as
expansion-contraction (see, e.g., Abel et al. (1996) for a two-period model, Dixit
and Pindyck (2000) for a Gaussian continuous time model, and Boyarchenko and
Levendorskǐi(2000) for a non-Gaussian model) or expansion-abandonment (see,
e.g., Mauer and Ott (2000)).

Several studies have considered models when decision makers have some de-
gree of flexibility in terms of switching between different modes of operation. For
example, Brennan and Schwartz (1985) construct a model of decision to open,
mothball, and close a mine producing a natural resource. Trigeorgis (1993, 1996)
develops models that allow for a variety of options interacting within a single
project. Kulatilaka (1995) presents a general finite time horizon real options
model with multiple operating modes which is solved numerically by time dis-
cretization and backwards induction. For further references on switching options
and flexibility, see Kulatilaka (1995), Chapter 7 in Dixit and Pindyck (1996),
and Brekke and Schieldrop (2000).

Brekke and Schieldrop (2000) present a model which is the closest to the
model in this paper. They consider a firm with an option to build a plant
producing a single good using one of two input factors with uncertain prices.
Input prices follow correlated geometric Brownian motions. The firm chooses
not only when to invest, but also a technology: a pure technology that can
use only one input factor or a flexible technology that allows switching between
two factors. Brekke and Schieldrop (2000) notice that if the flexible technology
is unavailable, then the choice between pure technologies makes the firm more
reluctant to invest as compared to the case when only one technology is available,
because the inaction region (i.e., the set of states where it is optimal to continue
waiting for a better investment opportunity) becomes larger. However there is
no precise characterization of the inaction region in that paper.

We provide complete characterization of inaction regions for various combi-
nations of the parameters of the model. We show that Brekke and Schieldrop’s
(2000) conjecture does not hold sometimes, because for some parameter values,
existence of an alternative option does not affect investment in a pure technology.
For other parameter values, the picture may be richer than the one conjectured
in the aforementioned paper.

Problems of timing investment, capital expansion-contraction program, tim-
ing new technology adoption and other problems in the real options theory are
simplified if a competitive firm is considered, and the price of output is the
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primitive of the model. Optimal investment/disinvestment rules change (and
may change significantly) if the strategic interactions are introduced (see Dixit
and Pindyck (1996), Grenadier (2000, 2002), Smit and Trigeorgis (2004), Murto
(2004) and the bibliography therein). To separate the dependence of optimal op-
tion(s) exercise strategies on a menu of options from the influence of such factors
as strategic interactions, we consider decisions of an isolated agent who takes
the evolution of payoff streams as given. We leave for the future the analysis of
decision making with multiple options and strategic interactions of agents.
The leading example in our paper is a risk-neutral entrepreneur who contem-
plates investment of a fixed size capital into a technology. We consider the
case when two projects are available, so the entrepreneur must decide not only
when to invest, but also which technology to choose. In order to keep things
as simple as possible, we assume that the projects are mutually exclusive, so
that the entrepreneur can invest in at most one project, and it is prohibitively
costly to reverse investment. We leave for the future study the analysis of the
situation when the investor has an opportunity to diversify and invest a part of
the available capital in one project, and the remaining capital in the other one.

Once implemented, both technologies will produce the same commodity2.
The output is sold on the spot at the market price that follows a Gaussian
process. Each of the investment opportunities generates a stream of payoffs
which is an increasing function of the underlying stochastic variable. We rule
out the case, when one investment project is superior to the other in all respects
relevant to the investment decision, because in the latter case, the answer remains
the same as when only the former investment opportunity were present. By
assumption, project 1 generates higher profit flows than project 2 when the
market price is relatively low. Project 2 becomes more attractive at high levels
of the spot price of output.

If only one project is available, then the investment is optimal when the price
of output reaches a certain barrier called the investment threshold. If the spot
price is below the investment threshold, then it is optimal to wait. In other
words, the inaction region is an interval adjacent to zero. If two projects are
available, the inaction region may be a union of an interval adjacent to zero,
and one or two bounded intervals which we call Buridan zones. When the spot
price is in a Buridan zone, the investor, as the famous animal, waits unable
to choose one of the two competing technologies although in the absence of
one of the investment opportunities, the entrepreneur would have invested into
an available project. If the price process is modelled as an exponential of the
Brownian motion (with drift), then eventually, the spot price will leave Buridan
zone, and the entrepreneur will invest. So, unlike the prototype animal, the
investor will move, eventually, and will not starve to death.
To be more specific, let us describe in more detail the evolution of the spot price
and investment strategy of the rational investor when there is one Buridan zone.

