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Abstract 
 
In this paper we show that if all agents are equipped with discrete concave production 
functions, then a feasible price allocation pair is a market equilibrium if and only if it 
solves a linear programming problem, similar to, but perhaps simpler than the one 
invoked in Yang (2001). 
Using this result, but assuming discrete concave production functions for the agents once 
again, we are able to show that the necessary and sufficient condition for the existence of 
market equilibrium available in Sun and Yang (2004), which involved obtaining a price 
vector that satisfied infinitely many inequalities, can be reduced to one where such a 
price vector satisfies finitely many inequalities. A necessary and sufficient condition for 
the existence of a market equilibrium when the maximum value function is Weakly 
Monotonic at the initial endowment that follows from our results is that the maximum 
value function is partially concave at the initial endowment. 

 
 
1. Introduction: The equilibrium existence problem with indivisibilities has been 
investigated by Yang (2001) and more recently by Sun and Yang (2004). The model they 
consider is the model of a market game due to Shapley and Shubik (1969, 1976), with the 
goods being available for redistribution among the agents being available in integer units 
only. Yang (2004), shows that a constrained market equilibrium (i.e. a market clearing 
allocation, where each agent is constrained to maximize profit subject to its consumption 
not exceeding the initial endowment of the goods), exists if and only if there is a feasible 
price allocation pair that solves a certain linear programming problem. The result is 
obtained without any concavity assumption being imposed on the production function of 
the agents. 
In this paper we show that if all agents are equipped with discrete concave production 
function, then a feasible price allocation pair is a market equilibrium (i.e. where agents 
solve an unconstrained profit maximization problem at given prices to obtain the 
resulting market clearing allocation) if and only if it solves a linear programming 
problem, similar to, but perhaps simpler than the one invoked in Yang (2001). 
Using this result, but assuming discrete concave production function for the agents once 
again, we are able to show that the necessary and sufficient condition for the existence of 
market equilibrium available in Sun and Yang (2004), which involved obtaining a price 
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vector that satisfied infinitely many inequalities, can be reduced to one where such a 
price vector satisfies finitely many such inequalities. 
These results provide the necessary computational device for obtaining a market 
equilibrium for integer allocation problems. 
    
2. The Model: We now develop the general equilibrium model for the case where the 
inputs are available in integer amount only. 
Let N = {0}∪א, where א denotes the set of natural numbers. Let there be H > 0 agents 
and L+1 > 1 commodities. The first L commodities are used as inputs to produce the 
L+1th commodity, which is a numeraire consumption good. Let w∈NL denote the 
aggregate initial endowment of the inputs which is available for distribution among the 
agents.  
For j = 1,…,L, let wj denote the aggregate amount of commodity j that is initially 
available in the economy.  
A function f: NL →ℜ is said to be discrete concave if there exists a continuous concave 
function g: →ℜ such that the restriction of g to NL

+ℜ L coincides with f. 
Given functions f: NL →ℜ and g: →ℜ, let graph(f) ≡ {(x, α)∈NL

+ℜ L×ℜ/ α ≤ f(x)} and 
graph(g) ≡ {(x, α)∈ ×ℜ/ α ≤ g(x)}. L

+ℜ
Given a function f: NL →ℜ its canonical extension is the function gf: →ℜ such that 
the graph(g

L
+ℜ

f) = convex hull of graph(f). Clearly gf is continuous and concave. 
Let e denote the vector in ℜL all whose coordinates are equal to one and for j = 1,…,L, let 
ej denote the vector in ℜL whose jth coordinate is equal to one and all other coordinates 
are equal to zero. 
If f is discrete concave, then the restriction of its canonical extension gf to NL coincides 
with f.  

