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Abstract

We study a simple bargaining mechanism in which each player puts a
prize to his resources before leaving the game. The only expected final
equilibrium payoff can be defined by means of selective marginal contri-
butions vectors, and it coincides with the Shapley value for convex games.
Moreover, for 3-player games the selective marginal contributions vectors
determine the core when it is nonempty.

1 Introduction
Many economic situations can be modelled as a set of agents or players with
independent interests who may benefic from cooperation. Once this cooperation
is carried out, the question which arises in how the benefits from cooperation
should be distributed among the players.
This problem may be approached by taking two different points of view:

one of them is axiomatic, or cooperative, and the other is non-cooperative. The
axiomatic point of view focuses on finding allocations which satisfy “fair” (or at
least “reasonable”) properties, such as efficiency (the final outcome must be opti-
mal), symmetry (players with the same characteristics must receive the same),
etc. The non-cooperative point of view leads to the study of the allocations
which arise in a given non-cooperative environment.
In this paper, we focus on the non-cooperative approach. We study a non-

cooperative framework in the context of transferable utility games, where there
exists a divisible commodity that all agents value the same in terms of utility.
We consider a society in which individuals have mechanisms which allow

them to make absolute bindings at no cost. Schelling (1980) points out that, if
more than one individual simultaneous and uncoordinatedly commit themselves,
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we may get inefficiency. Business can not take place if their commitments are
incompatible. Thus, we consider a protocol or order in which players commit
themselves, and study the allocations that arise in subgame perfect equilibria.
For a detailed discussion on the subject of commitments and its implica-

tions, the reader is referred to Crawford (1982), where he studies bargaining
environments in which each party can make a commitment which is costly to
remove (see also Muthoo, 1992, 1996, and Bolt and Houba, 1998). Schelling
(1980) points out that a player may enhance his degree of commitment through
delegating on a third party. Commitment through delegation may be found in
Katz (1991) and Fershtman and Kalai (1997). Delegation with possible renego-
tiation may be found in Haller and Holden (1997), Bester and Sákovics (2001),
and Corts and Neher (2003).
In our framework, players sequentially choose a prize for their resources and

commit themselves to that prize. Finally, the last player chooses the resources
he wants to buy and clears the market. This protocol generalizes the bargaining
game illustrated by Schelling (1980; Appendix B) as follows: two players may
divide $100 as soon as they agree on how to do it. The game terminates at
“midnight”, when the bell rings. In order to define “agreement”, it is supposed
that each player keeps his current offer recorded in a way that a referee can
check both offers when the bell rings. If the two players have jointly claimed
more than $100, they get nothing. If they have jointly claimed no more than
$100, the gains are divided in accordance. The presence of commitments is
illustrated by a “turnstile that permits a player to leave but not to return; his
current offer as he goes through the turnstile remains on the books until the
bell rings” (Schelling 1980, p. 276).
Several possible extensions of this mechanism for more than two players are

given under the generic name of Demand Commitment Game. They are dis-
cussed in Bennet and van Damme (1991), Selten (1992), Winter (1994), and
Dasgupta and Chiu (1998). A common feature in these models is that, if one
or more players “go through the turnstile” demanding a feasible amount (i.e.
whatever they can assure by themselves is not less than the sum of their com-
mitments), they may form a coalition and leave the game. Thus, some players
may leave the game before all the others have a chance to move. In our model,
every player (but the last one) commits to a prize. Our mechanism improves on
previous ones in two aspects. First, the mechanism is simpler. Second, the range
of results is increased. In Winter’s and Dasgupta and Chiu’s, the Shapley value
arises for convex games. But if the game is not convex the equilibrium payoff
may be inefficient1. We show that in our mechanism the equilibrium outcome
is always efficient in a nonrestrictive class of games, and it coincides with the
Shapley value for convex games. For 3-player games, Dasgupta and Chiu show
that all the possible outcomes constitute the vertices of the core, when the core

1 In Dasgupta and Chiu’s model, efficiency in the non convex case is achieved by means of
prizes and penalties from the planner to the players. For penalties large enough, the Shapley
value arises for any game, and the planner does not gain nor loose anything in equilibrium.
We think this result is unsatisfactory. For example, there may be a utility transfer to the
players from outside out of the equilibrium path.
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has nonempty interior. We prove that this result also applies in our mechanism.
Furthermore, the outcome is also characterized for simple games.
In Section 2, we introduce the notation used throughout the paper. In

Section 3 we define a new value for cooperative games, the selective value, based
on selective marginal contributions vectors. We also study the selective value
in some important classes of games. In particular, the selective value coincides
with the Shapley value for convex games. In Section 4 we formally describe
the non-cooperative mechanism2; and we prove that the selective value is the
only expected final payoff in subgame perfect equilibria. We have then given an
additional non-cooperative motivation to the Shapley value for convex games.

