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Abstract

A social game is a generalization of a strategic-form game, in which
not only the payoff of each player depends upon the strategies chosen
by their opponents, but also their set of admissible strategies. Debreu
(1952) proves the existence of a Nash equilibrium in social games with
continuous strategy spaces. Recently, Polowczuk and Radzik (2004)
have proposed a discrete counterpart of Debreu’s theorem for two-
person social games satisfying some “convexity properties”. In this
note, we define the class of supermodular social games and give an
existence theorem for this class of games.
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1 Introduction

A social game is a generalization of a strategic-form game, in which the

set of “admissible” strategies of a player is constrained by the strategies of

the other players. Historically, Arrow and Debreu (1954) were the first to

introduce the concept of a social game, calling it an abstract economy in

their original paper. To motivate the need for this generalization, Arrow

and Debreu invoked the special position of consumers in an economy. The

strategies of a consumer can be regarded as the choice of different bundles

of goods. Theirs is a constrained choice in that the total cost of the goods

chosen at market prices cannot exceed their disposable income. In turn,

market prices and the disposable income are determined by the choices of

other agents in the economy e.g., tax authorities or employers.

Formally, a social game G is a tuple < N, (Xi, ui, Si)i∈N >. N =

{1, . . . , n} is the set of players, Xi is the set of pure strategies available

to player i. Denote X−i =
∏

j∈N\{i} Xj, and x−i an element of X−i. For

each player i ∈ N , Si is a multi-valued map from the set X−i to sub-

sets of the set Xi, with Si(x−i) the set of pure strategies admissible to

player i when his opponents play x−i. Hence, the map Si represents the

social constraint imposed by player i’s opponents on his behavior. Player

i’s payoff function is ui : Xi × X−i → R. The mixed extension of a fi-

nite social game G is the tuple < N, (∆(Xi), vi, Si)i∈N > where ∆(Xi) is

the set of probabilities on Xi, for all (pi, p−i) ∈
∏

i∈N ∆(Xi), vi(pi, p−i) =∑
xi∈Xi

∑
x−i∈X−i

ui(xi, x−i)pi(xi)p−i(x−i), and

Si(p−i) =
⋂

x−i∈ supp p−i

Si(x−i).

A profile of strategies x∗ = (x∗i , x
∗
−i) is an Arrow-Debreu-Nash equilibrium,

(hereafter, an equilibrium), of the social game G if for each player i ∈ N ,

x∗i ∈ Si(x
∗
−i), and

x∗i ∈ BRi(x
∗
−i) := arg max

xi∈Si(x∗−i)
ui(xi, x

∗
−i).

A profile of strategies is a mixed equilibrium of G if it is a equilibrium of

the mixed extension of G. Formally, (p∗i , p
∗
−i) is a mixed equilibrium of G if
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for each player i ∈ N , supp p∗i ⊂ Si(p
∗
−i), and p∗i ∈ BRi(p

∗
−i). This note is

concerned with the equilibrium existence in social games.

In “Social equilibrium existence theorem” (1952), Debreu provides suf-

ficient conditions for the existence of an equilibrium in a social game. The

sufficient conditions for existence are as follows. For each player i ∈ N ,

Xi is a contractible polyhedron, Si is a semi-continuous multi-valued map

(i.e., its graph is closed), ui is continuous, and for each x−i, the set Si(x−i)

is contractible. (See Theorem, p. 888 in Debreu (1952).) In an historical

note, Debreu also mentions the existence of an equilibrium if for each player

i ∈ N , Xi is a non-empty, compact, convex subset of a finite Euclidean

space, ui is continuous and quasi-concave in xi, and the multi-valued map Si

is semi-continuous, non-empty and convex-valued. This last statement is now

familiar to game theorists as it relies on the celebrated Kakutani fixed-point

theorem.

Recently, Polowczuk and Radzik (2004) have provided a counterpart of

Debreu’s theorem for two-player non-zero sum games with finite strategy

spaces. Their main assumptions are: Z1) symmetry i.e., for all x2 ∈ S2(x1),

x1 ∈ S1(x2) and for all x1 ∈ S1(x2), x2 ∈ S2(x1), Z2) sections convexity i.e., a

discrete counterpart of the convex-valuedness of Si, and Z3) game convexity

i.e., a discrete counterpart of the quasi-concavity of ui. Assuming Z1-Z3, they

prove the existence of an equilibrium in (mixed) strategies consisting of two

two-adjoining pure strategies i.e., mixed strategies assigning strictly positive

probability to only two consecutive pure strategies x and x + 1. However,

their theorem (Theorem 4) does not hold true for three players or more. For

instance, consider the following three-player game (Figure 1).

0 1

0 1, 1, 0 ?, ?, ?

