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Abstract

In this paper we show that if all agents are equipped with discrete concave production
functions, then a feasible price allocation pair is a market equilibrium if and only if it
solves a linear programming problem, similar to, but perhaps simpler than the one
invoked in Yang (2001).

Using this result, but assuming discrete concave production functions for the agents once
again, we are able to show that the necessary and sufficient condition for the existence of
market equilibrium available in Sun and Yang (2004), which involved obtaining a price
vector that satisfied infinitely many inequalities, can be reduced to one where such a
price vector satisfies finitely many inequalities. A necessary and sufficient condition for
the existence of a market equilibrium when the maximum value function is Weakly
Monotonic at the initial endowment that follows from our results is that the maximum
value function is partially concave at the initial endowment.

1. Introduction: The equilibrium existence problem with indivisibilities has been
investigated by Yang (2001) and more recently by Sun and Yang (2004). The model they
consider is the model of a market game due to Shapley and Shubik (1969, 1976), with the
goods being available for redistribution among the agents being available in integer units
only. Yang (2004), shows that a constrained market equilibrium (i.e. a market clearing
allocation, where each agent is constrained to maximize profit subject to its consumption
not exceeding the initial endowment of the goods), exists if and only if there is a feasible
price allocation pair that solves a certain linear programming problem. The result is
obtained without any concavity assumption being imposed on the production function of
the agents.

In this paper we show that if all agents are equipped with discrete concave production
function, then a feasible price allocation pair is a market equilibrium (i.e. where agents
solve an unconstrained profit maximization problem at given prices to obtain the
resulting market clearing allocation) if and only if it solves a linear programming
problem, similar to, but perhaps simpler than the one invoked in Yang (2001).

Using this result, but assuming discrete concave production function for the agents once
again, we are able to show that the necessary and sufficient condition for the existence of
market equilibrium available in Sun and Yang (2004), which involved obtaining a price


https://core.ac.uk/display/9308849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:lahiri@ifmr.ac.in

vector that satisfied infinitely many inequalities, can be reduced to one where such a
price vector satisfies finitely many such inequalities.

These results provide the necessary computational device for obtaining a market
equilibrium for integer allocation problems.

2. The Model: We now develop the general equilibrium model for the case where the
inputs are available in integer amount only.

Let N =&uU{0}, where R denotes the set of natural numbers. Let there be H > 0 agents
and L+1 > 1 commodities. The first L commodities are used as inputs to produce the
L+1™ commodity, which is a numeraire consumption good. Let weN" denote the
aggregate initial endowment of the inputs which is available for distribution among the
agents.

Forj=1,...,L, let wj denote the aggregate amount of commodity j that is initially
available in the economy.

A function f: N* -9 is said to be discrete concave if there exists a continuous concave

function g: R~ —N such that the restriction of g to N coincides with f.

Given functions f: N“ —%R and g: RE N, let graph(f) = {(x, a)eN"xR/ o < f(x)} and
graph(g) = {(x, a)e R, xR/ a < g(x)}.

Given a function f: N“ —%® its canonical extension is the function g R"-—%R such that
the graph(g") = convex hull of graph(f). Clearly g' is continuous and concave.

Let e denote the vector in R" all whose coordinates are equal to one and forj =1,...,L, let
¢’ denote the vector in R™ whose j™ coordinate is equal to one and all other coordinates
are equal to zero.

If f is discrete concave, then the restriction of its canonical extension g’ to N* coincides
with f.

L . .
Note: For xeN" and x'e R" with x < x' < x + e, g'(x') € convex hull of { f (x+ Zk lely/
i=1
Ke{0,1} forj=1,...,L}.
In fact, if we let N(x') denote {yeN"/x <y <x +e}, and A' denote the [N(x")| - 1 simplex

K
in RN, then gf(x') = Max{ Ztk f(y*)/ K is a positive integer, ykeN(x') fork=1,... K,

k=1
K
X'= Z:tkyk , and the array t = <t/ k =1,..,.K> eA'}.
k=1

Each agent 1 has preferences defined over N which is represented by a discrete concave
production function f.