2 The model
We begin with some basic notations. Given a finite set A, by 2A we denote the
cardinal set of A, by |A| the cardinality of A, and by RA the set of real |A|-
tuples whose indices are the elements of A. Given a function f : S ⊂ 2A → R,
by argmax

T⊂S
{f (T )} we denote the set of subsets T ⊂ S which maximize f (T ).

Let (N, v) be a TU game with transferable utility (TU game), where N =
{1, 2, ..., n} is the set of players and v is the characteristic function, which assigns
a real number v(S) to every coalition S ⊂ N , S 6= ∅ and v (∅) = 0. This value
v (S) represents the utility that players in S are able to achieve by themselves
when playing cooperatively. Following usual practice, we often refer to “the
game v” instead of “the TU game (N, v)”. We denote by TU (N) the set of all
TU games on the set of players N . We denote by TU the set of all TU games.
We say that v is convex if v (T ) − v (T\ {i}) ≤ v (S) − v (S\ {i}) when

i ∈ T ⊂ S, zero-monotonic if v(S) + v({i}) ≤ v(S ∪ {i}) when i /∈ S, and
strictly zero-monotonic if v(S) + v({i}) < v(S ∪ {i}) when i /∈ S. Notice that
if the game is convex then it is zero-monotonic. We say that v is monotonic if
v (T ) ≤ v (S) whenever T ⊂ S.
The core C (v) of the game v is the set of vectors x ∈ RN such that P

i∈N
xi =

v (N) and
P
i∈S
xi ≥ v (S) for all S ⊂ N . The core of a game may be empty.

However, if the game is convex, its core is nonempty.
Let Π be the set of all orders on N . Given π ∈ Π and i ∈ N , we define the

set of predecessors of i under π as the set of players who come before i under
the order π. Namely,

Pπ
i := {j ∈ N : π (j) < π (i)} .

We also denote Pπ
i := P

π
i ∪ {i}.

We define the marginal contribution of player i to the game v under the
order π as

dπi (v) := v (N\Pπ
i )− v

¡
N\Pπ

i

¢
.

2 In order to avoid ambiguities, we use the term non-cooperative mechanism, or simply
mechanism, when referring to a non-cooperative game.
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This notation differs from the usual3. However, this one is more suitable for
our purposes. For simplicity, we write dπi instead of d

π
i (v) and d

π instead of
dπ (v).
The marginal contributions vectors can be explained as follows. All the

players are together in a room. They sequentially leave the room, and by doing
so each leaving player receives his marginal contribution to the players still in
the room; i.e. the difference between what players can get by themselves before
and after he leaves the room.
We define the Weber set W (v) of v as the convex hull whose vertices are

the vectors dπ’s. If v is convex, W (v) = C (v).
A value onG ⊂ TU (N) is a map f : G −→ RN . The Shapley value (Shapley,

1953) for the game v is defined as the average of the marginal contributions
vectors. Namely

ϕ (v) :=
1

|Π|
X
π∈Π

dπ.

We say that a value f on G satisfies efficiency if for any v ∈ G, P
i∈N

fi (v) =

v(N). A value f on G satisfies core selection if f (v) ∈ C (v) for all v ∈ G such
that C (v) 6= ∅.
We say that v is a simple game if v (S) ∈ {0, 1} for all S ⊂ N and v (N) = 1.

A player i in a simple game is a veto player if i /∈ S implies v (S) = 0. The core
of a monotonic simple game v with set of veto players T ⊂ N is the convex hull
of imputations x ∈ RN which satisfy xi ≥ 0 for all i ∈ T ,

P
i∈T
xi = 1 and xi = 0

for all i ∈ N\T . Thus, the core of v is nonempty if and only if T 6= ∅.

3 The selective value
We define a selective marginal contribution of a player. As the marginal con-
tributions, imagine all players sequentially leave a room. Again, a player gets
the difference between what players can get by themselves before and after he
leaves the room. However, in computing what a coalition gets by itself, we as-
sume its members may select some of the players already outside the room and
use their resources by paying the prize they got on leaving. We think that this
interpretation may justify the term selective marginal contributions.
Formally, let π ∈ Π. We can assume without loss of generality that π =

(1...n) .
We define the selective marginal contribution of player i ∈ N in the order N

as
3Usually, the marginal contribution of player i to the game v under de order π is given by

v
¡
Pπ
i

¢ − v ¡Pπ
i

¢
.
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eπi (v) := max
S⊂Pπi

v (N\S)− X
j∈Pπi \S

eπj (v)

− max
S⊂Pπi

v (N\ (S ∪ {i}))− X
j∈Pπi \S

eπj (v)


for i = 1, 2, ..., n− 1 and

eπn (v) := max
S⊂Pπn

v (N\S)− X
j∈Pπn \S

eπj (v)

 .
For simplicity, we write eπi instead of e

π
i (v) and e

π instead of eπ (v).
Notice that what a coalition N\Pπ

i can get by itself is not v (N\Pπ
i ), but

max
S⊂Pπi

(
v (N\S)− P

j∈Pπi \S
eπj

)
; i.e. the coalition can select some of the players

already outside the room and use their resources by paying their prize.
Notice that

eπ1 = v (N)− v (N\ {1}) = dπ1 . (1)

Next lemma provides a simplification of these formulas.