2We understand that this assumption may seem unrealistic, but if the goods produced
by each technology are close substitutes, then their prices are highly (positively) correlated.
Therefore our model can be regarded as the first approximation to a more realistic model.
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Let P0 be the spot price at time 0, when the entrepreneur starts contemplating
the investment. For low values of P0, it is not optimal to invest in either project,
so the rational investor waits till the price crosses the investment threshold for
project 1 and then invests. If P0 is above the investment threshold but below
the lower boundary of the Buridan zone, the entrepreneur invests immediately
in project 1, because, as it will be clear further in the paper, the NPV of project
1 is higher than the NPV of project 2 for such spot price values. Now, suppose
that P0 is in the Buridan zone. Then the investor contemplates both projects
and waits. If the spot price drops down to the lower boundary of the Buridan
zone, then investment in project 1 becomes optimal. If the price goes up to the
upper boundary of this interval, then investment in project 2 becomes optimal.
For all values of P0 above the upper bound of the Buridan zone, immediate
investment in project 2 is optimal, because now the NPV of project 2 is bigger
than the NPV of project one.

It is shown in the paper that the upper bound of the Buridan zone is bigger
than the investment threshold for project 2, when only this project is available,
so the option to invest in project 1 delays investment in project 2. If the spot
price is in the Buridan zone, then obviously we may say that option to invest
in project 2 causes delay of investment in project 1. Should project 2 had not
been available, the investor would have immediately invested into the available
project. This demonstrates that multiple options make delays more likely.
The rest of the paper is organized as follows. In Section 2, investment delays with
a menu of options are demonstrated for the simplest model of uncertainty which
is resolved in one period. In Section 3, we consider the timing of investment
when the entrepreneur has to choose between two projects, and analyze the
conditions which ensure the existence of one or two Buridan zones. In Section
4, we consider in more detail the case of one Buridan zone. The standard
approach to a two-point optimal stopping problem in the real options literature
is to write down a non-linear system of four equations in four unknowns and to
solve it numerically. This is not very convenient because a solution to a non-
linear system is not unique, and therefore there is no guarantee that a numerical
procedure gives the correct solution. The paper demonstrates how an optimal
stopping problem with two barriers can be reduced to finding the smallest of
two zeros of a concave function. After that, the investment thresholds and the
value of the investment opportunity are given by explicit analytical expressions
in terms of the smallest zero and parameters of the model. Numerical results are
presented, and the dependence of the Buridan zone on the costs of investment is
analyzed. As the fixed cost of investment vanishes, the inaction region adjacent
to zero vanishes as well, but the Buridan zone does not. The first observation
is a well-known result in the real options theory, whereas the second one seems
to be new. In Section 5, we discuss the extension of our results to the case of a
diffusion process with embedded jumps. Section 6 concludes.
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2 Two period model

2.1 Investment problem

Consider the simplest possible model. Assume that project j (j = 1, 2) generates
the perpetual profit flow P j

t , where at any t ≥ 0, P j
t is a random variable whose

current realization P j
0 = P is the same for both projects and known. The fixed

cost of investment in either project is I > 0. The entrepreneur anticipates that
at t = 1, both P 1 and P 2 may go up or down with equal probabilities and will
remain at its new level forever (i.e., all the uncertainty is resolved at t = 1). To
be more specific, for project j, with probability 1/2, for all t ≥ 1, P j

t = (1−dj)P,

and, also with probability 1/2, for all t ≥ 1, P j
t = (1 + uj)P . Let β ∈ (0, 1) be

an endogenous discount factor. Assume that the parameters of the model satisfy
the following conditions

(i) 1 > u2 > u1 > 0,

(ii) 1 > d2 > d1 > 0,

(iii) u1 − d1 > u2 − d2 > 0,

(iv) 2 + β(u1 − d1) > β(1 + u2).

Clearly, waiting with the decision to invest or not in either project beyond t = 1
is not optimal, because it reduces the present value of the potential investment
gain without adding new information.

2.2 Optimal investment strategy

Suppose that no investment is made at t = 0. Then, at time t = 1, the entrepre-
neur makes a “now-or-never” decision to invest in project 1 or 2. Assume first
that only project j is available. It is easy to see that if I > P j

1 /(1 − β) then
investment is not optimal, and the value of the investment opportunity is zero.
Otherwise, the investment is made and the gain is P j

1 /(1− β)− I. We conclude
that, given the current profit P j

0 = P , the expected present value at t = 0 of
investment in project j at t = 1 is

V j
1 (P ) = βE

[(
P j

1

1− β
− I

)

+

|P j
0 = P

]

=
1
2
β

(
(1 + uj)P

1− β
− I

)

+

+
1
2
β

(
(1− dj)P

1− β
− I

)

+

.