Note: For x∈NL and x'∈ℜL with x ≤ x' ≤ x + e, gf(x') ∈ convex hull of { / 

k

∑
=

+
L

j

jj ekxf
1

)(

j∈{0,1} for j = 1,…,L}.  
In fact, if we let N(x') denote {y∈NL/ x ≤ y ≤ x +e}, and ∆' denote the |N(x')| - 1 simplex 

in ℜN(x'), then gf(x') = Max{ / K is a positive integer, y∑
=

K

k

kk yft
1

)( k∈N(x') for k = 1,…,K, 

x' = , and the array t = <t∑
=

K

k

kk yt
1

k/ k =1,..,K> ∈∆'}. 

Each agent i has preferences defined over NL which is represented by a discrete concave 
production function fi.  
The pair <{fi/i= 1,…,H}, w> is called an integer allocation problem and is assumed to be 
a given for the rest of the analysis.  
An input consumption vector of agent i is denoted by a vector Xi ∈NL. 
A price vector p is an element of \{0}, where for j = 1,…,L, pL

+ℜ j denotes the price of 
input j. 
At a price vector p, the objective of agent i is to maximize profits: 
Maximize [fi(Xi) – pTXi] 
An allocation is an array X = <Xi/ i = 1,…,H> such that Xi∈NL for all i = 1,…,H. 
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Given x∈NL, let F(x) = { X = <Xi/ i = 1,…,H>/ X is an allocation satisfying = x}. 

An allocation X is said to be feasible if X∈F(w). 

∑
=

H

i

iX
1

A market equilibrium is a pair <p*,X*> where p* is a price vector, X* is a feasible 
allocation and for all i = 1,…,H, X*i maximizes profits for agent i. 

The function V:NL→ℜ+ such that for all x∈NL: V(x) = Max{ / X = <X∑
=

H

i

ii Xf
1

)( i/ i = 

1,…,H>∈F(x)}, is called the maximum value function.  

A feasible allocation X*  = <X*i/i = 1,…,H> is said to be efficient if   

V(w). 

∑
=

H

i

ii Xf
1

)*( =

 
The following result is vailable in Lahiri (2005) and will be used in the sequel. 
 
Proposition 1: Let <p*,X*> be a market equilibrium. Then X* is an efficient allocation. 
 
A constrained market equilibrium is a pair <p*,X*> where p* is a price vector, X* is a 
feasible allocation such that for all i = 1,…,H, X*i solves: 
Maximize [fi(Xi) – pTXi] 
Subject to Xi ≤ w. 
Clearly a market equilibrium is a constrained market equilibrium. The following example 
shows that a constrained market equilibrium need not be a market equilibrium. 
 
Example 1: Let H = 1, L = 1, f1(x) = x for all x∈N and w = 1. Let X*1 = 1 and X* = 
<X*1>. For all p∈(0, 1], <p, X*> is a constrained market equilibrium, though for 
p∈(0,1), <p, X*> is never a market equilibrium. <1,X*> is the unique market equilibrium 
for this integer allocation problem. 
 
3. Existence of Market Equilibrium: This section is devoted to obtaining results 
pertaining to the existence of market equilibrium for the given integer allocation problem. 
We begin with a lemma. 
 
Lemma 1: Let f: NL →ℜ be a discrete concave function with gf being its canonical 
extension and let p∈ℜL. Let x∈NL and x'∈  with x' ≤ x. Then gL

+ℜ f(x') + pTx' ≤ Max{f(y') 
+ pTy' / y'∈NL and y' ≤ x}. 
 
Proof: Since x' ≤ x, there exists y∈NL such that y ≤ x ≤ y +e. Thus, gf(x') ∈convex hull 

of{ / k∑
=

+
L

j

jj ekyf
1

)( j∈{0,1} for j = 1,…,L}. This implies that gf(x') + pTx'∈convex hull 

of{ + p∑
=

+
L

j

jj ekyf
1

)( T ∑
=

+
L

j

jjeky
1

)( / kj∈{0,1} for j = 1,…,L}.Hence, gf(x') + pTx' ≤ 
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Max{ + p∑
=

+
L

j

jj ekyf
1

)( T ∑
=

+
L

j

jjeky
1

)( / kj∈{0,1} for j = 1,…,L}. Thus, gf(x') ≤ 

Max{f(y') + pTy'/ y'∈NL and y' ≤ x}. Q.E.D. 
 
