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Abstract

This paper generalizes previous existence results on unidimensional
electoral competition, by extending the traditional two-party electoral
game to the case where parties have mixed motivations, in the sense
that they are interested in winning the election, but also in the pol-
icy implemented after the contest. Although this game has discontin-
uous payo®s, it satis¯es payo® security and reciprocally upper semi-
continuity. However, conditional payo®s might violate quasi-concavity.
Hence, our ¯rst result shows that the existence of a pure-strategy Nash
equilibrium can be guaranteed only if parties' interests are symmet-
ric. Instead, we prove that the mixed extension satis¯es better reply
security and, therefore, that a mixed-strategy equilibrium always ex-
ists. We also characterize the set of equilibria for a tractable version
of the model. This shows that the interaction between the electoral
uncertainty, the aggregate level of opportunism and its distribution
among parties shape the equilibrium strategies. In particular, when
the opportunism is large and asymmetrically distributed, the support
of each mixed-strategy equilibrium is a closed interval located on one
side of the median. Further, as the uncertainty increases, the probabil-
ity distributions concentrate on the extremes of the support. And the
mixed-strategy equilibrium vanishes above a critical level, over which
each party plays a pure strategy in its own ideological side.
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1 Introduction

The electoral competition between two or more political parties is probably
one of the most common and important features of every modern democracy.
In economics, there is a large literature about this process.1 This paper
contributes to this literature by extending the traditional unidimensional,
two-party model of Downs [9] and Wittman [27] and [28] to the case where
parties have mixed motivations, in the sense that they are interested in
winning the election, but also in the policy implemented after the contest.

Economic models of electoral competition originated in the famous lo-
cation model of Hotelling [15] and Downs [9]. In the most simple version of
this model, two parties (or candidates) announce simultaneously a platform
before the election, voters cast their votes, and the winner implements its
announced policy. The basic idea captured by this model is that, in a unidi-
mensional setting, each player can increase the number of votes by moving
closer to the other player.

Thus, if parties care only about the outcome of the election, which is
the Downsian assumption, there is a unique Nash equilibrium in which both
announce the same policy. In addition, if voters' preferences admit the
existence of a Condorcet winner, as it is the case, for example, when they
satisfy single-peakedness or single-crossing, then this policy coincides with
the median of the distribution of the voters' most preferred policies. This
result also holds if there exists uncertainty regarding individual preferences,
as long as parties share a common prior about the location of the median
ideal policy.

Contrary, consider the consequence of assuming that each party has an
exogenous ideology, and cares only about how close the policy of the winner
is relative to its own ideological position. This is the famous departure
proposed byWittman [27] and [28]. As Roemer [23] has shown, if there exists
uncertainty about voters' preferences, this game has also a Nash equilibrium
in pure strategies, but party platforms do not necessarily converge. This is
because, as one party moves closer to the other, it becomes worse o® in the
event that it wins, but at the same time it increases its probability of winning
the contest. Hence, it potentially faces a trade-o® between its ideology and
the electoral success, which results in an equilibrium where parties' positions
are di®erent.

Interestingly enough, the hybrid case, where parties have preferences over
policies, but also on the o±ce itself, has not received enough attention in the
literature. To our best knowledge, only Ball [3] has analyzed the implications
of this assumption, referred to as themixed motivations assumption (MMA),
for the existence of Nash equilibria in electoral competition games. He

1See Calvert [6], Coughlin [7], Shepsle [26], Osborne [21], Roemer [24] and Duggan [10]
for excellent surveys on this subject.
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shows an example where pure-strategy Nash equilibrium fails to exist, and
he provides su±cient conditions for the existence of mixed-strategy Nash
equilibria. However, his model has the disadvantage that the probability of
winning the election of each party is given by an exogenous function. That
is, it is taken as a primitive, instead of being derived endogenously from the
parties' uncertainty about the median ideal point.2

Apart from this work, the MMA appears in few other papers. For in-
stance, Roemer [23] and Duggan [10] mention this possibility, but they do
not go beyond that. On the other hand, Aragones and Palfrey [1] apply
this assumption in a model of electoral competition with a valence advan-
tage. They focus on a unidimensional and discrete model where parties'
ideal points and their trade-o® between power and ideology are private in-
formation. They show that pure-strategy equilibria always exist, and that
it approaches the mixed equilibrium of Aragones and Palfrey [2] when both
candidates' weights on policy preferences go to zero. This paper extends
Groseclose [14], which also uses the MMA, but in a complete information
setting.