Here we use the standard notation a+ = max{a, 0}. We see that if P < (1 −
q)I/(1+uj), then investment is not optimal in either state. If (1−q)I/(1+uj) ≤
P < (1 − q)I/(1 − dj), then investment is optimal at t = 1 only if P j goes up.
For P ≥ (1− q)I/(1− dj) investment is optimal in both states at t = 1. Hence

5



0
 

 
V1

1
(P)

V
1
2(P)

V1
0
(P)

P1
*

P* P
12

Figure 1: Two-period model. Parameters: β = 0.95, I = 5, u1 = 0.6, d1 =
0.35, u2 = d2 = 0.8. V 1,2

1 (P ) – the option value of investment in project 1 or
2 at t = 1. V 1

0 (P ) – the value of investment in project 1 at t = 0. P ∗ –
the investment threshold when two projects are available. P 1

∗ – the investment
threshold for project 1, when only this project is available. At P12 the investor
is indifferent between projects 1 and 2 at t = 1.

(see Figure 1)

V j
1 (P ) =





0 if P < (1− q)I/(1 + uj),
β
2

(
(1+uj)P

1−β − I
)

if (1− q)I/(1 + uj) ≤ P < (1− q)I/(1− dj),
β
2

(
(2+uj−dj)P

1−β − 2I
)

if P ≥ (1− q)I/(1− dj).

If two projects are available, the rational investor chooses the one of the highest
value, therefore, at time 0, the option value of investment at t = 1 is V1(P ) =
max{V 1

1 (P ), V 2
1 (P )}. Using assumptions (i)–(iii) on the values of the parameters

made earlier and comparing values V 1
1 (P ) and V 2

1 (P ), we obtain the following
option value of the future investment
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V1(P ) =





0 if P < (1− q)I/(1 + u2),
β
2

(
(1+u2)P

1−β − I
)

if (1− q)I/(1 + u2) ≤ P < P12,

β
2

(
(2+u1−d1)P

1−β − 2I
)

if P ≥ P12,

where P12 ∈ ((1− q)I/(1− d1), (1− q)I/(1− d2)) is a solution to

(1 + u2)P
1− β

− I =
(2 + u1 − d1)P

1− β
− 2I.

Evidently, P12 is the level of profit which makes the investor indifferent between
projects 1 and 2 at t = 1.

Consider now the value of investment in project j at time t = 0.

V j
0 (P ) =

(
(1 + β(uj − dj)/2)P

1− β
− I

)

+

.

The investor has to choose between investment at t = 0 and investment at
t = 1, i.e., her value function is V (P ) = max{V 1

0 (P ), V 2
0 (P )V1(P )}. Since

u1 − d1 > u2 − d2 > 0, we have V 1
0 (P ) > V 2

0 (P ) for all P > 0. Therefore if the
entrepreneur invests at t = 0, she will invest in project 1.

On the strength of assumptions (i) and (iv), there exists P ∗ ∈ ((1−β)I/(1+
β(u1 − d1)/2), P12) such that V 1

0 (P ∗) = V1(P ∗), i.e., at the spot value P 1
0 =

P 2
0 = P ∗, the entrepreneur is indifferent between investment at t = 0 and waiting

till t = 1 (see Figure 1). For all P > P ∗, V0(P ) > V1(P ), hence the entrepreneur
will immediately invest in project 1. If (1 − q)I/(1 + u2) ≤ P < P ∗, then the
entrepreneur will wait till t = 1 and then invest in project 2 only if P 2 goes up,
otherwise she will not invest at all. If P < (1− q)I/(1+u2), then no investment
will be ever made.

2.3 Investment delays with multiple options

Notice that had only project 1 been available, investment in this project at
t = 0 would have been optimal for all P > P 1

∗ , where P 1
∗ is a solution to

V 1
0 (P ) = V 1

1 (P ). It is straightforward to check that P 1
∗ < P ∗, hence if the

current realization of the state variable is P ∈ (P 1
∗ , P ∗), no investment activity

will be observed when two projects are available as opposed to the case when
only project 1 is available. We conclude that the existence of the second project
delays investment in project 1 in the sense that it increases the barrier that the
state variable (current profit) has to cross in order that the latter investment
become optimal. Moreover, if at t = 1 the profit goes down, no investment will
be ever made, though without project 2 at hand, the entrepreneur would have
invested in project 1 at t = 0.

Had only project 2 been available, investment in this project at t = 0 would
have been optimal for all P > P 2

∗ , where P 2
∗ is a solution to V 2

0 (P ) = V 2
1 (P ).

Evidently, P 2
∗ > P ∗, hence the option to invest in project 1 delays investment

in project 2, because the latter investment can happen at t = 1 only.
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3 Existence of a Buridan zone: general analysis

3.1 Model specification

Assume that after the optimal adjustment for flexible factors of production,
project j generates the operating profit GjP

αj

t (j = 1, 2), where Pt is the price
of output. Further assume that Gj > 0, α2 > α1 > 0. If the entrepreneur
decides to invest in project j at time τ ≥ 0, she incurs fixed cost Ij > 0 (which
also can be interpreted as the present value of the expenditure stream to which
the investor commits at time τ) and starts to accrue the stream of operating
profits from t = τ onward. The assumption α2 > α1 implies that the second
project performs better than the first one at high levels of the state variable
(spot price of output).