Lemma 1 Given i ∈ N and π ∈ Π,

max
S⊂Pπi

v (N\S)− X
j∈Pπi \S

eπj

 = v (N)−
X
j∈Pπi

eπj .

Proof. We assume π = (12...n). We proceed by induction on i. For i = 1
the result is trivial, since Pπ

1 = ∅. Assume the result is true for 1, 2, ..., i − 1.
Let S0 ⊂ Pπ

i , S0 6= ∅. We need to prove that

v (N\S0)−
X

j∈Pπi \S0
eπj ≤ v (N)−

X
j∈Pπi

eπj . (2)

Let k = max {j : j ∈ S0}. Hence, S0\ {k} ⊂ Pπ
k . By induction hypothesis

eπk = v (N)−
X
j∈Pπk

eπj − max
S⊂Pπk

v (N\ (S ∪ {k}))− X
j∈Pπk \S

eπj


≤ v (N)−

X
j∈Pπk

eπj − v (N\S0) +
X

j∈Pπk \(S0\{k})
eπj

from where (2) is easily deduced.
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We can then define the eπ’s as

eπi = v (N)−
X
j∈Pπi

eπj − max
S⊂Pπi

v (N\ (S ∪ {i}))− X
j∈Pπi \S

eπj


for i = 1, ..., n− 1 and

eπn = v (N)−
X
j∈Pπi

eπj .

Analogously to the Weber set, we define Wσ (v) as the convex hull whose
vertices are the vectors eπ’s.
Given a TU game v, we define the selective value σ (v) as the vector of

average selective marginal contributions. Namely

σ (v) :=
1

|Π|
X
π∈Π

eπ.

Next proposition characterizes the selective value in convex games, mono-
tonic simple games and zero-monotonic 3-player games with nonempty core.

Proposition 2 a) If v is convex, then the selective value coincides with the
Shapley value.
b) Let (N, v) be a monotonic simple game, and let T be the set of veto players.

Then, the selective value is given by

1. If T 6= ∅

σi (v) =

½ 1
|T | if i ∈ T
0 if i /∈ T

2. If T = ∅

σi (v) =
1

n

for all i ∈ N .
c) Let v be a zero-monotonic game with n = 3 and nonempty core C (v).

Then, the selective marginal contributions vectors are the vertices of the core.
In particular,

Wσ (v) = C (v) .

The proof of Proposition 2 is located in the Appendix. Next corollary is
immediate:

Corollary 3 The selective value satisfies core selection for convex games, mono-
tonic simple games and zero-monotonic 3 player games.
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Proposition 2a) allows us to extend the results of Winter (1994) and Das-
gupta and Chiu (1998) (cf. Theorem 5 below). Winter (1994, p. 271) suggests
that the Shapley value is most adequate in convex games. For non-convex
games, the selective value does not coincide with the Shapley value. However,
it shows a bigger “stability” (in the sense of “core selection”) in both simple
games (Proposition 2b)) and 3 player games (Proposition 2c)). Proposition 2c),
together with the theorems in next section, also extends Theorem 5 in Dasgupta
and Chiu (1998).

Remark 4 Proposition 2c) does not hold for n > 3. For example, consider the
symmetric game v with n = 4 given by v (N) = 100, v (S) = 50 if |S| = 2 or
|S| = 3, and v (S) = 0 otherwise. The core of this game has a single imputation
(25, 25, 25, 25). However, e(1234) = (50, 0, 0, 50) /∈ C (v).

4 The bargaining mechanismwith commitments
We define here the bargaining mechanism with commitments. The mechanism
has n rounds. In the first round, a player is randomly chosen, being each player
equally likely to be chosen. Say, player 1 is chosen. Player 1 must then make a
commitment c1 ∈ R. Another player (say, player 2) is again randomly chosen
among the members of N\ {1}. Player 2, aware of player 1’s choice, must
make a new commitment c2 ∈ R, and so on. When the turn reaches player
n, he faces a vector c ∈ RN\{n} of commitments. He must then propose a
coalition E ⊂ N\ {n} and he gets the resources of N\E by paying ci to every
i ∈ N\ (E ∪ {n}). The final payoff is then ci for every player i ∈ N\ (E ∪ {n}),
v (N\E)− P

i∈N\(E∪{n})
ci for player n, and v ({i}) for every i ∈ E. We say then

that players in E are excluded.
Next theorem shows that the selective value arises in the bargaining mech-

anism with commitments as the only expected subgame perfect equilibrium
payoff.

