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Abstract

This paper applies the theory of equilibrium in mixed strategies in an inspection game

model to describe the strategic interaction in the stolen base play in baseball. A parsi-

monious simultaneous-move game model offers predictions about how the observable

conduct of the teams on offense and defense responds as the characteristics of the

players involved change. The theory organizes observations from play-by-play data

from Major League Baseball, where highly-motivated, experienced professionals

interact in an environment where private information is not significant.
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1 Introduction

The suggestion of using formal techniques to study questions of strategy in sport dates

back in print at least as far as Mottley [ 4 ] . This suggestion was fulfilled, in the case of

the game of baseball , in part by the work of Lindsey [ 3 ] and Bellman [ 1 ] , who used

ideas from basic decision theory and dynamic programming, respectively, to investigate

some questions of optimal strategy.
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Some more recent papers have departed from this normative approach towards a

descriptive view. In particular, the zero-sum nature of many sporting contests makes it

likely that active randomization is part of optimal strategy in situations where opponents

make moves that are essentially simultaneous . Walker and Wooders [ 7 ] compared pre-

dictions from the theory of two-player simultaneous-move zero-sum games to observations

of service behavior in championship tennis matches . In that sett ing, the authors cannot

reject the hypothesis that servers win the same number of points when serving to the

opponent’ s forehand versus their backhand, as predicted by the theory. Additionally, they

find that profess ionals seem to do better at choosing their behavior in a serially uncorre-

lated fashion, compared to behavior reported in laboratory games . This was good news

for the theory, as it has generally not done well in describing behavior of sub jects in com-

parable laboratory games , and can be interpreted as indicating that motivated experts

may in fact conform more closely to the predictions of theory.

Chiappori et al [ 2 ] , like Walker and Wooders , take mixed strategies as a starting

point in investigating behavior in penalty kicks in professional soccer. Unlike the repeated

interaction of tennis , a given striker and goaltender will face each other in a penalty kick

situation at most a few times in a season. Therefore, the authors focus on hypotheses

about aggregate behavior which are robust to the introduction of heterogeneity across

players . Mixed-strategy equilibrium theory predicts some empirical regularities that make

sense to the seasoned soccer observer: for example, that right-footed strikers should kick

towards their right more often than goalies will dive in that direction. The authors show

evidence that the theory of mixed-strategy equilibrium again organizes the data well.

This paper turns this theory to the analysis of the stolen base play in baseball . In par-

allel with the terminology used in baseball, the stolen base play is conceptualized as a

simple inspection game. In the game, the defense chooses between ‘ ‘ inspecting, ” which

gives the defense a positive probability to cause the stolen base play to fail, and not

inspecting, in which case the stolen base play, if attempted, is successful for the offense.

Heterogeneity in skill across players maps in the model to different levels of effectiveness

of the inspection ‘ ‘ technology. ” It is shown that linear relationship exists in equilibrium

between the probability the stolen base play is attempted and the probability the play is

successful.

The observed dataset for the stolen base play shares characteristics with that of the

penalty kick in soccer. While situations in the play of a game of baseball where a stolen

base can be attempted occur relatively frequently, the same individual players do not par-
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ticipate against each other in these ‘ ‘ stage games” repeatedly. This contrasts with the

repeated interaction of tennis players within a match which Walker and Wooders were

able to exploit . However, individual baseball players participate in these stage games

much more often than soccer players participate in penalty kicks over the course of a

season. This makes it feasible to investigate predictions of the theory relating to hetero-

geneity, which was not possible for Chiappori et al.

The paper is organized as follows. S ection 2 outlines the stolen base play in baseball

and motivates the design of the model. A parsimonious idealization of the stolen base

game as an inspection game is developed in S ection 3 . In the model, the heterogeneous

abilit ies of players play the role of varying the efficacy of an inspection procedure. While

these abilities are not observable, the model does have comparative statics predictions

which can be expressed in terms of observable quantities . These predictions are taken to

detailed data from two decades of Major League Baseball games in Sections 4 and 5 . S ec-

tion 6 concludes .