Although the MMA is not frequently observed, it is clearly more ap-
pealing than the traditional hypotheses about party motivation, i.e. the
o±ce motivation and the policy motivation assumptions. This is because
the latter restrict party preferences in two di®erent ways. On one hand,
they choose a particular target for the party, namely power or ideology. On
the other, they assume that parties' interests are perfectly symmetric, in the
sense that either both are opportunistic or both are ideological in the same
magnitude.

Regarding these restrictions, the MMAmight arise naturally if, for exam-
ple, professional politicians are the leaders of the parties.3 Since politicians
may be namely interested in their career and, therefore, in winning the elec-
tion, while regular party members may care more about policy outcomes,
it is natural to assume that both objectives will enter into the party pay-
o® function with some weights. Of course, these weights need not be the
same across parties. Therefore, asymmetric payo® functions can arise quite
naturally as well.

But the fact that the MMA is attractive from an empirical viewpoint is
not the only reason nor the more interesting one for studying its implica-
tions. There is also a technical reason to focus on this assumption. It is well
known in the literature of political competition under uncertainty that the
probability of winning function is discontinuous on the diagonal. This may
preclude the existence of best replies, and therefore the best reply corre-
spondence need not be nonempty valued, let alone upper hemi-continuous.

Of course, this is not a problem for the Downsian game, which always

2We will return to Ball's analysis later in the paper, to compare his results with ours.
3See Ortu~no Ort¶³n [20] for a model in this line.
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has an equilibrium in pure strategies. Furthermore, it does not a®ect the
Wittman model neither. Roemer [23] has shown that pure ideological parties
have continuous payo® functions, in spite of the discontinuities of the prob-
ability of winning function, so that best reply correspondences are always
well de¯ned. However, it may be a problem for the hybrid case.

In this paper, we deal with this problem of equilibrium existence. We
show ¯rst that, under the MMA, parties' payo® functions are neither con-
tinuous nor semicontinuous on the diagonal. This implies that, unless both
parties have symmetric motivations, the less ideological party may have in-
centives to undercut the other party's position, by moving its own position
to an alternative in¯nitely close to the platform of the other; i.e., by moving
itself to the diagonal. Under certain conditions, that the paper tries to spec-
ify, this implies that best reply correspondences are empty and, therefore,
that pure-strategy Nash equilibrium does not exist. In particular, this is
the case if one of the parties is o±ce motivated and the other is entirely
ideological.

Then, we prove that the hybrid game satis¯es payo® security and recip-
rocally upper semi-continuity. So, following Reny [22], we conclude that the
blame for the non-existence of an equilibrium in pure strategies for all para-
metric conditions can be fully assigned to the violation of quasi-concavity,
rather than to the discontinuity of the probability of wining function itself.
Furthermore, we show that problems of quasi-concavity are relevant only
if parties' interests are asymmetric. Contrary, for the symmetric case, re-
gardless of whether the motivations are mixed or not, we are able to prove
that a pure-strategy Nash equilibrium always exists, being the Downsian
and Wittman equilibria two particular corollaries of this result.

Finally, to overcome the non-existence in the case of asymmetric inter-
ests, we move on to the mixed-strategy analysis.4 We prove that the mixed
extension satis¯es better reply security and, therefore, that the hybrid elec-
toral competition game has always a Nash equilibrium, though probably in
mixed strategies. This, together with the result above, generalizes previous
existence results for unidimensional electoral games.

We also characterize the set of Nash equilibria for a tractable version
of the model. The characterization shows that the interaction between the
electoral uncertainty, the aggregate level of opportunism and its distribu-
tion among parties shape the equilibrium strategies. In particular, when
the opportunism is large compared to the electoral uncertainty, and it is
asymmetrically distributed, the support of each mixed-strategy equilibrium
is a closed interval located on one side of the median agent. Moreover,
as the uncertainty increases, the probability distributions concentrate on

4See, among others, Kramer [16], La®ont et. al [18], Dutta and Laslier [12], Laslier
[19], Aragones and Palfrey [2], Duggan and Jackson [11] and Bernhardt et. al [4] and [5]
for further applications and interpretations of mixed strategies in electoral competition.

4



the extremes of the support. And the mixed-strategy equilibrium vanishes
above a critical level, over which each party plays a pure strategy in its own
ideological side.