The pair <{f/i=1,...,H}, w> is called an integer allocation problem and is assumed to be
a given for the rest of the analysis. '

An input consumption vector of agent i is denoted by a vector X' eN".

A price vector p is an element of R:\{0}, where for j = 1,...,L, p; denotes the price of
input j.

At a price vector p, the objective of agent 1 is to maximize profits:

Maximize [f(X') — p'X]

An allocation is an array X = <X'i= 1,...,H> such that X'eN* for alli= 1,....H.



. H .
Given xeN", let F(x) = { X =<X/i=1,...,H>/ X is an allocation satisfying z X'=x}.

i=l

An allocation X is said to be feasible if XeF(w).
A market equilibrium is a pair <p*,X*> where p* is a price vector, X* is a feasible
allocation and for all i = 1,...,H, X*' maximizes profits for agent i.

H . . .
The function V:N"—%R, such that for all xeN": V(x) = Max{ > f'(X")/ X =<X"i=

i=l
1,...,H>eF(x)}, is called the maximum value function.

. H - .

A feasible allocation X* = <X*"/i=1,...,H> is said to be efficient if z f'(X*)=

i=l

V(w).
The following result is vailable in Lahiri (2005) and will be used in the sequel.
Proposition 1: Let <p*,X*> be a market equilibrium. Then X* is an efficient allocation.

A constrained market equilibrium is a pair <p*,X*> where p* is a price vector, X* is a
feasible allocation such that foralli=1,...,H, X* solves:

Maximize [f(X') - p"X]

Subject to X' < w.

Clearly a market equilibrium is a constrained market equilibrium. The following example
shows that a constrained market equilibrium need not be a market equilibrium.

Example 1: Let H=1,L =1, f'(x) = x for all xeN and w = 1. Let X*' = | and X* =
<X*'>_ For all pe(0, 1], <p, X*> is a constrained market equilibrium, though for
pe(0,1), <p, X*> is never a market equilibrium. <I,X*> is the unique market equilibrium
for this integer allocation problem.

3. Existence of Market Equilibrium: This section is devoted to obtaining results
pertaining to the existence of market equilibrium for the given integer allocation problem.
We begin with a lemma.

Lemma 1: Let f: N* 9% be a discrete concave function with g’ being its canonical
extension and let peR". Let xeN" and x'e R’ with x' < x. Then gl(x') + p'x' < Max {f(y")
+p'y'/y'eNand y' <x}.

Proof: Since x' < x, there exists yeN" such that y < x <y +e. Thus, g'(x') econvex hull

L .
of{ f(y+> klel)/Ke{0,1} forj=1,...,.L}. This implies that g'(x') + p'x'econvex hull

j=1

L L .
of{ f(y+> klel)y+p'(y+> k'el)/Ke{0,1} forj=1,...,.L}.Hence, g'(x") +p'x' <

j=1 j=1



L o L o .

Max{ f(y+> kle!)+p'(y+> kle')/Ke{0,1} forj=1,...L}. Thus, g'(x') <
j=1 j=1

Max {f(y') + p'y"/ y'eN" and y' < x}. Q.E.D.

We now state and prove the main theorem of this paper.

Theorem 1: Let X* be a feasible allocation and p* a price vector. <p*,X*> is a market
equilibrium if and only if the pair <p*,m*> solves:

H
Minimize » m(i) + p'w

i=1

H
Subject to z m(i) + p'x > V(x) for all xeN" with x <w + ¢, pe R

=)
where m*e R" with m* = <m*(i)/ i = 1,..H> satisfies m*(i) = f(X*') — p”‘TX”‘i fori=
1,....,H.

H . .
Proof: Suppose <p* X*> is a market equilibrium. Let xeN" and V(x) = Z f'(X")where
i-1
X=<X/i=1,. H>eF(x). - |
Thus, for all i =1,....H: f(X*) — p*"X* > f(X') — p*'X".

H

Summing over i we get: Z m* (i) + p*'x > V(x) for all xeN" .
=)

Thus, <p*,m*> satisfies the constraints.