We now state and prove the main theorem of this paper. 
  
Theorem 1: Let X* be a feasible allocation and p* a price vector. <p*,X*> is a market 
equilibrium if and only if the pair <p*,m*> solves: 

Minimize + p∑
=

H

i
im

1
)( Tw 

Subject to + p∑
=

H

i
im

1
)( Tx ≥ V(x) for all x∈NL with x ≤ w + e, p∈  L

+ℜ

where m*∈ℜH with m* = <m*(i)/ i = 1,..H> satisfies m*(i) = fi(X*i) – p*TX*i for i = 
1,…,H.  
 

Proof: Suppose <p*,X*> is a market equilibrium. Let x∈NL and V(x) = where 

X = <X

∑
=

H

i

ii Xf
1

)(

i/ i = 1,…,H>∈F(x). 
Thus, for all i = 1,…,H: fi(X*i) – p*TX*i ≥ fi(Xi) – p*TXi. 

Summing over i we get: + p*∑
=

H

i
im

1
)(* Tx ≥ V(x) for all x∈NL . 

Thus, <p*,m*> satisfies the constraints. 

Now, let <p,m> satisfy the constraints. Thus, ∑ + p
=

H

i
im

1
)( Tw ≥ V(w). 

However, by Proposition 1, X* is efficient and hence ∑ + p*
=

H

i
im

1
)(* Tw = V(w). 

Thus, ∑ + p
=

H

i
im

1
)( Tw ≥ + p*∑

=

H

i
im

1
)(* Tw . 

Hence, <p*,m*> solves the minimization problem. 
Now, suppose <p*,m*> solves the given minimization problem. Towards a contradiction 
suppose <p*, X*> is not a market equilibrium. Thus, there exists i ∈H and x∈NL, such 
that fi(x) – p*Tx > fi(X*i) –p*TX*i. 
Suppose x ≤ X*i + e. 
Since X*∈F(w), w* = x + ≤ X*∑

≠ik

kX * i + e + ∑
≠ik

kX * = w + e. 

Thus, V(w*) ≥ fi(x) + ∑
≠ik

kk Xf )*(  

                     > fi(X*i) –p*TX*i + p*Tx + ∑
≠ik

kk Xf )*( - p*T∑
≠ik

kX * +p*T∑
≠ik

kX *  

                     = fi(X*i) –p*TX*i + ∑
≠ik

kk Xf )*( - p*T∑
≠ik

kX * +p*Tw*  
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                     = + p*∑
=

H

i
im

1
)(* Tw*,  

leading to a contradiction. 
Thus it is not the case that x ≤ X*i + e.  
In fact we have shown that for i ∈H and x∈NL, with x ≤ X*i + e, it is the case that fi(x) – 
p*Tx ≤ fi(X*i) –p*TX*i. 
Since X*i << X*i + e, for t ∈(0,1), t sufficiently small, the real vector X*i + t(x – X*i) << 
X*i + e. 
Let gi = denote the canonical extension of f

ifg i.  
Thus, gi(x) – p*Tx > gi(X*i) –p*TX*i.  
Since gi is concave gi(X*i + t(x – X*i)) ≥ gi(X*i) + t(gi(x) – gi(X*i)). 
Hence, gi(X*i + t(x – X*i))- p*T(X*i + t(x – X*i)) ≥ gi(X*i) + t(gi(x) – gi(X*i)) - p*T(X*i + 
t(x – X*i)). 
Now, gi(X*i + t(x – X*i)) - p*T(X*i + t(x – X*i)) ≥ gi(X*i) -p*TX*i + t([gi(x) – p*Tx] – 
[gi(X*i)) - p*TX*i ]) > gi(X*i)) - p*TX*i. 
However, X*i + t(x – X*i) << X*i + e. 
Thus by Lemma 1, gi(X*i + t(x – X*i)) - p*T(X*i + t(x – X*i)) ≤ Max {fi(y) – p*Ty/ y∈NL 
such that y ≤ X*i + e}= fi(X*i) -p*TX*i, leading to a contradiction. 
This establishes the theorem. Q.E.D. 
 