Assume that the riskless rate q > 0 is fixed, and under the risk-neutral
measure, the price of output follows the geometric Brownian motion (with drift):
Pt = eXt , that is, the dynamics of Xt is governed by a stochastic differential
equation

dXt = bdt + σdWt,

where dWt is the increment of the standard Brownian motion, b ∈ R is the drift,
and σ > 0 is the variance. Introduce

Ψ(z) =
σ2

2
z2 + bz.

Let P = ex be the current (spot) price and Ex denote the expectation operator
under the risk-neutral measure, conditioned on X0 = x. The moment generating
function of the Brownian motion admits a representation

E
[
eαXt

]
= E

[
eαXt |X0 = 0

]
= etΨ(α), (3.1)

therefore
Ex

[
eαXt

]
= etΨ(α)+αx. (3.2)

Equation (3.2) allows one to calculate the NPV of project j started at the spot
price P

V j
ex(P ) = Ex

[∫ ∞

0

e−qtGje
αjXtdt

]
− Ij =

GjP
αj

q −Ψ(αj)
− Ij . (3.3)

The value in equation (3.3) is well-defined iff

q −Ψ(αj) > 0. (3.4)

Denote by β± = β±(q) the positive and negative roots of the fundamental
quadratic

q −Ψ(z) = 0;

under condition (3.4), β− < 0 < α1 < α2 < β+. Set

κ+
q (z) =

β+

β+ − z
, κ−q (z) =

β−

β− − z
. (3.5)
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Since q − Ψ(z) is a quadratic polynomial, and β± are its roots, the following
identity holds

q

q −Ψ(z)
= κ+

q (z)κ−q (z). (3.6)

3.2 The case of only one investment opportunity

The classical investment rule is: invest when Pt = Hj0, where the investment
threshold Hj0 is the solution to the equation

GjHj0
αj

q −Ψ(αj)
=

β+

β+ − αj
· Ij (3.7)

(see, e.g., Dixit and Pindyck (1996), where the result is obtained for the case
αj = 1). We set Kj = qIj/Gj and, using (3.6), rewrite (3.7) as

K−1
j κ−q (αj)Hj0

αj = 1, (3.8)

so that the investment threshold is

Hj0 =
(
Kj/κ−q (αj)

)1/αj
. (3.9)

If at time 0, when the entrepreneur starts contemplating investment, P0 = P ≥
Hj0, then she invests immediately, and the NPV of the project is given by (3.3).
Using (3.6) and (3.8), we may simplify (3.3):

V j
ex(P ) = Ijκ

+
q (αj)(P/Hj0)αj − 1), P ≥ Hj0. (3.10)

If P0 = P < Hj0, the investor waits till Pt reaches Hj0, and the option value
of investing into the project is V j

opt(P ) = Dj(P/Hj0)β+
, where the constant Dj

can be found from the value-matching condition

V j
opt(Hj0) =

GjHj0
αj

q −Ψ(αj)
− Ij .

Using (3.8), we derive

Dj =
qIjκ

−
q (αj)−1

q −Ψ(αj)
− Ij = Ij(κ+

q (αj)− 1).

Thus,
V j

opt(P ) = Ij(κ+
q (αj)− 1)(P/Hj0)β+

, P ≤ Hj0. (3.11)

The value function of project j is therefore

V j(P ) =

{
V j

opt(P ) if P ≤ Hj0,

V j
ex(P ) if P ≥ Hj0.

For the extension of (3.9), (3.10) and (3.11) for general Lévy processes (that
is, processes with stationary independent increments), and interpretation of the
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investment rule as Marshallian rule with the NPV calculated under the infimum
process instead of the initial one (the record setting bad news principle), see
Boyarchenko (2004). Notice that (3.6) is a special case of the Wiener-Hopf
factorization, which is valid for any Lévy process. In the general case, formulas
for the Ψ(z), definable from (3.1), and factors κ±q (z) are more complicated than
in the Brownian motion case; however, in the case of a diffusion process with
embedded exponentially distributed jumps, κ±q (z) can be easily expressed in
terms of the roots of the rational function q −Ψ(z).

3.3 Classification of inaction regions when two projects
are available

The entrepreneur has the perpetual American option with the payoff Vex(P ) =
max{V 1

ex(P ), V 2
ex(P )}, where P is the current price. The exposition below simpli-

fies if one makes the change of variables P 7→ Pα2 (this is equivalent to setting
α2 = 1), which makes V 2

ex a linear function and V 1
ex a concave one. All the

stylized figures and numerical examples in the paper are produced under this
normalization. The following statements can be easily verified graphically.

I. If I2 ≥ I1, then there exists a unique H12 > 0 such that

V 1
ex(P ) > V 2

ex(P ) ∀ P < H12,

V 1
ex(P ) < V 2

ex(P ) ∀ P > H12.