H
Now, let <p,m> satisfy the constraints. Thus, z m(i) + pTW >V(w).
i=1

H
However, by Proposition 1, X* is efficient and hence Z m* (i) + p*'w = V(w).
=)

H H
Thus, Zm(i)+pTw2 Zm*(i)+p*Tw.
i=1 i=1

Hence, <p*,m*> solves the minimization problem.
Now, suppose <p*,m*> solves the given minimization problem. Towards a contradiction
suppose <p*, X*> is not a market equilibrium. Thus, there exists i eH and xeN", such
that f(x) — p*'x > fi(X*) —p*TXH,
Suppose x < X*' +e.
Since X*eF(w), w* =x + ZX < X¥ +e+ ZX *=w+te.
ki ki
Thus, V(w*) > f(x) + > (X *)
k=i
> fl(X*l) _p*TX*i + p*TX + z f k(x *k)_ p*TZ x kK +p*TZ X xk
ki ki ki
= fi(X*i) —p*TX*i + Z flOX *)- p*TZ X K prTyy

ki k=i



H
= 2 m*(i)+p*iw,
i=1
leading to a contradiction.
Thus it is not the case that x < X*' + e.
In fact we have shown that for i eH and xeN", with x < X4 e, it is the case that f(x) -
p*TX < fl(X*l) p*TX*I
Since X' << X*' + ¢, for t €(0,1), t sufficiently small, the real vector X* + t(x — X*') <<
X* +e.
Letg=g" denote the canonical extension of f.
Thus, g (x) - p*'x > gl(X*) —p*'X*.
Since g' is concave g (X”‘1 +i(x - X*) > g (X*‘) + t(g (x)—g (X*‘))
Hence, g'(X* + t(x — X*)- p* (X* + t(x — X*) > g'(X*) + t(g'(x) — g'(X*)) - p*' (X* +
t(x — X*)).
Now, g!(X* + t(x — X*)) - p*I(X* + t(x — X*)) > g'(X*) -p* X + t([g'(x) — p*'x] -
[2X) - p*IX* ]) > g(X¥) - p* X
However, X*' + t(x — X*) << X*'+e.
Thus by Lemma 1, g'(X*' + t(x — X*))) - p*"(X*' + t(x — X*')) < Max {f(y) - p*'y/ yeN"
such that y < X* + e}= f(X*") -p*'X*!, leading to a contradiction.
This establishes the theorem. Q.E.D.

Note: In the statement of Theorem 1 and in its proof, the constraint pe R%, which
appears for the linear, programming (minimization) problem, could be easily dispensed
with without diluting the result in any way. The fact that the theorem concerns a price
vector would then imply our version of Theorem 1.

The main result (Theorem 4.1) in Yang (2001) can be strengthened without requiring the
production functions to be discrete concave, as follows:

Theorem 2: Let X* be a feasible allocation and p* a price vector. <p*,X*>1is a
constrained market equilibrium if and only if the pair <p*,m*> solves:

H
Minimize Z m(@i)+p'w

i=1

H
Subject to z m(i) + p'x > V(x) for all xeN" with x <w, pe RE,

=)

m(i) +p'x > fi(x), for all xeN" with x <w and i = 1,...H. _
where m* e R with m* = <m*(i)/ i = 1,..H> satisfies m*(i) = f(X*') — p*"'X* for i =
1,....,H.

Proof: The proof is similar to the proof of Theorem 1, but is being provided here for
completeness.
Suppose <p*,X*> is a constrained market equilibrium. Let xeN" with x < w and V(x) =

H .
D f(X")where X =<X7i=1,....H>eF(x).

i=l



Clearly, XiSXSwforal.liZ.l,...,H. S _
Thus, for all i = 1,....H: f(X*) — p*"X* > f(X') — p*'X".
H

Summing over i we get: Z m* (i) + p*'x > V(x) for all xeN" .
i=1
Thus, <p*,m*> satisfies the constraints.