The rest of the paper is organized as follows. Section 2 present the
model, the notation and the main de¯nitions. Section 3 focuses on the
pure-strategy analysis. In Section 4 we study equilibrium existence for the
mixed extension. Section 5 presents the characterization for the uniform
distribution case. Final remarks are made in Section 6.

2 The electoral game

Consider the following electoral competition game. Assume there is a con-
tinuum of voters, indexed by a type µ 2 £ = [0; 1], where µ is distributed
according to a continuous distribution function F on £. Let X = [0; 1]
be the policy space and u(x; µ) a utility function representing the prefer-
ences of a type µ over X. We assume voters' preferences are continuous,
single-peaked and symmetric on X. More formally,

Assumption 1 (a) u(x; µ) is continuous in x and µ; (b) u(¢; µ) is
strictly quasi-concave in x; and (c) u(¢; µ) is symmetric about x(µ) =
argmaxx2X u(x; µ).

Like in the ordinary electoral competition game, there are two political
parties (or candidates), noted by 1 and 2. These parties simultaneously
announce a policy platform on X. We denote Ai = X party i's strategy set,
with generic action xi 2 X, and A = A1£A2 the set of all strategy pro¯les.
We refer to D(A) = f(x1; x2) 2 A : x1 = x2g as the diagonal of the product
of the strategy sets; or, for conciseness, just as \the diagonal".

Given the proposal pro¯le (x1; x2) 2 A, each voter votes for the platform
(party) he likes the most, being S(x1; x2) = fµ 2 £ : u(x1; µ) > u(x2; µ)g
the set of types that support x1. The party that obtains more than half of
the votes wins the election, and its proposed policy is implemented. Ties
are broken by a random draw, so that each party wins with probability one
half in the case of a tie in votes.

Apart from the uncertainty due to the possibility of a tie, parties are
also uncertain about the position of the median voter. Following Roemer
[24], we assume that the uncertainty over voters' preferences follows the so
called error distribution model. That is, let » be an error term, distributed
according to a continuous distribution function H on [¡¯; ¯], ¯ > 0, with
density h and H(0) = 1=2:

Assumption 2 For all (x1; x2) 2 A, parties believe the fraction of types
supporting x1 is F (S(x1; x2)) + ».

5

5By A1, for each pair (x1; x2) 2 A, if u(x1; µ) = u(x2; µ) has a solution in µ, it is unique.
Therefore, F (I(x1; x2)) = 0, where I(x1; x2) = fµ 2 £ : u(x1; µ) = u(x2; µ)g.
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Thus, given a pair (x1; x2) 2 A, the probability that party 1 attaches to
winning the election is

p(x1; x2) =

(
1¡H(1=2¡ F (S(x1; x2))) if (x1; x2) 62 D(A),
1=2 if (x1; x2) 2 D(A). (1)

where it is understood that H(y) = 0 if y · ¡¯ and H(y) = 1 if y ¸ ¯.
From (1), it is immediate that p(x1; x2) is discontinuous at every point

on D(A), except at (xm; xm), where xm = medianfx(µ) 2 X : µ 2 £g is
the median ideal point. This is because, ¯rst, assumptions A1.b (strictly
quasi-concavity) and A1.c (symmetry) imply that voters' preferences are
single-crossing on X (Lemma 3, Saporiti and Tohm¶e [25]). Single-crossing
in turn implies that the function p(x1; x2) satis¯es Ball's monotonicity.

6

That is, p(x1; x2) is non-decreasing in xi, if x1 < x2, and non-increasing if
x1 > x2 (Lemma 3.3, Roemer [24]). Finally, Proposition 1 in Ball [3] shows
that monotonicity and continuity are incompatible.

Let Âi ¸ 0 be the intrinsic value that party i places on being in o±ce, and
µi the preferences on X that it represents. De¯ne the function Ã(x; y; µ) =
u(x; µ)¡ u(y; µ). Following Ball [3] and Duggan [10], we make the following
assumption regarding to parties' preferences:

Assumption 3 Parties' payo® functions are

¼1(x1; x2) = p(x1; x2)
³
Ã(x1; x2; µ

1) + Â1
´
;

¼2(x1; x2) = (1¡ p(x1; x2))
³
Ã(x2; x1; µ

2) + Â2
´
:

That is, parties have preferences over policy, but also on the o±ce itself.
Moreover, the payo® functions are separable in these arguments. Of course,
this need not be the case, and one can imagine a model in which parties care
more about policy if they win the election than if they lose. In addition,
there might be other motivations to consider. For example, a party may
have preferences over its margin of victory, apart from policies and the
o±ce. However, A3 seems the simplest case to begin with.