2 A primer on the stolen base play

In baseball , two competing teams take turns on offense and defense. While on offense,

each team attempts to score runs by advancing team members around a sequence of four

bases . The team’ s turn on offense is terminated when three of its members have

been ‘ ‘ put out, ” which can occur by various means ; therefore, outs are a scarce resource

for a team. The game is won by the team scoring the most runs after nine innings ( i . e . ,

nine turns on offense for both teams) ; ties are broken by playing successive extra innings .

The players on a baseball team bat in a strict rotation ( the ‘ ‘ batting order” ) . As in

many bat-and-ball games ( such as cricket or rounders) , most advancement occurs on

batted balls , that is , when the current batter successfully strikes a pitched ball. However,

attempts to advance in baseball are permitted at any time. An attempt to advance a base

without the benefit of the ball being batted is called an attempt to ‘ ‘ steal” a base. A

player successful in stealing a base has advanced one base closer to his ultimate goal of

scoring a run; a player who is unsuccessful is put out, costing the team one of its scarce

outs .
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A stolen base attempt can be thought of as a race. In this race, the offensive player

( the runner) runs a distance of about 90 feet . His opponents are members of the defense,

the pitcher and the catcher. The pitcher pitches the ball to the catcher, a distance of

about 60 feet , and then the catcher relays the ball to the base, a throw of an additional

1 20 feet . If the runner reaches the base prior to the relay throw from the catcher, the

attempt is succesful; if not , the attempt fails . While the runner need not wait until the

pitcher starts to pitch the ball to begin running, doing so would result in almost certain

failure, as the pitcher is permitted instead to throw directly to the base to which the

runner is advancing. Therefore, the runner wants to time his departure to closely match

the start of the pitcher’ s throw to the plate. The choices of the offense and defense are

made essentially in ignorance of each other, making a simultaneous-move model the nat-

ural choice for describing the interaction.

The interaction between a pitcher and a player known for stealing bases is often

described in language suggestive of mixed-strategy equilibrium. Pitchers are encouraged to

make the runner’ s ability to time his departure more difficult by varying the type, timing,

and style of their delivery of pitches ; runners , for their part , try to avoid patterns in their

behavior, such as always attempting to steal at the first opportunity. Profess ionals thus

perceive some advantage to unpredictability in this setting, which suggests that an equi-

librium in mixed strategies should be a feature of an appropriate organizing theory.

Finally, the wide availability of data in modern profess ional sport ensures that common

knowledge of the abilities of the relevant players obtains ; therefore, it is reasonable to

model this interaction as one of perfect information regarding the revelant parameters .

3 The stolen base play as an inspection game

A particular state of a baseball game can be described by a state vector containing, for

example, the inning, score, number of outs , and other relevant factors . Suppose, as in the

previous section, that the offense has a runner on first base. At such a point in the pro-

gress of the game, the future continuations of the game can be summarized by a vector v ,

which expresses the probability the team currently on offense will eventually win the

game, conditional on the outcome of the interaction to be described next.

To focus on the stolen base play, the interaction is modeled as a simultaneous-move

game. In this game, the offense chooses whether to attempt the stolen base play ( strategy

S ) or not ( strategy N ) . Meanwhile , the defense chooses whether to focus their efforts on
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trying to put out the batter currently at the plate ( strategy B ) or trying to interdict a

possible stolen base attempt by focusing on the runner ( strategy R ) . If the stolen base

play is attempted, there are two possible outcomes : success , resulting in the runner

reaching the next base safely, and failure, result ing in the runner being put out.

batter (B ) runner (R )

attempt (S ) vS ρvS + ( 1 − ρ) vF

no attempt (N ) vB vR

Table 1 . A model of the stolen base play as a zero-sum game between the offense and the defense. In the

table, the offense is the row chooser, and the defense the column chooser. The cell entries are the payoffs

to the offense, measured as the probability the game will eventually be won by the team on offense.