At P = H12, Vex(P ) has a kink.

II. If I2 < I1, then the following three cases are possible:

1. for all P > 0, V 1
ex(P ) < V 2

ex(P );

2. there exists H12 such that V 1
ex(H12) = V 2

ex(H12) but for all other P ,
V 1

ex(P ) < V 2
ex(P );

3. there exist 0 < H∗ < H∗ such that

V 1
ex(P ) < V 2

ex(P ), ∀ P < H∗ and P > H∗,

V 1
ex(P ) > V 2

ex(P ), ∀ P ∈ (H∗,H∗).

Notice that in the first two cases, Vex(P ) = V 2
ex(P ) for all P , and in the

third one, Vex(P ) has two kinks at P = H∗,H∗.

For small levels of P , it is not optimal to invest in either of the two projects.
Hence, there exists an inaction zone of the form (0,H0). To find H0, we use
the standard argument. The option value in this inaction (sub)region is of the
form Vopt(P ) = AP β+

, and the constant A and the boundary H0 can be found
from the value matching and smooth pasting condition. Notice, first, that Vopt

is convex (recall that β+ > α2 > α1 and α2 = 1 after the change of variables)
and Vex(0) = max{−I1,−I2} < 0, therefore for a sufficiently large A, the curve
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Figure 2: Case I (a): project 1 is redundant.

AP β+
will not touch the curve Vex(P ). Now, as A decreases, the touchdown

happens eventually. Since the touchdown cannot happen at any of the kinks,
the following cases are possible (we use the same enumeration, as above, with
additional subcases, whenever necessary).

Case I (a). I2 ≥ I1, and the curves touch at P = H20 > H12 only. In this
case, project 1 is redundant, the action region is [H20, +∞), and the investment
is made in project 2. We plot this case in Figure 2.

Case I (b). I2 ≥ I1, and the curves touch at P = H10 < H12 only. In this
case, if P0 = P < H10, the entrepreneur waits till the price, Pt, reaches H10, and
then invests in project 1. If P is sufficiently large, then investment in project
2 is optimal but it cannot be optimal for all P > H12. Indeed, if it had been
the case, the value of the investment opportunity (with two projects available)
would have coincided with Vex on [H10, +∞). But Vex(P ) has a kink at H12,
and the value function must be smooth. This implies that in a neighborhood of
H12, it must be optimal to wait and not to invest in either of the two projects.
The intuitive idea is that by waiting a little bit longer, we can observe the
next realizations of P and choose positions on either side of the kink. Indeed,
suppose that instead of waiting, the entrepreneur invests in project 1 when
P = H12 − ε and V 1

ex(H12 − ε) > V 2
ex(H12 − ε). It may be the case that the next

moment P = H12 + ε, then project 2 becomes more attractive than project 1.
But investment is irreversible, so it was better to delay the investment in the
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Figure 3: Case I (b): one Buridan zone (H1, H2).

first place3. To be more specific, in a certain neighborhood of H12, it must be
optimal to wait for the state variable to reach a certain level H2, and then invest
in project 2. Recall that the latter is better than the former for high realizations
of the state variable. However, if the state variable falls sufficiently low, to a
certain level H1, then investment in the project 1 becomes optimal.

Clearly, H10 ≤ H1 < H12 < H2. In fact, we may write H10 < H1, because
if H10 = H1 the curves AP β+

and Vex touch at two points - we study this case
below. Since H10 < H1, project 1 is not redundant, hence there is an additional
non-trivial investment opportunity. We conclude that H2 > H20 because an
additional investment opportunity must increase the option value of waiting.

To summarize, case I (b) is the case of one Buridan zone described in the
Introduction. See Figure 3.

Case I (c). I2 ≥ I1, and the curves touch at P = H1 < H12 and P = H20 >
H12 only. In this case, the following two investment strategies are optimal:

(i) the same as in Case I (a);

(ii) if P = H1 = H10, invest in project 1, if P ≥ H2, invest in project 2, if
P ∈ (0,H2) and P 6= H1, wait.

We may call Case I (c) the case of a removable Buridan zone: if we use the first
investment strategy, we may forget about the Buridan zone. This case is plotted

3For more discussion of the smooth pasting principle in real options, see, for example, Dixit
and Pindyck (1996) and references therein.
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in Figure 4.

Case II.1. Project 1 is evidently redundant.

Case II.2. The following cases are possible:

(a) The curves touch at P = H20 only, and H20 6= H12. Project 1 is redundant.

(b) The curves touch at P = H20 = H12 = H10. The optimal strategy is: if
P > H12, invest in project 2; if P < H12, wait, and if P = H12, invest in
either of the two projects.

Case II.3. The following cases are possible:

(a) The curves touch at P = H20 > H∗ only. Project 1 is redundant, and the
optimal investment strategy is the same as in Case I (a).