It is easy to see that the payo® functions of the traditional models of
electoral competition are particular instances of A3. In e®ect, if Âi = 0, then
¼i(x) corresponds to the objective function of the Wittman game, where
parties maximize the expected utility of winning the contest. On the other
hand, if Âi ! +1, then each party maximizes the probability of winning,
without caring at all about policies, which is the classical assumption of the
Downsian model.7 The hybrid case, where Âi 2 <++ for all i, and Â1 is

6In words, this property, which re°ects the intermediate structure of voters' preferences,
says that if one party moves its proposal toward that of its opponent, then its probability
of winning the election cannot decrease. Similarly, if it moves the platform away, then its
probability of winning cannot increase.

7Notice that ~¼i(x) = 1=Âi ¼i(x) represents the same preferences that ¼i(x), and that
limÂ1!1 ~¼1(x) = p(x) and limÂ2!1 ~¼2(x) = 1¡ p(x).

6



not necessarily equal to Â2, is somewhere between these two extreme and
symmetric cases.

With respect to the speci¯cation of the MMA adopted in A3, notice
that we follow Ball [3] and Duggan [10], who take the idea of Ferejohn [13]
that policy-makers enjoy some rents Â from being in power. But there is an
alternative way to capture the mixed motivations. Aragones and Palfrey [1]
and Groseclose [14] both assume that the objective function of each party is
a linear combination of the probability of winning the election and a second
component corresponding to its policy preferences. That is,

¼̂1(x1; x2) = ¸1p(x1; x2) + (1¡ ¸1)p(x1; x2)Ã(x1; x2; µ1);
¼̂2(x1; x2) = ¸2(1¡ p(x1; x2)) + (1¡ ¸2)(1¡ p(x1; x2))Ã(x2; x1; µ2):

where ¸j is the weight j assigns on holding o±ce. Simple algebraic manipula-
tion shows that for the main purpose of our analysis these two speci¯cations
are absolutely equivalent. In e®ect, denoting Âj =

¸j
1¡¸j , it follows that

¼̂1(x1; x2) = (1¡ ¸1)p(x1; x2)
³
Ã(x1; x2; µ

1) + Â1
´
;

= (1¡ ¸1)¼1(x1; x2);
¼̂2(x1; x2) = (1¡ ¸2)(1¡ p(x1; x2))

³
Ã(x2; x1; µ

2) + Â2
´
;

= (1¡ ¸2)¼2(x1; x2):
Thus, since ¸j 2 (0; 1), the equations above show that ¼̂j is a continuous

and strictly increasing transformation of ¼j for all j = 1; 2. Therefore, all
the results for pure-strategy and mixed-strategy analysis in the next sections
extend directly to this alternative speci¯cation of the MMA.8

Finally, regarding to the technical consequences of A3, notice that to-
gether with (1) it implies that parties' payo® functions are discontinuous at
every point on D(A), except at (xm; xm). Furthermore, ¼i is neither upper
semi-continuous nor lower semi-continuous on A.9 And, apart from the case
where Â1 = Â2, the sum of the payo®s ¦ = ¼1 + ¼2 is also discontinuous on
D(A). This is illustrated in Example 1 and Lemma 1 below, respectively.

Example 1 Suppose » and µ are uniformly distributed, and assume that
µ1 < xm < µ2. Take a point x± = (xm + ±; xm + ±) 2 D(A), ± > 0, and
a sequence (xn1 ; x

n
2 ) = (xm + ± ¡ 1

n ; xm + ±), that converges to x± from

the left. Since xn1 < xn2 , ¼1(x
n
1 ; x

n
2 ) =

³
±
2¯ ¡ 1

4¯n +
1
2

´
(Â1 +

1
n). Then,

limn!1 ¼1(xn1 ; xn2 ) =
Â1
2 + ±Â1

2¯ > Â1
2 = ¼1(x±). Similarly, consider now

8As we explain later, in the case of mixed strategies, our existence result holds under
the alternative speci¯cation because we use better reply security, instead of restrictions
on the sum of payo® functions.