The structure of this game is presented in Table 1 . It is assumed that both teams seek

to maximize the probability of eventually winning the game. Each entry in the table is the

probability the team on offense will eventually win the game, conditional on the corre-

sponding strategy profile being chosen. The payoff to the defense is one minus that of the

offense.

The vector v of continuation values has four components . The continuation value after

a successful attempt is vS , and vF is the continuation value after a failed attempt. The

continuation values vB and vR describe the continuations where the play is not attempted.

The defense ’ s strategy R is their ‘ ‘ inspection” strategy. When playing this strategy,

only a fraction ρ of stolen base attempts are successful. An attempt is always successful

when the defense does not inspect and plays strategy B .

Four inequalities are assumed to hold, which jointly ensure the equilibrium is unique

and involves active randomization by both sides .

• vS > ρvS + ( 1 − ρ) vF . This will hold if ρ < 1 and vS > vF . This states that a team on

offense prefers success to failure, which must be true since no team has a strategic

incentive to have the runner deliberately put out in this setting.

• vS > vB . This says that a succesful attempt is better than just letting the batter hit

the ball. This will hold since after a successful attempt, the batter’ s turn continues ,

while the runner has advanced towards scoring a run.

• vR > vB . This encodes an assumption that inspection is costly in the event that an

attempt does not occur. This cost derives from the idea that the defense must

modify their pitching approach to the batter, and is motivated by the following
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logic . If there were no runner on base, the pitcher and batter can be thought of as

engaging in their own zero-sum game ( not explicitly modeled here) , with the

pitcher choosing the type and location of pitch to throw, and the batter forming

expectations about the pitch. Now, with the baserunner on first base, let the

strategy B in the game corresponds to following the optimal strategy against the

batter as if there were no runner on, and R corresponds to following some modified

pitching strategy to defend against the runner. In the latter case, it must be that

the defense is no longer using their minimax strategy against the batter, and so the

batter will perform better. That this effect is important in analyzing this interac-

tion is pointed out by Smith [ 5 ] :

[ A] ny consideration of base running must include indirect and often

subtle effects . . . . The greatest of these indirect effects is of course the

intangible of upsetting the pitcher by diverting his attention from the

batter.

• ρvS + ( 1 − ρ) vF < vR . This can be rearranged to read

ρ <
vR − vF
vS − vF

. ( 1 )

This condition says that the runner is not so skilled ( or the defensive players so

unskilled) that it is always a best reply to attempt.

The ratio appearing in equation ( 1 ) is related to the ‘ ‘ breakeven” percentages which

appear in the analyses Lindsey [ 3 ] and Bellman [ 1 ] . Those papers view the stolen base

as a decis ion problem, with only the offense making a choice ( whether to attempt or not

to attempt) . Those models only predict that the frequency with which the stolen base

play is successful will exceed the critical breakeven percentage, but are silent on the ques-

tion of optimal attempt frequencies ; the mixed strategy equilibrium of this game model

will provide sharper predictions .

When the equilibrium is in mixed strategies , the equations for the equilibrium proba-

bilit ies of attempting the stolen base play, pS
? , and for focusing attention on the batter,

pB
? , are

pS
? ( ρ) =

vR − vB
( 1 − ρ) ( vS − vF) + ( vR − vB)

( 2 )

pB
? ( ρ) =

vR − [ ρvS + ( 1 − ρ) vF ]

( 1 − ρ) ( vS − vF) + ( vR − vB)
( 3 )
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Note that pS
? ( ρ) is increasing in ρ and that pB

? ( ρ) is decreasing in ρ : runners who are

better at the stolen base play attempt it more frequently, and the defense ‘ ‘ inspects” more

often as the ability of the runner increases .