Theorem 5 For strictly zero-monotonic games, there exists a unique expected
subgame perfect equilibrium payoff; and it is the selective value.

To prove this result, we need two lemmas. In order to simplify notation,
given a game (N, v), a coalition S ⊂ N , a player i ∈ N\S and a vector c ∈ RS ,
we define

AS (c) := max
T⊂S

v (N\T )− X
j∈S\T

cj



BSi (c) := max
T⊂S

v (N\ (T ∪ {i}))− X
j∈S\T

cj

 .
7



Notice that, given i ∈ N and π ∈ Π

eπi =

 AP
π
i

³¡
eπj
¢
j∈Pπi

´
−BPπii

³¡
eπj
¢
j∈Pπi

´
if π (i) 6= n

AP
π
i

³¡
eπj
¢
j∈Pπi

´
if π (i) = n.

We also denote by M (S, i, c) the subgame which begins when, after players
in S ⊂ N\ {n} have stated their commitments c ∈ RS , it is player i’s turn. If
S = ∅, we write M (∅, i).

Lemma 6 If v is zero-monotonic, v ({i}) ≤ AS (c) − BSi (c) for all S ⊂ N ,
i ∈ N\S, and c ∈ RS. If v is strictly zero-monotonic, the inequality is strict.

Proof. Let S ⊂ N , i ∈ N\S, and c ∈ RS . Let T i ⊂ N such that

T i ∈ argmax
T⊂S

v (N\ (T ∪ {i}))− X
j∈S\T

cj

 .
By zero-monotonicity

v
¡
N\T i¢− X

j∈S\T i
cj ≥ v

¡
N\ ¡T i ∪ {i}¢¢+ v ({i})− X

j∈S\T i
cj

which is precisely BSi (c) + v ({i}). Hence, AS (c) ≥ BSi (c) + v ({i}), and thus
the result holds. The proof for strict inequality is analogous.

Lemma 7 Let v be a strictly zero-monotonic game. Assume we are in a sub-
game perfect equilibrium of the subgame M (S, i, c) and S 6= N\ {i} (i.e. player
i has to commit). Then, player i commits to ci = AS (c)−BSi (c), and he is not
excluded.

Proof. Assume we are in the subgame M (N\ {α} ,α, c) for some α ∈ N ,
c ∈ RN\{α} (i.e. player α is due to choose the set of excluded players). Then,
player α is due to exclude a coalition E ⊂ N\ {α} such that

E ∈ argmax
T⊂N\{α}

v (N\T )− X
j∈(N\{α})\T

cj

 . (3)

Assume now we are in the subgameM (S, i, c) with S 6= N\ {i}. We proceed
by a series of claims:
Claim (A): If player i commits to ci < AS (c) − BSi (c), then he is not

excluded.
Claim (B): Player i commits to ci ≥ AS (c)−BSi (c).
Claim (C): If player i commits to ci > AS (c)−BSi (c), then he is excluded.
Claim (D): Player i commits to ci = AS (c)−BSi (c), and he is not excluded.
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We proceed by backwards induction on |S|. Assume |S| = n− 2, i.e. player
i is the last to make a commitment before the last player (say, α) clears the
market. Notice that S = N\ {α, i} .
Proof of Claim (A) for |S| = n − 2. Assume that ci < AS (c) − BSi (c).

We prove that i /∈ E. Suppose, on the contrary, that i ∈ E. Let E0 ⊂ S be such
that

E0 ∈ argmax
T⊂S

v (N\T )− X
j∈(N\{α})\T

cj

 .
Then

v (N\E0)−
X

j∈(N\{α})\E0
cj = max

T⊂S

v (N\T )− X
j∈(N\{α})\T

cj

 = AS (c)− ci

> BSi (c) = max
T⊂N\{α}:i∈T

v (N\T )− X
j∈S\(T\{i})

cj


= max

T⊂N\{α}:i∈T

v (N\T )− X
j∈(N\{α})\T

cj


≥ v (N\E)−

X
j∈(N\{α})\E

cj .