Note: In the statement of Theorem 1 and in its proof, the constraint p∈ , which 
appears for the linear, programming (minimization) problem, could be easily dispensed 
with without diluting the result in any way. The fact that the theorem concerns a price 
vector would then imply our version of Theorem 1. 

L
+ℜ

 
The main result (Theorem 4.1) in Yang (2001) can be strengthened without requiring the 
production functions to be discrete concave, as follows: 
 
Theorem 2: Let X* be a feasible allocation and p* a price vector. <p*,X*> is a 
constrained market equilibrium if and only if the pair <p*,m*> solves: 

Minimize + p∑
=

H

i
im

1
)( Tw 

Subject to + p∑
=

H

i
im

1
)( Tx ≥ V(x) for all x∈NL with x ≤ w, p∈ , L

+ℜ

       m(i) + pTx ≥ fi(x), for all x∈NL with x ≤ w and i = 1,…,H.  
where m*∈ℜH with m* = <m*(i)/ i = 1,..H> satisfies m*(i) = fi(X*i) – p*TX*i for i = 
1,…,H.  
 
Proof: The proof is similar to the proof of Theorem 1, but is being provided here for 
completeness. 
Suppose <p*,X*> is a constrained market equilibrium. Let x∈NL with x ≤ w and V(x) = 

where X = <X∑
=

H

i

ii Xf
1

)( i/ i = 1,…,H>∈F(x). 
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Clearly, Xi ≤ x ≤ w for all i = 1,…,H. 
Thus, for all i = 1,…,H: fi(X*i) – p*TX*i ≥ fi(Xi) – p*TXi. 

Summing over i we get: + p*∑
=

H

i
im

1
)(* Tx ≥ V(x) for all x∈NL . 

Thus, <p*,m*> satisfies the constraints. 

Now, let <p,m> satisfy the constraints. Thus, ∑ + p
=

H

i
im

1
)( Tw ≥ V(w). 

However, by Proposition 1, X* is efficient and hence ∑ + p*
=

H

i
im

1
)(* Tw = V(w). 

Thus, ∑ + p
=

H

i
im

1
)( Tw ≥ + p*∑

=

H

i
im

1
)(* Tw . 

Thus, <p*,m*> solves the minimization problem. 
Now, suppose <p*,m*> solves the given minimization problem. Towards a contradiction 
suppose <p*, X*> is not a constrained market equilibrium. Thus, there exists i ∈H and 
x∈NL with x ≤ w, such that fi(x) – p*Tx > fi(X*i) –p*TX*i. 
Thus, fi(x) > m*(i) + p*Tx, which leads to a violation of a constraint of the minimization 
problem and consequently a contradiction. 
Thus, <p*, X*> is a constrained market equilibrium. Q.E.D. 
 
Note: Sun and Yang (2004) establish the existence of market equilibrium allocations 
without assuming that the production functions are discrete concave. They show that 
a market equilibrium exists if and only if there exists a price vector p* such that V(w) 
– p*Tw ≥ V(x) – p*Tx for all x∈NL. 
 
However, we are able to show that under the assumption of concave production functions 
the following is true: 
 
Theorem 3: There exists a market equilibrium if and only if there exists a price vector p* 
such that V(w) – p*Tw ≥ V(x) – p*Tx for all x∈NL with x ≤ w + e. 
 

Proof: Let <p*, X*> be a market equilibrium. By Proposition 1, = V(w). ∑
=

H

i

ii Xf
1

)*(

Let x∈NL with x ≤ w + e. By Theorem 1, V(w) – p*w ≥ V(x) – p*T x, since = w.  ∑
=

H

i

iX
1

*

Now suppose there exists a price vector p* such that V(w) – p*Tw ≥ V(x) – p*Tx  for all 

x∈NL with x ≤ w + e. Let X* be an efficient allocation. Thus, = V(w). Let, 

m*∈ℜ

∑
=

H

i

ii Xf
1

)*(

H with m* = <m*(i)/ i = 1,..H> satisfying m*(i) = fi(X*i) – p*TX*i for i = 1,…,H. 