In the model, it is assumed that an attempt is always successful when the defense

plays strategy B , that is , when the defense does not ‘ ‘ inspect . ” While this is a simplifica-

tion, it is a plausible approximation. In order to play reach the highest level of the sport ,

a player cannot be too slow afoot . Furthermore, S ection 4 takes this model to a dataset

consisting of players for whom stolen base attempts are a salient activity, and among this

subset of players it is certain that most , if not all of them, would win the relay race

described in S ection 2 with a very high frequency if they did not have to worry about the

possibility of the R strategy being played.

Anecdotally, what separates the runners successful at stealing bases from those who

are not known for stealing bases is their performance when being watched closely by the

defense. For example, Oakland Athletics coach Ron Washington has been quoted as

saying:

‘ ‘ A base stealer is a guy who when everyone in the . . . yard know he gonna

get the bag, he gets the bag. ” 1

Interpreted probabilistically, this is a feature of this model. Suppose the defense is

expecting the stolen base play to be attempted and therefore plays the inspection strategy

R . A talented base stealer will be successful with relatively high probability ( i . e . , ρ is

large when compared to other players) .

4 An observable relationship

S ince the parameter ρ is not observable, it is desireable to seek relationships between

observable quantities . Let π?( ρ) ≡ pB
? ( ρ) + ρ[ 1 − pB

? ( ρ) ] denote the percentage of stolen

base attempts which are successful in equilibrium.

Proposit ion 1 . There is an affine re la t io nship be tween the fre quency o f attempts pS
? ( ρ)

and the fre quency o f succe ss π?( ρ) in e quilib rium as a func tio n o f ρ .

1 . Quoted in Mone yball: The Art o f Winning an Unfair Game , by Michael Lewis , W. W. Norton & Company,

2003 , page 265 .
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Proof. It is asserted that there are constants A and B satisfying

π?( ρ) = ApS
? ( ρ) + B.

In view of ( 3 ) , this can be written

( vR − vF) − ρ( vB − vF) = A ( vR − vB) + B [ ( 1 − ρ) ( vS − vF) + ( vR − vB) ] .

Collecting coefficients of ρ :

− ( vB − vF) = − B ( vS − vF)

B =
vB − vF
vS − vF

.

Collecting constants :

vR − vF = A ( vR − vB) + B ( vS − vF) + B ( vR − vB)

= A ( vR − vB) + ( vB − vF) + B ( vR − vB)

vR − vB = A ( vR − vB) + B ( vR − vB)

1 − B = A.

Therefore, pS
? ( ρ) and π?( ρ) are related according to the equation

π?( ρ) =

[
1 − vB − vF

vS − vF

]
pS
? ( ρ) +

vB − vF
vS − vF

. ( 4)

�

S ince the vector v of continuation values depends on the state of the game, the value

of the ratio ( vB − vF) / ( vS − vF) also depends on the state of the game. Therefore, the

analysis specializes to the case where the stolen base game arises at the beginning of the

baseball game. In particular, attention is restricted to situations in which a team’ s first

hitter reaches first base in his team’ s first turn at bat of the game with a tie score. It is

commonplace for Major League Baseball teams to place a player who is considered a

thread to attempt the stolen base play in this first place in their batting order; therefore,

the stolen base play is a salient part of game at these points in time, and the conditions

for mixed-strategy equilibrium are most likely to obtain.

In this early phase of the game, the tournament effects aris ing from only needing to

score more runs than one’ s opponent to win ( i . e . , that winning by one run is as good as

winning by ten) are minimized, and in such a case maximizing the expected number of
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runs scored in the inning is a good approximation to a team’ s true ob jective of maxi-

mizing the chances of winning the game. Palmer and Thorn [ 6 ] present a table of the

expected number of future runs in an inning as a function of the current number of outs

and location of runners . The expected number of runs with a runner on first base and no

outs is 0 . 78 3 ( ≈ vB) . The expected number of runs with a runner on second base and no

outs ( i . e . , the situation after a successful attempt to steal) is 1 . 068 ; the expected number

of runs with no runners on and one out ( i . e . , the situation after a failed attempt) is 0 . 2 49 .