9A function f : Y ! < on a nonempty and compact subset Y ½ <m is upper semi-
continuous (u.s.c.) if for any sequence fyng µ Y such that yn ! ¹y, lim supn!1 f(yn) ·
f(¹y). On the other hand, f is lower semi-continuous (l.s.c) if ¡f is u.s.c.
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a sequence (x̂n1 ; x̂
n
2 ) = (xm + ± + 1

n ; xm + ±) that converges to x± from

the right. Since x̂n1 > x̂n2 , ¼1(x̂
n
1 ; x̂

n
2 ) =

³
1
2 ¡ ±

2¯ ¡ 1
4¯n

´
(Â1 ¡ 1

n). Then,

limn!1 ¼1(x̂n1 ; x̂n2 ) =
Â1
2 ¡ ±Â1

2¯ < Â1
2 = ¼1(x±). Hence, ¼1 is neither l.s.c. nor

u.s.c. at x±. 2

Lemma 1 ¦ = ¼1 + ¼2 is continuous on A only if Â1 = Â2.

Proof. By A3, ¦(x1; x2) = Á(x1; x2; µ
1; µ2) + Ã(x2; x1; µ

2) + Â2, where
Á(x1; x2; µ

1; µ2) = p(x1; x2)[Ã(x1; x2; µ
1) ¡ Ã(x2; x1; µ2) + (Â1 ¡ Â2)]. Since

u(¢; µ2) is continuous on x and Â2 is a constant, Ã(x2; x1; µ2) + Â2 is contin-
uous on A. To see that Á(x1; x2; µ

1; µ2) is also continuous on A, suppose by
contradiction there is a point (¹x1; ¹x2) 2 A of discontinuity.

If ¹x1 6= ¹x2, then p(x1; x2) = 1 ¡ H(1=2 ¡ F (S(x1; x2))) is continuous
at (¹x1; ¹x2), since H and F are continuous functions. Moreover, A1.a im-
plies Ã(¢; µ1)¡Ã(¢; µ2) is continuous everywhere on A. Therefore, Á(¢; µ1; µ2)
must be continuous as well. Contrary, if ¹x1 = ¹x2, then p(¹x1; ¹x2) = 1=2. Con-
sider a sequence (xn1 ; x

n
2 ) µ A, such that (xn1 ; x

n
2 ) ! (¹x1; ¹x2). Notice that

Á(¹x1; ¹x2; µ
1; µ2) = (Â1 ¡ Â2)=2. Thus, if Â1 = Â2, then Á(¹x1; ¹x2; µ

1; µ2) = 0
and Á(xn1 ; x

n
2 ; µ

1; µ2) = p(xn1 ; x
n
2 )[Ã(x

n
1 ; x

n
2 ; µ

1) ¡ Ã(xn2 ; xn1 ; µ2)]. Taking the
limit of Á(xn1 ; x

n
2 ; µ

1; µ2) with (xn1 ; x
n
2 )! (¹x1; ¹x2), we have that

lim
xn!¹x

Á(xn1 ; x
n
2 ; µ

1; µ2) = 0;

since p(xn1 ; x
n
2 ) is bounded and Ã(x

n
1 ; x

n
2 ; µ

1)¡Ã(xn2 ; xn1 ; µ2) converges to zero
when xn ! ¹x. Therefore, ¦ is continuous on A.

On the other hand, if Â1 6= Â2, then the term p(xn1 ; x
n
2 )(Â1 ¡ Â2) does

not converge to (Â1¡Â2)=2, except at (xm; xm). Hence, in this case the dis-
continuity of the probability of winning the election produces discontinuities
not only in each payo® function, but also in the sum.10 2

Thus, this stands in sharp contrast with Roemer [23], where it is shown
that in spite of the discontinuities of the probability of winning, pure ideolog-
ical parties have continuous payo® functions. More importantly, it implies
that even if only one party assigns an arbitrary small weight on winning
the election, this completely invalidates Roemer's [23] and [24] equilibrium
analysis, leaving the question of equilibrium existence without any answer.
This observation constitutes the main motivation for the current research.

Let G = [(Ai; ¼i); i = 1; 2] be the two-party hybrid electoral competition
game, where each ¼i satis¯es A1-A3.

De¯nition 1 A pure-strategy Nash equilibrium (PNE) for G is a strategy
pro¯le (x¤1; x¤2) 2 A such that ¼1(x

¤
1; x

¤
2) ¸ ¼1(x1; x

¤
2) and ¼2(x

¤
1; x

¤
2) ¸

¼2(x
¤
1; x2), for all (x1; x2) 2 A .