Since , + p*∑
=

H

i
im

1
)(* Tx = V(w) – p*Tw + p*Tx ≥ V(x) for all x∈NL with x ≤ w + e, 

<p*,m*> satisfies the constraints of the linear programming problem in Theorem 1. 
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Let m∈ℜH with m = <m(i)/ i = 1,..H> satisfy ∑ + p
=

H

i
im

1
)( Tx ≥ V(x) for all x∈NL with x ≤ 

w + e . 

Thus, ∑ + p
=

H

i
im

1
)( Tw ≥ V(w) = ∑ + p*

=

H

i
im

1
)(* Tw. 

Thus, <p*, m*> solves the linear programming problem in Theorem 1. By Theorem 1, 
<p*, X*> is a market equilibrium. Q.E.D. 
 
4. Properties of the maximum value function for existence of equilibrium: We now 
investigate properties, which when satisfied by the maximum value function, guarantees 
the existence of a market equilibrium. In this section we assume that w∈NL∩ . L

++ℜ
Let C(w) = {x∈NL / x ≤ w + e} and let C*(w) denote the convex-hull of C(w). 

The cardinality of C(w) = ∏ . Let M denote the integer ∏  1. 
=

+
L

j

jw
1

)2(
=

+
L

j

jw
1

)2(  -

A function f: NL→ℜ is said to be partially concave at w if for any positive integer K and 
arrays <xk/ k = 1,…,K>, <tk/ k = 1,…,K> with xk∈C(w) and tk ≥ 0 for k = 1,…,K: [w = 

, ∑ = 1] implies [ f(w) ≥ . ∑
=

K

k

kk xt
1 =

K

k

kt
1

∑
=

K

k

kk xft
1

)( ]

Lemma 2: A function f: NL→ℜ is partially concave at w if and only if there exists p∈ℜL 
such that f(w) – pTw ≥ f(x) – pT x for all x∈C(w). 
 
Proof: Let C(w)\{w} be equal to the set {xk/ k = 1,…,M}. 
Suppose f is partially concave at w. Towards a contradiction suppose there does not exist 
p∈ℜL such that f(w) – pTw ≥ f(x) – pT x for all x∈C(w). 
Hence, there does not exist α, β, γ∈ : αL

+ℜ T(xk – w) - βT (xk – w) + γk = f(xk) – f(w) for all 
k = 1,…,M. 

By Farkas' Theorem there exists t∈ such that ≤ 0, -∑ ≤ 0 

and  0.  

M
+ℜ ∑

=

−
M

k

kk wxt
1

)(
=

−
M

k

kk wxt
1

)(

∑
=

−
M

k

kk wfxft
1

)]()([ >

 Thus, ∑ > 0. 
=

K

k

kt
1

Dividing the three inequalities above by ∑ , we get there exists s∈ such that 

= w, =1  and > f(w), contradicting that f is partially concave at 

w. 

=

K

k

kt
1

M
+ℜ

∑
=

M

k

kk xs
1

∑
=

M

k

ks
1

∑
=

M

k

kk xfs
1

)(

Hence, there exists p∈ℜL such that f(w) – pTw ≥ f(x) – pT x for all x∈C(w). 
Now suppose that there exists p∈ℜL such that f(w) – pTw ≥ f(x) – pT x for all x∈C(w). 
Hence there exists α, β, γ∈ : αL

+ℜ T(xk – w) - βT (xk – w) + γk = f(xk) – f(w) for all k = 
1,…,M. 
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By Farkas' Theorem there does not exist t∈ such that = 0 and 

 0.  

M
+ℜ ∑

=

−
M

k

kk wxt
1

)(

∑
=

−
M

k

kk wfxft
1

)]()([ >

Thus, [t∈ , tM
+ℜ k ≥ 0 for k = 1,…,M, w = , = 1] implies [ f(w) ≥ 

. 