Therefore,

vB − vF
vS − vF

≈ 0 . 78 3 − 0 . 2 49

1 . 068 − 0 . 2 49
= 0 . 652 .

The theory thus predicts a relationship of approxmiately π? = 0 . 652 + 0 . 3 48 pS
? .

To test this prediction, play-by-play data from all Major League Baseball games

played in the 1 974 through 1 992 seasons, inclusive, were examined to identify all situa-

tions in which the first hitter on a team reached first base in his team’ s first turn at bat. 2

For each player in each season, the number of times he reached first base in this s ituation,

the number of times he attempted to steal, and the number of times he was successful

were tabulated.

Three specifications of the relationship between the frequency of attempting to steal

pS and success percentage π are investigated: π = α0 ; π = β0 + β1 pS ; and π = δ0 + δ1 pS +

δ2pS
2 . In practice, both pS and π in this model are observed with randomness , as the deci-

sion whether to attempt a steal is being modeled as the product of an equilibrium in

mixed strategies , and the realization of π depends on the realizations of the defense ’ s

mixed strategy. For the purposes of the estimation, the values of pS are treated as being

observed without error, while the observations of π are treated as being observed with

noise. S ince the noise in the observation of π decreases as the ( square root of the) number

of attempts made, and the noise in the obseration of pS decreases as the ( square root of

the) number of opportunit ies , the noise in the observation of π is more salient . Further-

more, s ince the number of attempts made by different players is different, there is het-

eroskedastic ity in the observations of π across different player-seasons . To accommodate

this , a maximum likelihood approach is used.

2 . These data are available on the website of Retrosheet, http: / / www. re trosheet . o rg . The term ‘ ‘ play-by-

play” means that the dataset identifies all events that change the number of outs , or the configuration of baserun-

ners ; that is to say, all batter outcomes , as well as the timing and outcome of stolen base plays .
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A cutoff of a minimum of 20 observations for a player-season was used, resulting in 3 26

player-seasons; adjusting this cutoff does not substantively change the results . A scatter-

plot of the data is shown in Figure 1 . The first row in Table 2 presents the estimated

relationships between π and pS for the three specifications . Negative log-likelihoods are

given in parentheses . The results indicate that the affine model significantly outperforms

the constant specification, and the quadratic model is not significantly better than the

affine model. The coefficients in the affine model are close to those predicted by the

theory.

Many runners appear in this sample appear multiple times in different seasons during

their career. As such, panel data concerns may arise . To address this , the same three

specifications were estimated using career- level data for players . Again, a cutoff of a min-

imum of 20 observations for a player over his career was used, resulting in 299 players . 3

The scatterplot of this data appears in Figure 2 . The second row of Table 2 presents the

estimates for the models on this data. No qualitative differences in coefficient est imates

are observed in comparing the player-season to player-career data, and, again, the affine

model significantly outperforms the constant model, and the quadratic model can be

rejected in favor of the affine model. The coefficient estimates for the affine model again

track the theoretical prediction closely.

The parameter π is affected not only by the talents of a runner, but also by character-

istics of a pitcher. Therefore, viewed from the defensive perspective, the same relationship

should hold across the population of pitchers . There is an asymmetry in how pitchers are

used in a baseball season compared to other regular players : while a regular player will

appear in almost all of his team’ s games, pitchers are used in a rotation, pitching every

fourth or fifth game on average. Therefore, the number of observations in the dataset for a

given season for a pitcher is small, making individual season analysis impractical. 4 Aggre-

gating over pitchers ’ careers , however, a similar pattern emerges to the results for runners .

Again using a minimum of 20 observations , the scatterplot for the 309 pitchers appears as

Figure 3 . The third row of Table 2 presents the three models estimated using pitchers ’

career data. Again the coefficients are qualitatively similar to those of both estimations

using runners ’ data, as well as the predictions of the theory.