(b) The curves touch at P = H10 ∈ (H∗, H∗) only. The optimal investment
strategy is as in Case I (b) (one Buridan zone).

(c) The curves touch at P = H10 ∈ (H∗,H∗) and at P = H20 > H∗ only. The
optimal strategy is as in Case I (c) (removable Buridan zone).

(d) The curves touch at P = H20 < H∗ only. The same arguments which
we applied in Case I (b) to a neighborhood of H12, are now applicable to
neighborhoods of H∗ and H∗, where Vex has kinks. Hence, we have two
Buridan zones (H∗,2,H∗,1) and (H∗

1 ,H∗
2 ), where

H20 < H∗,2 < H∗,1 < H∗
1 < H∗

2 .
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2 ).

See Figure 5. The optimal exercise rule is: as Pt arrives in [H20,H∗,2]
or [H∗

2 ,+∞), invest in project 2, and as Pt arrives in [H∗,1,H∗
1 ], invest in

project 1. In this case, the inaction region consists of a conventional region
(0, H20) adjacent to 0, and two Buridan zones (H∗,2,H∗,1) and (H∗

1 ,H∗
2 ).

Observe that now, investment in project 2 requires either relatively low
or relatively high realization of the spot price. Investment in project 1 is
optimal at moderately high values of the spot price. The intuition behind
this result is that for lower realizations of the spot price, project 1 is more
costly to implement than project 2. At higher realizations of the spot
price, project 2 becomes more attractive than project 1 in terms of profit
flows.

The calculation of the boundary points and the value function of investment
opportunity, V (P ), is similar in all cases. We consider the cases I (b) and I (c).

4 The case of one Buridan zone

4.1 General analysis

Case I (b) is observed iff V 1
opt(H10) > V 2

opt(H10), that is,

I1 · [κ+
q (α1)− 1] > I2 · [κ+

q (α2)− 1](H10/H20)β+
.
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The equivalent condition is

(
H10

H20

)β+

<
I1(κ+

q (α1)− 1)

I2(κ+
q (α2)− 1)

.

For simplicity of exposition assume that K1 = K2 = K. Then, using (3.9), we
obtain a condition

K1/α1−1/α2
κ−q (α2)1/α2

κ−q (α1)1/α1
<

I1

I2

(
κ+

q (α1)− 1

κ+
q (α2)− 1

)1/β+

.

Finally, the upper bound for K is:

K < Kup :=





κ−q (α2)α1

κ−q (α1)α2

(
I1

I2

)α1α2
[
κ+

q (α1)− 1

κ+
q (α2)− 1

]α1α2/β+




1/(α2−α1)

. (4.1)

In Case I (c), we obtain condition (4.1) with the equality.

4.2 Explicit formulas

4.2.1 Reduction to a system of algebraic equations

In this subsection, explain how to find the boundaries H1 and H2 of the Buridan
zone. Let K < Kup. Then the Buridan zone exists. Let V (P ) be the value of the
investment opportunity with the possibility of a choice between the two projects.
In the Buridan zone (H1, H2), which is a part of the inaction region, the value
function V is of the form

V (P ) = A+P β+
+ A−P β− , (4.2)

and at the boundary points P = Hj , j = 1, 2, V satisfies the value-matching and
smooth pasting conditions (see (3.10)):

V (Hj) = Ij [κ+
q (αj)(Hj/Hj0)αj − 1]; (4.3)

V ′(Hj) = αjIjκ
+
q (αj)(Hj/Hj0)αj Hj

−1. (4.4)

Substitute (4.2) into (4.3)-(4.4), and multiply (4.4) by Hj :

A+Hj
β+

+ A−Hj
β− = Ij [κ+

q (αj)(Hj/Hj0)αj − 1]; (4.5)

β+A+Hj
β+

+ β−A−Hj
β− = αjIjκ

+
q (αj)(Hj/Hj0)αj . (4.6)

The system (4.5)-(4.6) is a system of four equations in four unknowns A±, and
H1,2. Below we demonstrate that it is possible to reduce the solution of the
above system to finding the smallest of two zeros of a concave function.
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4.2.2 Reduction to an algebraic equation

Multiply (4.5) by β+, subtract (4.6) from (4.5):

(β+ − β−)A−Hj
β− = (β+ − αj)Ijκ

+
q (αj)(Hj/Hj0)αj + β+Ij ,

and divide by β+. Since (β+ − z)/β+ = κ+
q (z)−1, the result is

κ+
q (β−)−1A−Hj

β− = Ij [(Hj/Hj0)αj − 1]. (4.7)

Multiply (4.5) by β−, subtract (4.6) from (4.5):

(β− − β+)A+Hj
β+

= (β− − αj)Ijκ
+
q (αj)(Hj/Hj0)αj + β−Ij ,

and divide by β−. Since (β− − z)/β− = κ−q (z)−1, the result is

κ−q (β+)−1A+Hj
β+

= Ij [(κ+
q (αj)/κ−q (αj))(Hj/Hj0)αj − 1]. (4.8)