But this contradicts (3). Thus, i /∈ E, i.e. player i is not excluded, and
therefore his final payoff is ci.
Proof of Claim (B) for |S| = n − 2. Assume ci < AS (c) − BSi (c). By

Claim (A), player i can improve his final payoff by committing to c0i such that
ci < c

0
i < A

S (c)−BSi (c). Hence, ci ≥ AS (c)−BSi (c) in equilibrium.
Proof of Claim (C) for |S| = n − 2. Assume ci > AS (c) − BSi (c). We

prove that i ∈ E. Suppose, on the contrary, that i /∈ E. Then E ⊂ S. Let
E0 ⊂ N\ {α} be such that

E0 ∈ argmax
T⊂N\{α}:i∈T

v (N\T )− X
j∈(N\{α})\T

cj

 .
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Then

v (N\E0)−
X

j∈(N\{α})\E0
cj = max

T⊂N\{α}:i∈T

v (N\T )− X
j∈(N\{α})\T

cj


= max

T⊂S

v (N\ (T ∪ {i}))− X
j∈(N\{α})\(T∪{i})

cj


= BSi (c) > A

S (x)− ci

= max
T⊂S

v (N\T )− X
j∈(N\{α})\T

cj


≥ v (N\E)−

X
j∈(N\{α})\E

cj .

Again, this contradicts (3). Thus, i ∈ E and player i’s final payoff is v ({i}).
Proof of Claim (D) for |S| = n− 2. Assume player i is excluded. Thus,

his final payoff is v ({i}). By Lemma 6, this is strictly less than what he would
get by committing to c0i with v ({i}) < c0i < Aπ (c) − Bπ

i (c). Thus, player i is
not excluded. By Claim (C), this means that ci ≤ Aπ (c) − Bπ

i (c). By Claim
(B), equality holds.
Assume now the claims are true for subgames M (T, j, c0) with |T | > |S|.
Proof of Claim (A). Assume that ci < AS (c)−BSi (c). We have to prove

that i /∈ E. Suppose, on the contrary, that i ∈ E. By induction hypothesis, no
player in N\ (S ∪ {i}) is excluded. Thus, E ⊂ S ∪ {i}.
Let E0 ⊂ S be such that

E0 ∈ argmax
T⊂S

v (N\T )− X
j∈(N\{α})\T

cj

 .
Then

v (N\E0)−
X

j∈(N\{α})\E0
cj = max

T⊂S

v (N\T )− X
j∈(N\{α})\T

cj


= AS (c)−

X
j∈(N\{α})\S

cj

> BSi (c)−
X

j∈(N\{i,α})\S
cj

= max
T⊂S∪{i}:i∈T

v (N\T )− X
j∈(N\{α})\T

cj


≥ v (N\E)−

X
j∈(N\{α})\E

cj .
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But this contradicts (3). Thus, i /∈ E and player i’s final payoff is ci.
Proof of Claim (B). Analogous to the case |S| = n− 2.
Proof of Claim (C). Assume ci > AS (c) − BSi (c). We have to prove

that i ∈ E. Suppose, on the contrary, that i /∈ E. By applying the induction
hypothesis, we deduce E ⊂ S. Let E0 ⊂ N\ {α} be such that

E0 ∈ argmax
T⊂S∪{i}:i∈T

v (N\T )− X
j∈(N\{α})\T

cj

 .
Then

v (N\E0)−
X

j∈(N\{α})\E0
cj = max

T⊂S∪{i}:i∈T

v (N\T )− X
j∈(N\{α})\T

cj


= max

T⊂S

v (N\ (T ∪ {i}))− X
j∈(N\{α})\(T∪{i})

cj


= BSi (c)−

X
j∈(N\{α})\(S∪{i})

cj

> AS (x)−
X

j∈(N\{α})\S
cj

= max
T⊂S

v (N\T )− X
j∈(N\{α})\T

cj


≥ v (N\E)−

X
j∈(N\{α})\E

cj .

Again, this contradicts (3). Thus, i ∈ E and player i’s final payoff is v ({i}).
Proof of Claim (D). Analogous to the case |S| = n− 2.
An immediate consequence of Lemma 7 is that the equilibrium payoff of

any player depends on the identity of the players who come before and after
him but not on the way they are ordered. This feature distinguishes our model
from Dasgupta and Chiu’s (1991), where the order in which players make their
demands is prespecified at the beginning of the mechanism and known by all
players.
Next remark is important for the proof of Theorem 10 and Theorem 11

below.

Remark 8 Zero-monotonicity is only needed in the proof of Claim (D).