3 . This number is less than that for the number of player-seasons because many players appear multiple times

in the season-by-season sample.

4. Very few pitchers even partic ipate in 1 0 game situations that meet the requirements in a season.
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N constant predicted specification quadratic

Runners ( season) 3 26
. 76

( 51 5 . 8 0)

. 63 + . 3 3 pS
( 493 . 8 9 )

. 64 + . 3 5 pS − . 06pS
2

( 493 . 54)

Runners ( career) 2 99
. 74

( 456 . 6 6 )

. 62 + . 3 7pS
( 41 9 . 8 7)

. 62 + . 3 7pS − . 03 pS
2

( 41 9 . 1 9 )

Pitchers ( career) 3 09
. 73

( 55 1 . 20)

. 65 + . 3 0pS
( 542 . 71 )

. 66 + . 24pS + . 09pS
2

( 542 . 63 )

Table 2 . Estimated relationships between pS and π . Numbers in parentheses are negative log-likelihoods.

5 Evidence of the defense’ s strategy

An increase in the baserunner’ s stealing skills results in increased attention paid to the

runner by the defense. Recall that the inequality vR > vB is motivated by an assumption

that batters perform better when the defense chooses to focus on the runner ( to play

strategy R ) relative to when the defense chooses to focus on the batter ( to play strategy

B ) . S ince an increase in ρ causes the defense to increase its equilibrium probability of

choosing R , the observed performance of the batter should improve.

This indicates that batters ’ performance should improve more with a runner on first

base who has a higher ρ . S imilar to the choice of the receiving player in Walker and

Wooders , the defensive choice of B or R is not directly observed. Because of the presence

of the theorized effect on batter performance, this prediction provides a way of indirec t ly

observing the effect on the defense’ s choices .

This prediction is tested by considering pairs of two players from the same team. In

each pair, the performance of one player while batting with the other player occupying

first base is tabulated. Additionally, the performance of the batting player is also tabu-

lated for situations in which he batted with no runner on base. There were 722 such

batter-runner pairs in the dataset in which the runner was on first base at least 50 times

when the batter came to bat.

To operationalize what it means for a batter to perform better, the sum of a player’ s

on-base percentage and slugging percentage is used to index performance. This sum,

abbreviated OPS in baseball, correlates highly with run-scoring at a team level. 5 Figure 4
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contains a scatterplot of the data, with the frequency of stolen base attempts pS on the

horizontal axis , and the increase in the batter’ s performance ∆OPS on the vertical axis .

∆OPS ∆OPS
Group N Median Mean ∆OPS > 0
pS = 0 . 0 42 -0 . 004 0 . 006 20 ( 47. 6% )

pS ∈ ( 0 . 0 , 0 . 2 ] 595 0 . 042 0 . 05 1 3 68 ( 61 . 8% )
pS > 0 . 2 8 5 0 . 1 3 4 0 . 1 09 59 ( 69 . 4% )

Table 3 . The change in batter performance, measured by OPS , with a runner on first base compared to

with the bases empty. The four groups are delineated by the frequency with which the runner on first

base attempted to steal during the season. N is the number of batter-runner pairs in each group.

A regression of ∆OPS on pS gives the line ( standard errors in parentheses)

∆OPS = 0 . 03 2 + 0 . 249 pS
( 0 . 01 0) ( 0 . 08 1 )

with a standard error of 0 . 1 8 7 and an adjusted R 2 of 0 . 0 1 1 . Both coefficients are signifi-

cantly different from zero at the . 0 1 level. The positive slope agrees with the prediction of

the model that batters hitting with a runner with higher ρ enjoy better batting perfor-

mance. In this data, the relatively large standard error, vis ible also in the scatterplot ,

arises because even a sample of 50 times batting is not very large for evaluating an indi-

vidual batter’ s performance.