Note that (4.7) is, in fact, a system of two equations, which can be used to
exclude A− and express H = H2/H1 as follows:

Hβ− = R
(H2/H20)α2 − 1
(H1/H10)α1 − 1

, (4.9)

where R = I2/I1. Similarly, from (4.8), we find

Hβ+
= R

(κ+
q (α2)/κ−q (α2))(H2/H20)α2 − 1

(κ+
q (α1)/κ−q (α1))(H1/H10)α1 − 1

. (4.10)

To simplify the calculations and answers below, we assume that I1 = I2 = I;
in the general case I2 ≥ I1, the equations below will contain an additional
parameter R = I2/I1. Set Bj = κ−q (αj)(Hj/Hj0)αj = K−1Hj

αj . The last
equality holds on the strength of (3.9). For H fixed, we can regard (4.9)-(4.10)
as a linear system with the unknowns (B1, B2). We rewrite (4.9)-(4.10), first, as

H−β− =
κ−q (α1)B1 − 1

κ−q (α2)B2 − 1
,

H−β+
=

κ+
q (α1)B1 − 1

κ+
q (α2)B2 − 1

,

and then as

κ−q (α1)Hβ−B1 − κ−q (α2)B2 = Hβ− − 1,

κ+
q (α1)Hβ+

B1 − κ+
q (α2)B2 = Hβ+ − 1.

Applying Cramer’s rule, we obtain

Bj = Bj(H) =
∆j(H)
∆(H)

, (4.11)
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where

∆(H) = Hβ+
κ+

q (α1)κ−q (α2)−Hβ−κ+
q (α2)κ−q (α1), (4.12)

∆1(H) = (Hβ+ − 1)κ−q (α2) + (1−Hβ−)κ+
q (α2), (4.13)

∆2(H) = (Hβ+ − 1)Hβ−κ−q (α1) + (1−Hβ−)Hβ+
κ+

q (α1). (4.14)

Since β+ > 0 > β−, we have ∆1(H) > 0,∆2(H) > 0 for all H > 1, therefore we
must have ∆ = ∆(H) > 0. However, direct calculations show that

∆(1) =
β+β−(β+ − β−)(α2 − α1)

(β+ − α2)(α1 − β−)(β+ − α1)(α2 − β−)
< 0,

therefore, if Buridan zone exist, then

H > Hmin =
[
κ+

q (α2)κ−q (α1)

κ+
q (α1)κ−q (α2)

]1/(β+−β−)

(> 1). (4.15)

Since Bj = K−1Hj
αj , we have

Hj =
(

K · ∆j(H)
∆(H)

)1/αj

, (4.16)

and dividing H2 by H1, we obtain the equation for H:

K1/α1−1/α2H = F (H), (4.17)

where
F (H) = ∆1(H)−1/α1∆2(H)1/α2∆(H)1/α1−1/α2 .

As H ↓ Hmin, ∆(H) → 0 but ∆j(H) remain bounded away from 0. Taking
into account that 1/α1 − 1/α2 > 0, we conclude that F (H) → 0 as H ↓ Hmin.
As H → +∞, all three functions ∆j(H)H−β+

, j = 1, 2, and ∆(H)H−β+
have

positive finite limits, therefore the limit F (+∞) exists, and it is positive and
finite. These two properties of function F and its continuity imply that there
exists K∗ > 0 such that for all K > K∗, equation (4.17) has no solutions,
for K ≤ K∗, it has solutions, and moreover, for K < K∗, there must exist
at least two solutions. The first two properties agree with the general analysis
made in the previous section: Buridan zone must exist for K ≤ Kup. In all
numerical examples which we considered, Kup < K∗, therefore we have at least
two solutions.

4.2.3 Choice of the solution

To distinguish the correct root, we need the next property of F : F is concave,
which we were unable to prove analytically due to the complicated structure of F ,
but verified in many numerical experiments. If F is concave and there are more
than one solution, then there are exactly two solutions: H− < H+. Suppose
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Figure 6: The LHS and RHS of (4.17). Parameters: q = 0.04; σ2 = 0.04; α1 =
0.7;α2 = 1; β+ = 1.5.

that we have fixed all the parameters but the cost; equivalently, in (4.17), all the
parameters are fixed but K. As I (equivalently, K) increases, H−(K) increases
and H+(K) decreases. But as the cost increases, the entrepreneur must wait
longer, therefore the lower boundary of the Buridan zone should decrease, and
the upper one should increase. Hence, the ratio of these boundaries, H = H(K),
must increase. It follows that the smallest solution of (4.17) determines the
Buridan zone.

In Figure 6, we plot the RHS and LHS of (4.17), for several values of K,
starting from K = Kup. The other 3 straight lines correspond to K = 0.6 ·
Kup;K = 0.3 · Kup;K = 0.1 · Kup, respectively. Similar pictures are observed
for all parameter’s values which we considered.