H
Now, let <p,m> satisfy the constraints. Thus, Z m(@i)+p'w > V(w).

i=1

H
However, by Proposition 1, X* is efficient and hence Z m* (i) + p*'w = V(w).
=)

H H
Thus, Y m(@i)+p'w= D> m*(i)+p*'w.
i=l i=1

Thus, <p*,m*> solves the minimization problem.

Now, suppose <p*,m*> solves the given minimization problem. Towards a contradiction
suppose <p*, X*> is not a constrained market equilibrium. Thus, there exists 1 eH and
xeN" with x < w, such that fi(x) — p*'x > (X —p*TX*i.

Thus, f{(x) > m*(i) + p*'x, which leads to a violation of a constraint of the minimization
problem and consequently a contradiction.

Thus, <p*, X*> is a constrained market equilibrium. Q.E.D.

Note: Sun and Yang (2004) establish the existence of market equilibrium allocations
without assuming that the production functions are discrete concave. They show that
a market equilibrium exists if and only if there exists a price vector p* such that V(w)
—p*"w > V(x) — p*"x for all xeN".

However, we are able to show that under the assumption of concave production functions
the following is true:

Theorem 3: There exists a market equilibrium if and only if there exists a price vector p*
such that V(w) — p*"w > V(x) — p*"x for all xeN" with x <w +e.

H . .
Proof: Let <p*, X*> be a market equilibrium. By Proposition 1, Z f (X *)=V(w).

i=l

H .
Let xeN" with x < w + e. By Theorem 1, V(w) — p*w > V(x) — p*' x, since Z X * =w,
i=l
Now suppose there exists a price vector p* such that V(w) — p*'w > V(x) — p*'x for all
H

xeN" with x < w + e. Let X* be an efficient allocation. Thus, Z f1(X *)=V(w). Let,
i=1

m*eR" with m* = <m*(i)/ i = 1,..H> satisfying m*(i) = f(X*) — p*"X* fori=1,....H.

H

Since, » m* (i) + p*'x = V(w) — p*'w + p*'x > V(x) for all xeN" with x < w + e,
i=1

<p*,m*> satisfies the constraints of the linear programming problem in Theorem 1.



H
Let meR" with m = <m(i)/ i = 1,..H> satisfy Y m(i)+p'x > V(x) for all xeN" with x <
i=l
wte.
H H
Thus, Z m@i)+p'w > V(w) = Z m* (i) + p*'w.
i=1 i=1
Thus, <p*, m*> solves the linear programming problem in Theorem 1. By Theorem 1,
<p*, X*>is a market equilibrium. Q.E.D.

4. Properties of the maximum value function for existence of equilibrium: We now
investigate properties, which when satisfied by the maximum value function, guarantees

the existence of a market equilibrium. In this section we assume that weN"nR", .
Let C(w) = {xeN"/x <w + e} and let C*(w) denote the convex-hull of C(w).

The cardinality of C(w) = l_l(wJ +2). Let M denote the integer l_[(WJ +2) - 1.
j=1 j=1
A function f: N"—R is said to be partially concave at w if for any positive integer K and

arrays <x*/ k= 1,...,K>, <t/ k=1,...,K> with x*eC(w) and * > 0 fork = 1,....K: [w =
K

ithk , Yt =1] implies [ f(w) > itkf(xk)].
k=1 k=1

k=1
Lemma 2: A function f: N“—%R is partially concave at w if and only if there exists pe R"
such that f(w) —p'w > f(x) — p" x for all xeC(w).

Proof: Let C(w)\{w} be equal to the set (xk=1,...,.M}.

Suppose f'is partially concave at w. Towards a contradiction suppose there does not exist
peR* such that f(w) — p'w > f(x) — p' x for all xeC(w).

Hence, there does not exist a., B, ye R : a"(x = w) - BT (x* = w) +v* = f(x") - f(w) for all
k=1,....M.

M M
By Farkas' Theorem there exists te R such that Ztk (x* —w)<0, - Ztk (x*—=w)<0
k=1

k=1

and itk[f(xk)— f(w)]> 0.