1 0, 1, 1 1, 0, 1

0

0 1

0 1, 0, 1 0, 1, 1

1 0, 0, 0 1, 1, 0

1

Figure 1: A three-player social game with no equilibrium.

Each player has two strategies 0 and 1. Player 1 chooses a row, player 2

a column and player 3 a matrix. Moreover, the profile of strategies (0, 1, 0)
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is not admissible i.e., we have S1(1, 0) = {1}, S2(0, 0) = {0}, S3(0, 1) = {1}
and for each player i, Si(x−i) = {0, 1}, otherwise. We can easily check that

this game has no Nash equilibrium.

In the next section, we define the class of supermodular social games and

prove the existence of a Nash equilibrium. In particular, our result holds

for n-player games with finite unidimensional strategy spaces if payoffs have

increasing differences.

2 Supermodular social games and equilibrium

existence

The following definition of a supermodular social game generalizes the defi-

nition of a supermodular game introduced in Milgrom and Roberts (1990).

Both definitions coincide when there is no social constraints i.e., if for all

players, for all x−i ∈ X−i, Si(x−i) = Xi. We refer the reader to Topkis

(1998) for the definitions of concepts introduced below.

Definition 1 A social game G =< N, (ui, Xi, Si)i∈N > is supermodular,

if for each player i ∈ N ,

(A1) Xi together with the order ≥i is a non-empty complete lattice;

(A2) ui : X → R ∪ {−∞} is order upper semi-continuous in xi (for a fixed

x−i), order-continuous in x−i (for fixed xi), and has a finite upper-

bound;

(A3) ui is supermodular in xi (for fixed x−i);

(A4) ui has increasing differences in xi and x−i;

(A5) Si is ascending in x−i, and, for each x−i, Si(xi) is a non-empty complete

sublattice of Xi.

Conditions (A1)-(A4) are equivalent to conditions (A1)-(A4) of Milgrom

and Roberts (1990). However, condition (A5) has no equivalence in Milgrom

and Roberts as they do not consider social games. The first part of (A5)
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together with (A3)-(A4) insures that player i’s best-reply map BRi is non-

decreasing on the set {x−i ∈ X−i : BRi(x−i) 6= ∅}. The second part of

(A5) together with (A1)-(A2) insures that best-reply maps are everywhere

non-empty valued. The following example illustrates the importance of this

condition. Let R be the extended real line i.e., R := {−∞} ∪ R ∪ {+∞}.
Together with the usual order ≥, R is a complete lattice. Consider the subset

S = {−2} ∪ (−1, +1) ∪ {+2} of R. S is a complete lattice, a sublattice of

the extended real line, but not a complete sublattice as supS(0, 1) = 2 6= 1 =

supR(0, 1). It is then easy to see that the function x 7→ f(x) = −x2 + 2x

is order continuous on R, while it is not order upper semi-continuous on S;

and f has no maximum in S, while it has a maximum in R.

Lemma If f is an order upper semi-continuous, supermodular function on

a complete lattice X, then any restriction of f to a complete sublattice S of

X is order upper semi-continuous and supermodular on S.

Proof Let C ⊆ S be a chain, i.e., a totally ordered subset of S. Note that

C is also a chain of X. Since S is a complete sublattice of X, we have that

supS(C) = supX(C). It follows that

lim sup
x∈C, x↑supS(C)

f(x) = lim sup
x∈C, x↑supX(C)

f(x) ≤ f(supX(C)) = f(supS(C)),

since f is order upper semi-continuous on X. A similar reasoning holds for

the convergence to infS(C), hence f is order upper semi-continuous on S.

Finally, it is trivial to prove that f is supermodular on S. �

We can now state our main theorem, which proves the existence of an

equilibrium in supermodular social games.

Theorem A supermodular social game has an equilibrium.

Proof Fix a x−i ∈ X−i. Since Si(x−i) is a complete sublattice of Xi, hence

a complete lattice in its own right, and ui is supermodular and order upper

semi-continuous on Si(x−i) by Lemma, a direct application of Theorem 1

(p1262) of Milgrom and Roberts (1990) proves the existence of a maximum

of ui(·, x−i) in Si(x−i). It follows that BRi(x−i) 6= ∅ for all x−i ∈ X−i. From

Theorem 6.1 in Topkis (1978), we have that BRi is ascending in x−i on the

set {x−i : BRi(x−i) 6= ∅}. Existence of a Nash equilibrium then follows by

Tarski fixed-point theorem as in Topkis (1979). �

5



As a final remark, it is worth noting that a similar result can already be

found in Topkis (1979, Theorem 3.1 (p. 781)), although it seems that Topkis

did not realize the relation of his result with social games. Moreover, our

theorem slightly improves upon Topkis’ theorem as Topkis considers com-

pact intervals of finite Euclidean spaces for strategy spaces and continuous

payoff functions, while we consider more general strategy spaces and payoff

functions.
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