Proof of Theorem 5. By Lemma 7, the only possible payoff in equilibrium
is eπ, where π ∈ Π is given by the order in which the players commit. We
must prove that there exists an equilibrium. We consider the following set of
strategies: In the subgame M (S, i, c), player i commits to ci = AS (c)−BSi (c).
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If player i is the last one (i.e. S = N\ {i}), he excludes a coalition E ⊂ N\ {i}
such that E belongs to

argmax
T⊂N\{i}

v (N\T )− X
j∈(N\{i})\T

cj

 . (4)

In case of indifference, player i chooses a coalition E with the minimum
cardinality |E|.
Clearly, the final payoff when players follow this set of strategies is eπ. If

player i commits to less than AS (c) − BSi (c), he is not excluded (Claim (A)),
but his final payoff decreases. If he commits to more than AS (c) − BSi (c), he
is excluded (Claim (C)) and his final payoff is v ({i}). However, by Lemma 6,
this amount is less than eπi . Thus, it is not optimal for him to deviate. We are
then in a subgame perfect equilibrium.
If we consider zero-monotonic games, there exists a subgame perfect equi-

librium whose expected payoff outcome coincides with the selective value. A
possible equilibrium is the one presented in the proof of Theorem 5. However,
there may exist subgame perfect equilibria whose expected final payoff outcome
is different from the selective value. Consider the next example.

Example 9 Let v be the “two-left-one-right-glove” 3-player game given by v (N) =
v ({1, 3}) = v ({2, 3}) = 1 and v (S) = 0 otherwise. The selective value of v is
the only core allocation (0, 0, 1). We consider the following strategies: Players
2 and 3 play according the strategies described in the proof of Theorem 5, which
implement the selective value. However, if the set given in (4) contains more
than one coalition, player 3 will exclude the first coalition in (4) given the pref-
erence relation ∅ Â {1} Â {2} Â {1, 2}. Moreover, player 1 plays according
these strategies except in the subgame M(∅, 1), where he commits to c1 = 1.
It is not difficult to check that these strategies constitute a subgame perfect

equilibrium. When the order in which the players are asked is different from
(123), the final payoff is (0, 0, 1). When the order is (123), the final payoff is
(0, 1, 0). Hence, the selective value is not achieved.

If we want to obtain the selective value for general zero-monotonic games,
we have to make additional assumptions. For example, Moldovanu and Winter
(1994) assume that “each player prefers to be a member of large coalitions
rather than smaller ones provided that he earns the same payoff in the two
agreements”. If we make the same assumption in our model, the selective value
is implemented. Formally, we consider the following tie-breaking rule:

• If a player i is indifferent between committing to c0i or ci and c0i < ci, he
strictly prefers to commit himself to c0i.

• If the last player is indifferent between excluding E0 or E and E0 Ã E, he
strictly prefers to exclude E0.

12



Theorem 10 When players follow the tie-breaking rule in zero-monotonic games,
the selective value is the unique expected subgame perfect equilibrium payoff.

Proof. The set of strategies used in the proof of Theorem 5 constitutes a
subgame perfect equilibrium for the bargaining mechanism, and furthermore it
satisfies the tie-breaking rule.
Now, we prove that, with this tie-breaking rule, Lemma 7 still holds for (not-

strictly) zero-monotonic games. More specifically, Claims (A), (B), (C) and (D)
hold. Furthermore, the proof of Claims (A), (B) and (C) are analogous. We
must prove Claim (D) for the new hypothesis.
Proof of Claim (D) for |S| = n − 2. By Claim (A), Claim (C) and the

tie-breaking rule, we deduce that ci = AS (c) − BSi (c). We have to prove that
player i is not excluded. Assume he is excluded, i.e. i ∈ E.
If v ({i}) < AS (c) − BSi (c), by Claim (A) he can improve his final payoff

by committing to c0i with v ({i}) < c0i < AS (c) − BSi (c). Thus, v ({i}) =
AS (c)−BSi (c); i.e. v ({i}) = ci.
Let E0 = E\ {i}. By zero-monotonicity

v (N\E0)−
X

j∈(N\{α})\E0
cj ≥ v (N\E) + v ({i})−

X
j∈(N\{α})\E

cj − ci

= max
T⊂N\{α}

v (N\T )− X
j∈(N\{α})\T

cj


and thus player α is indifferent between excluding E or E0. Since E Ã E0, he
does not follow the tie-breaking rule. This contradiction proves that player i
cannot be excluded.
Proof of Claim (D). Analogous to the case |S| = n− 2.
Thus, the only possible payoff in equilibrium is eπ.
Vidal-Puga and Bergantiños (2003) model this tie-breaking rule by “punish-

ing” with a small penalty ε > 0 the players involved in an exclusion. We can
do the same in our model. In particular, we assume each excluded player must
pay ε > 0. We call this modification the ε-bargaining mechanism with com-
mitments. The structure of the mechanism is the same as before. This means
that the strategies available for players are the same in both mechanisms. The
only difference lies on the following aspect of the payoff function. When the last
player presents a coalition E of excluded players, the final payoff is v ({i}) − ε
for each i ∈ E.