4.2.4 Explicit formula for the value function

Using (4.7)–(4.8) and (3.9), we define

A−− := A−H1
β−/I = κ+

q (β−)[(H1/H10)α1 − 1],

A++ := A+H1
β+

/I = κ−q (β+)[(κ+
q (α1)/κ−q (α1))(H1/H10)α1 − 1],

and finally, calculate the value function of the firm in Buridan zone:

V (P ) = A+P β+
+ A−P β− = I · [A++ · (P/H1)β+

+ A−− · (P/H1)β− ].

To summarize, if K ≤ Kup, then the optimal investment rule is: invest the first
time Pt ∈ [H10,H1] or Pt ≥ H2. In the former case, the investment is made in
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Figure 7: Curves V∗(P ) = D1(P/H10)β+
, V 1

ex(P ), V 2
ex(P ) in Case I (b). Upper

panel: inaction region adjacent to zero. Lower panel: the Buridan zone. Para-
meters: q = 0.04; σ2 = 0.04; α1 = 0.7; α2 = 1; β+ = 1.5; I = 1; K = 0.65 ·Kup.
Thresholds: H10 = 0.1362,H1 = 0.2787,H2 = 0.3989.

the first project, and in the latter case - in the second one. The value function
of the investment opportunity is given by

V (P ) = I





(κ+
q (α1)− 1)(P/H10)β+

, 0 < P < H10;
κ+

q (α1)(P/H10)α1 − 1, H10 ≤ P ≤ H1;
A++ · (P/H1)β+

+ A−− · (P/H1)β− , H1 < P < H2;
κ+

q (α2)(P/H20)α2 − 1, H2 ≤ P.

Finally, if K > Kup, then the investment should be made in the second project,
the first time P ≥ H2, and the value function is the same as if the first investment
opportunity did not exist at all.

4.3 Numerical examples

Figures 7 and 8 illustrate Cases I (b), and I (c), respectively. The upper panel
in Figure 7 blows up the inaction region adjacent to zero. The lower panel
shows the value functions in the Buridan zone. Given q and σ, the choice of the
positive root β+ uniquely defines β− and b, therefore we may use α1, α2, q, σ
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and β+ as free parameters instead of α1, α2, q, σ and b, which is convenient
because we can satisfy the requirement β− < 0 < α1 < α2 < β+ automatically.
These parameters being fixed, we can study the existence of the Buridan zone
by playing with one additional parameter, K. Recall that if q and G1 = G2

are fixed, then K is proportional to the cost of investment, and the comparative
statics w.r.t. K is equivalent to the one w.r.t. I. In Figure 9, we plot the
investment thresholds as functions of K. It is seen that as K increases, both
inaction subregions grow. At K = Kup, the right boundary of the Buridan
zone becomes the investment threshold for project 2, and the left boundary
coincides with the investment threshold for project 1. So, at K = Kup, only a
point separates the two subregions. This point can be removed, and then the
investment strategy is to disregard project 1. For K > Kup, the Buridan zone
disappears. Notice that as K → 0, i.e., the cost of investment vanishes, the
inaction region adjacent to 0 vanishes in the limit, but the Buridan zone does
not.

The option value in the Buridan zone is not very large, however it is not
negligible, and for realistic parameter values, the relative option value (Vopt(P )−
max{V 1

ex(P ), V 2
ex(P )})/Vopt(P ), is of order 1-2 percent or even more, and it

increases with K (equivalently, with the investment cost), as Figure 10 shows.
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5 When Buridan’s ass jumps

Using a simple perturbation argument, it can be shown that the results of the
paper hold for the Brownian motion with embedded jumps provided the intensity
of the latter is sufficiently small; the location of the boundary points of the action
subregions will change insignificantly. The interesting part concerns the situation
when at time 0, P0 is in the inaction subregion adjacent to 0. In the absence
of jumps, one may argue that all the study of Buridan zones is irrelevant: the
price will never reach them, anyway. However, if the jumps are possible, the
price can jump into one of the Buridan zones, and as the analysis above showed,
the margin between the standard inaction region adjacent to 0, and a Buridan
zone can be very small indeed, hence the probability of the price jump into the
Buridan zone is non-negligible.

6 Conclusion

In the real options theory, delays are natural when at least partially irreversible
decision has to be made under uncertainty. The conventional perception in
the latter theory is that both irreversibility and uncertainty play their role in
delays, so that if investment costs are negligible, there is no reason to wait.
Our model demonstrates that this is not necessarily the case if at least two
investment projects are available. Multiple options not only increase the barrier
which the underlying stochastic variable has to reach in order investment became
optimal, but cause the investor to be inactive even when the cost of investment
is vanishing. We conclude that with a menu of options, uncertainty alone may
be the reason for the delay.
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