∑
=

M

k

kk xt
1

∑
=

M

k

kt
1

∑
=

M

k

kk xft
1

)( ]

Thus, f is partially concave at w. Q.E.D. 
 
A function f: NL→ℜ is said to be Weakly Monotonic at w if: 
(1) For all j = 1,…,L: f(w + ej) ≥ f(w); 
(2) f(w + e) > f(w). 
 
It is easy to see that if for some i, fi is non-decreasing (i.e. for all x,y∈NL:[x ≥ y] implies 
[fi(x) ≥ fi(y)]) and weakly increasing (i.e. for all x,y∈NL:[x >> y] implies [fi(x) > fi(y)], 
then V is Weakly Monotonic at w. 
 
Lemma 3: Suppose f: NL→ℜ is Weakly Monotonic at w. Then, f is partially concave at w 
if and only if there exists p∈ \{0} such that f(w) – pL

+ℜ Tw ≥ f(x) – pT x for all x∈C(w). 
 
Proof: By Lemma 2, f is partially concave at w if and only if there exists p∈ℜL such that 
f(w) – pTw ≥ f(x) – pT x for all x∈C(w).   
Suppose towards a contradiction f is partially concave but pj < 0, for some j. Then, 0 ≤ 
f(w + ej) – f(w) by Weak Monotonicity of f at w and f(w + ej) – f(w) ≤ pT(w + ej – w) = pj 
< 0, leads to a contradiction. 
Thus p∈ . L

+ℜ
If p = 0, then 0 < f(w + e) – f(w) by Weak Monotonicity and f(w +e) – f(w) ≤ pTe = 0, 
again leads to a contradiction. 
Thus, p∈ \{0}. Q.E.D. L

+ℜ
 
In view of Lemmas 2 and 3 and Theorem 3, we can state the following result: 
 
Theorem 4: Suppose V is Weakly Monotonic at w. A market equilibrium exists if and 
only if V is partially concave at w. 
 
5. An Illustrative Example: Consider the following two agent (H = 2), three input (L = 3) 
integer allocation problem with w = e. Let f: →ℜL

+ℜ + be defined as follows: f(0) = 0 = 
f(ej) for j = 1,2,3; f(ej + ek) = 3 for j,k∈{1,2,3} with j ≠ k; f(e) = 4; for all x∈N3\{y∈N3/ y 
≤ e}, let f(x) = f( ). f is discrete concave. Let f∑

> }0/{ jxj

je i = f for i = 1, 2. The integer 

allocation problem <{f1,f2}, e> is an example of a bundle auction. 
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For this problem, if X is an efficient allocation then either X1 = e and X2 = 0 or X1 = 0 
and X2 = e. 
Suppose <p,X> is a market equilibrium. Then by Proposition 1, X is efficient. Without 
loss of generality, suppose X1 = e and X2 = 0. In order that X2 maximize profits for agent 
2 at price vector p, it must be that pj+ pk ≥ 3 for all j,k∈{1,2,3} with j ≠ k. Thus, 2 (p1 + 
p2 + p3) ≥ 9 or p1 + p2 + p3 ≥ 4.5 > 4 = f(e) = f1(e). Thus, X1 does not maximize profits for 
agent 1 at price vector p. 
Thus, this integer allocation problem does not have a market equilibrium. 
It is easy to verify that the maximum value function V is not partially concave at w = e. 

Note that V(2e) = 8, V(e) = 4, V(ej + ek) = 3 for j,k∈{1,2,3} with j ≠ k. Now e = 
4
1 (2e) + 

4
1 (e1 + e2) + 

4
1 (e1 + e3) + 

4
1 (e2 + e3). 

4
1 V(2e) + 

4
1 V(e1 + e2) + 

4
1 V(e1 + e3) + 

4
1 V(e2 + e3) = 2 + 

4
9 = 4.25 > 4 = V(e). 

Thus, V is not partially concave at w. 
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