Theorem 11 For any ε > 0, the ε-bargaining mechanism with commitments
has a unique expected subgame perfect equilibrium payoff for zero-monotonic
games, and it is the selective value.

Proof. By analogous arguments to those presented in the proof of Theorem
10, we only need to prove Claim (D) of Lemma 7. Assume player i commits
to ci = AS (c)− BSi (c) and it is excluded. Then, his final payoff is v ({i})− ε.

13



By Lemma 6 and Claim (A), this is strictly less than what he would get by
committing to c0i with v ({i}) − ε < c0i < AS (c) − BSi (c). This contradiction
proves the Claim.

Remark 12 As in Vidal-Puga and Bergantiños (2003), the result is also true
if the penalty to the excluded players is agent-dependent, i.e., any player i has
a penalty ε (i) > 0 for being excluded.

5 Appendix
Proof of Proposition 2. a) Let π ∈ Π. Given i ∈ N , we first prove that

v
¡
N\Pπ

i

¢ ≥ v (N\ (S ∪ {i}))− X
j∈Pπi \S

eπj (5)

for all S ⊂ Pπ
i and

eπi = d
π
i . (6)

We proceed by induction on π (i). For π (i) = 1, (5) is trivial and (6)
coincides with (1). Assume π (i) > 1 and the results are true for all j such that
π (j) < π (i). Let S ⊂ Pπ

i . Then, (5) is equivalent to

v
¡
N\Pπ

i

¢ ≥ v (N\ (S ∪ {i}))− X
j∈Pπi \S

dπj . (7)

We prove (7) by inverse induction on |S|. For S = Pπ
i , it is trivial. Assume

(7) is true for coalitions T ⊂ Pπ
i such that |S| < |T | ≤ |Pπ

i |. Let i∗ be the first
player in Pπ

i \S, i.e. the only player in argmin
j∈Pπi \S

{π (j)}. Thus

Pπ
i∗ ⊂ S. (8)

Let S∗ := S ∪ {i∗} ⊂ Pπ
i . By induction hypothesis

v
¡
N\Pπ

i

¢ ≥ v (N\ (S∗ ∪ {i}))−
X

j∈Pπi \S∗
dπj

= v (N\ (S ∪ {i, i∗})) + dπi∗ −
X

j∈Pπi \S
dπj . (9)

By (8), Pπ
i∗ ⊂ S ∪ {i, i∗}. Thus, N\Pπ

i∗ ⊃ N\ (S ∪ {i, i∗}) and, by convexity,

v (N\Pπ
i∗)− v

¡
N\Pπ

i∗
¢ ≥ v (N\ (S ∪ {i}))− v (N\ (S ∪ {i, i∗})) . (10)

Since dπi = v (N\Pπ
i∗) − v

¡
N\Pπ

i∗
¢
, we apply (10) to (9) in order to obtain

(7).
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We prove now (6)

eπi = v (N)−
X
j∈Pπi

eπj − max
S⊂Pπi

v (N\ (S ∪ {i}))− X
j∈Pπi \S

eπj


= v (N)−

X
j∈Pπi

£
v
¡
N\Pπ

j

¢− v ¡N\Pπ
j

¢¤− v ¡N\Pπ
i

¢
= v (N)− [v (N)− v (N\Pπ

i )]− v
¡
N\Pπ

i

¢
= v (N\Pπ

i )− v
¡
N\Pπ

i

¢
= dπi .

This completes the proof of part a).

b) Let π ∈ Π. We can assume without loss of generality that π = (123...n).
Assume first T 6= ∅. Let i0 ∈ T be the first veto player in the order π.

We prove that eπi = 0 for all i < i0 by induction on i. For i = 1, eπ1 =
v (N) − v (N\ {1}) = 0 because v is monotonic and 1 is not a veto player.
Assume eπj = 0 for 1 ≤ j < i. Since j < i0 and i0 is the first veto player in π,
we deduce that j is not a veto player. By induction hypothesis

eπj = v (N)− max
S⊂Pπj

v (N\ (S ∪ {j}))

by monotonicity

= v (N)− v (N\ {j})

which equals 0 because v is monotonic and j is not a veto player.
Now, we calculate eπi0 . If i0 < n,

eπi0 = v (N)− max
S⊂Pπi0

v (N\ (S ∪ {i0})) = v (N)− v (N\ {i0}) = 1.

If i0 = n,

eπi0 = v (N) = 1.

Let i > i0. We calculate eπi . If i < n,

eπi = v (N)− 1−max {v (N\ {i})− 1, v (N\ {i, i0})}
= −max {v (N\ {i})− 1, 0} = 0.

If i = n,

eπi = v (N)− 1 = 0.