Another way of looking at the data is to group the batter-runner pairs according to

the frequency with which the runner attempted the stolen base play overall. Table 3 pre-

sents the data aggregated into three groups: a group in which the runner never was

observed to attempt the stolen base play ( pS = 0) ; a group where the runner attempted

with a positive frequency, but no more than twenty percent ( pS ∈ ( 0 . 0 , 0 . 2 ] ) ; and a group

where the runner attempted more than twenty percent of the time ( pS > 0 . 2 ) . Among

these groups , the median and mean ∆OPS increases as the frequency with which the

runner attempted the stolen base play increases . The percentage of the pairs in which the

batter’ s realized performance was better with the runner on first base than without

increases as pS increases . The test of equality of the proportions of increases between the

pS = 0 and pS ∈ ( 0 , 0 . 2 ] groups gives a p-value of . 1 65 ; the test of equality of the propor-

tions of increases between the pS ∈ ( 0 , 0 . 2 ] and pS > 0 . 2 groups gives a p-value of 0 . 066 .

5 . For the 1 974 through 1 992 seasons , the correlation between a team’ s OPS in a season and its runs scored

per game was 0 . 9 35 .
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Finally, note the group where pS = 0 . It can be said that, for these runners , the stolen

base play was not a salient activity, and for them, the mixed-strategy theory presented

here is not appropriate. 6 In that case, there is no significant observed difference, on

average, between the performance of the batters with and without those runners on base.

6 Conclusions

The theory of mixed-strategy Nash equilibrium in a stylized inspection game organizes the

observations of baseball teams ’ conduct in the stolen base play in Major League Baseball.

Complementing the earlier papers of Walker and Wooders in tennis and Chiappori et al in

soccer, the results indicate that this theory is a useful descriptive tool when experienced,

motivated players interact in an environment where asymmetric information is not a sig-

nificant factor.

The structure of the dataset allows investigation of the effects of individual hetero-

geneity in a way that was not available to Chiappori et al in the data on soccer penalty

kicks . However, the data is not sufficient to test , as in Walker and Wooders , whether

behavior is serially uncorrelated. As a descriptive theory, though, it is perhaps less impor-

tant whether ob jective randomization is truly occuring, as interpreting the theory in terms

of beliefs about the other side ’ s behavior may be sufficient .

A key advantage to the tennis , soccer, and baseball datasets is that in modern profes-

sional sports , informational asymmetries can certainly be said to be small. The modern

athlete ( and team, in team sports) has the means to closely study the skills and behavior

of opponents , thereby making the underlying assumption of common knowledge of the

game compelling. An emerging feature of the baseball dataset , however, is that it is cur-

rently being researched back over the more than a century of continuous existence of pro-

fessional baseball in the United S tates . This extends back before the days of televis ion,

radio, and heavy scouting, to a time when it was not uncommon for a team to come to

town with some completely unknown players . A preliminary analysis of partial data from

this era indicates that the model presented here fails to describe the data in this setting

where common knowledge almost certainly fails .

6 . In particular , for them, it is likely the assumption that the play is always successful when the defense

chooses B i s violated, and therefore the strategy S may be dominated.
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Figure 1 . Scatterplot of frequency of attempt of stolen base play versus percentage of attempts suc-

cessful. Each point represents one runner in one season, with a minimum requirement of having 20 oppor-

tunities ( as defined by the game situation in the text) .
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Figure 2 . Scatterplot of frequency of attempt of stolen base play versus percentage of attempts suc-

cessful. Each point represents one runner over his career, with a minimum requirement of having 20

opportunities ( as defined by the game situation in the text) .
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Figure 3 . Scatterplot of frequency of attempt of stolen base play versus percentage of attempts suc-

cessful. Each point represents one pitcher over his career, with a minimum requirement of having 20

opportunities ( as defined by the game situation in the text) .
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Figure 4. Scatterplot of frequency with which runner attempts to steal against the change in batter’ s

performance with that runner on first ( relative to batter’ s performance with no runner) .

1 8