K
Thus, » t“>0.

k=1

K
Dividing the three inequalities above by Ztk , we get there exists se R" such that
k=1
M M M
Z s*x* =w, Z s“=1 and Z s¥ f (x)> f(w), contradicting that f is partially concave at
k= k=1 k=1

w.
Hence, there exists peﬂiL such that f(w) — pTw > f(x) — pT x for all xeC(w).

Now suppose that there exists peR" such that fiw) — p'w > f(x) — p" x for all xeC(w).
Hence there exists o, B, ye R-: a'(x* —w) - B (x* —w) +v* = f(x*) — f(w) for all k =
1,...,M.



M
By Farkas' Theorem there does not exist te R such that Ztk (x* —w)=0 and
k=1

itk[f(xk)—f(w)po.

M M
Thus, [te 9%5" , t*>0fork= I,..M,w= Zthk , Ztk = 1] implies [ f(w) >
k=1 k=1

M
DtF(xX) 1.
k=1
Thus, f'is partially concave at w. Q.E.D.

A function f: N“%R is said to be Weakly Monotonic at w if:
() Forallj=1,....L: f(w + ¢') > f(w);
(2) f(w + e) > f(w).

It is easy to see that if for some i, f is non-decreasing (i.e. for all x,yeNL:[x > y] implies
[f(x) > f((y)]) and weakly increasing (i.e. for all x,yeN":[x >> y] implies [f(x) > f(y)],
then V is Weakly Monotonic at w.

Lemma 3: Suppose f: N*—>R is Weakly Monotonic at w. Then, f is partially concave at w
if and only if there exists pe R \{0} such that f(w) — p'w>f(x)—p' x for all xeC(w).

Proof: By Lemma 2, fis partially concave at w if and only if there exists pe R" such that
flw)—p'w > f(x) — p" x for all xeC(w).

Suppose towards a contradiction f is partially concave but p; <0, for some j. Then, 0 <
fiw + &) — f(w) by Weak Monotonicity of f at w and fiw + &) — f(w) <p'(w + & — w) = P
<0, leads to a contradiction.

Thus pe R:.

If p =0, then 0 < f(w + e) — f(iw) by Weak Monotonicity and f(w +e) — fiw) <p'e =0,
again leads to a contradiction.

Thus, pe R-\{0}. Q.E.D.

In view of Lemmas 2 and 3 and Theorem 3, we can state the following result:

Theorem 4: Suppose V is Weakly Monotonic at w. A market equilibrium exists if and
only if V is partially concave at w.

5. An Illustrative Example: Consider the following two agent (H = 2), three input (L = 3)
integer allocation problem with w = e. Let f: R- —R, be defined as follows: f(0) =0 =
f(e) for j = 1,2,3; (¢! + &) =3 for j.ke {1,2,3} with j = k; f(e) = 4; for all xeN°\{yeN’/ y
<e}, let f(x) =f( Zei ). fis discrete concave. Let fi=ffori=1,2. The integer

{i/%;>0}

allocation problem <{f',f*}, e> is an example of a bundle auction.



For this problem, if X is an efficient allocation then either X' = ¢ and X* =0 or X' =0
and X> =e.

Suppose <p,X> is a market equilibrium. Then by Proposition 1, X is efficient. Without
loss of generality, suppose X' = e and X* = 0. In order that X* maximize profits for agent
2 at price vector p, it must be that p;+ px > 3 for all j,ke {1,2,3} with j # k. Thus, 2 (p; +
P2+ p3) =9 orp; +py+ps>4.5>4=1(e)=f(e). Thus, X' does not maximize profits for
agent 1 at price vector p.

Thus, this integer allocation problem does not have a market equilibrium.

It is easy to verify that the maximum value function V is not partially concave at w = e.

Note that V(2¢) = 8, V(e) =4, V(¢! + ¢“) = 3 for j.ke {1,2,3} with j # k. Now e = i(2e) +

| R B NS SR B N SPSe S
—(e+te)+—(e +te)+ —(e"+e).
2 ¢ )+ )+ )

%V(Ze) + iV(el +e?) + %V(el +e’) + iv(e2 +el)=2+ %: 4.25>4=V(e).

Thus, V is not partially concave at w.
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