Thus, eπi0 = 1 and eπi = 0 otherwise. Since each veto player has the same
probability of being the first one in an order π ∈ Π, we conclude the result.
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Assume now T = ∅. We prove eπi = 0 for all i < n by induction on i. For
i = 1, eπ1 = v (N)− v (N\ {1}) = 0 because v is monotonic and 1 is not a veto
player. Assume eπj = 0 for j < i < n. By induction hypothesis

eπi = v (N)− v (N\ {i})

which equals 0 because v is monotonic and player i is not a veto player.
Finally, eπn = v (N) = 1. Thus, eπn = 1 and eπi = 0 otherwise. Since each

player has the same probability of being the last one in an order, we conclude
the result of part b).

c) The proof is similar to those of Theorem 5 in Dasgupta and Chiu (1998),
although the computations are different. Let v be a zero-monotonic game with
n = 3 and nonempty core C (v). We first prove4

max {yi : y ∈ C (v)} = v (N)− v (N\i) (11)

for all i ∈ N .
Let xi = max {yi : y ∈ C (v)}. We can assume without loss of generality

that i = 1.
For any y ∈ C (v), y2+ y3 ≥ v (23). Since y1+ y2+ y3 = v (N), we conclude

y1 ≤ v (N)− v (23) = v (N)− v (N\1). Thus, x1 ≤ v (N)− v (N\1).
Let y ∈ C (v) such that y1 < v (N)− v (N\1).
If y2 = v (2) and y3 = v (3), by zero-monotonicity

y1 = v (N)− [v (2) + v (3)] ≥ v (N)− v (23) = v (N)− v (N\1) .

Thus, y2 > v (2) or y3 > v (3). We assume without loss of generality that
y2 > v (2).
Let

0 < ε < min {v (N)− v (N\1)− y1, y2 − v (2)} .

Let yε = y+(ε,−ε, 0). It is not difficult to check that yε ∈ C (v). Moreover,
yε1 > y1. Thus, x1 = v (N)− v (N\1). This proves (11).
Let π ∈ Π. We assume without loss of generality that π = (123).
We define xπ as the vertex of C (v) associated to π. Namely

xπ1 = max {y1 : y ∈ C (v)}
xπ2 = max {y2 : y ∈ C (v) , y1 = x1}
xπ3 = v (N)− xπ1 − xπ2 .

We prove that xπ = eπ. By (11)

xπ1 = v (N)− v (23) = eπ1 .
4 In this section, we use v (N\1) instead of the more cumbersome v (N\ {1}). Similarly,

v (ij) = v ({i, j}) and so on.
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Moreover

eπ2 = v (N)− eπ1 −max {v (13)− eπ1 , v (3)}
= v (23)−max {v (13)− v (N) + v (23) , v (3)} .

We study two cases

Case 1: v (13)− v (N) + v (23) ≥ v (3). Then
eπ2 = v (23)− v (13) + v (N)− v (23) = v (N)− v (13) .

We show that

v (N)− v (13) = max {y2 : y ∈ C (v) , y1 = v (N)− v (23)} = xπ2 .
Let y ∈ C (v) such that y1 = v (N)− v (23). Then

y2 = v (N)− y1 − y3 = v (23)− y3
since y ∈ C (v), we have y1 + y3 ≥ v (13) and thus

≤ v (23) + y1 − v (13) = v (N)− v (13) .
Therefore, xπ2 ≤ v (N)− v (13).
Let y ∈ C (v) such that y1 = v (N) − v (23) and y2 < v (N) − v (13). We

consider yε := y + (0, ε,−ε) with 0 < ε < v (N) − v (13) − y2. So, yε1 =
v (N)− v (23). It is straightforward to show that yε ∈ C (v).
Thus, xπ2 = v (N)− v (13) = eπ2 .
Case 2: v (13)− v (N) + v (23) < v (3). Then

eπ2 = v (23)− v (3) .
We show that v (23) − v (3) = max {y2 : y ∈ C (v) , y1 = v (N)− v (23)} =

xπ2 .
Let y ∈ C (v) such that y1 = v (N)− v (23). Then

y2 = v (N)− y1 − y3 = v (23)− y3
since y ∈ C (v), we have y3 ≥ v (3) and thus

≤ v (23)− v (3) .
Therefore, xπ2 ≤ v (N)− v (3).
Let y ∈ C (v) such that y1 = v (N) − v (23) and y2 < v (23) − v (3). We

consider yε := y + (0, ε,−ε) with 0 < ε < v (23)− v (3)− y2. So, yε1 = v (N)−
v (23). It is straightforward to show that yε ∈ C (v).
Thus, we conclude that xπ2 = v (23)− v (3) = eπ2 .

Since xπ1 = eπ1 and x
π
2 = eπ2 , it is trivial to check that x

π
3 = eπ3 . Hence,

xπ = eπ.
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