10This is because the discontinuities in the probability of winning function entail a shift
of the electorate from one party's platform to the other's. So, if platforms are not equally
pro¯table for parties, total payo® changes discontinuously.
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We denote NE(G) the set of all PNE of G. For the particular case
where Â1 = Â2 = 1, that is, for the Downsian game, and for Â1 = Â2 =
0, which represents the Wittman model, it is well known that this set is
nonempty. We will not go further on this, but the interested reader can ¯nd
a comprehensive analysis in Roemer [24].

On the other hand, for the hybrid case where Âi 2 <++ for all i =
1; 2, the discontinuity of the payo® functions does not allow to apply a
traditional analysis of equilibrium existence, based on the direct application
of a ¯xed point theorem. However, it is possible to circumvent this di±culty
by invoking recent su±cient conditions given by Reny [22]. To do that, we
introduce the following notation and de¯nitions. Let d : <2 ! <+ be the
usual distance function on the real line and B±(y) = fx 2 X : d(x; y) < ±g
the open ball about y with radius ± > 0.

De¯nition 2 Party 1 can secure a payo® ® 2 < at (x1; x2) 2 A if there
exists ~x1 2 A1 and ± > 0 such that ¼1(~x1; x02) ¸ ® for all x

0
2 2 B±(x2).

This de¯nition can be extended in the obvious way to party 2. That is,
party 2 can secure a payo® ® 2 < at (x1; x2) 2 A if there exists ~x2 2 A2
and ± > 0 such that ¼2(x

0
1; ~x2) ¸ ® for all x

0
1 2 B±(x1). In words, party i

can secure a payo® ® at x if it has a strategy that guarantees at least that
payo® even if the other deviates slightly from x.

De¯nition 3 G is payo® secure if for all x 2 A and all ² > 0, each party i
can secure a payo® of ¼i(x)¡ ² at x.

Payo® security requires that for every strategy pro¯le x 2 A, each party
has a strategy that virtually guarantees the payo® he receives at x, even if
the other party deviates slightly from x.

Let ¼ : A ! <2 be the vector payo® function of G, de¯ned by ¼(x) =
(¼1(x); ¼2(x)) for all x 2 A. The graph of ¼ is a subset of A£<2. That is,
gr(¼) = f(x; ¼) 2 A £ <2 : ¼i(x) = ¼i 8ig. Let cl(gr(¼)) be the closure of
the graph of the vector payo® function of G.11

De¯nition 4 G is reciprocally upper semi-continuous (r.u.s.c.) if whenever
(x; ¼) 2 cl(gr(¼)) and ¼i(x) · ¼i 8i, then ¼i(x) = ¼i 8i.

Reciprocally upper semi-continuity generalizes the condition introduced
by Dasgupta and Maskin [8] that the sum of the players' payo®s be up-
per semi-continuous. In e®ect, suppose ¦ is u.s.c. on A, and assume,
by contradiction, there exists (¹x; ¹¼) 2 cl(gr(¼)) such that ¼i(¹x) · ¹¼i 8i,
and ¼(¹x) 6= ¹¼. Then, ¼1(¹x) + ¼2(¹x) < ¹¼1 + ¹¼2. Consider a sequence
(xn1 ; x

n
2 ) µ A, such that (xn1 ; x

n
2 ) ! (¹x1; ¹x2). Since (¹x; ¹¼) 2 cl(gr(¼)),

11Recall that (x¤; ¼¤) 2 cl(gr(¼)) if and only if B²(x
¤; ¼¤) \ gr(¼) 6= ; 8 ² > 0.
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lim supxn!¹x ¼i(x
n
1 ; x

n
2 ) = ¹¼i.

12 Then, lim supxn!¹x¦(x
n) = ¹¼1 + ¹¼2. On

the other hand, lim supxn!¹x¦(x
n) · ¼1(¹x) + ¼2(¹x), because ¦ is u.s.c. on

A. Hence, ¹¼1+ ¹¼2 · ¼1(¹x)+¼2(¹x). Contradiction. Thus, if ¦ is u.s.c., then
the game must be r.u.s.c.

Now, we move on to the equilibrium analysis.

3 Pure-strategy analysis

In this section, we show that, although G is payo® secure and reciprocally
upper semi-continuous for all Âi 2 <++, the existence of a PNE can be
guaranteed only if parties have symmetric interests; i.e., if Â1 = Â2. The
reason is the hybrid game is intrinsically badly behaved, in the sense that
in general conditional payo® functions are not quasi-concave.

Proposition 1 G is payo® secure.

Proof. Suppose, by contradiction, there exists (¹x1; ¹x2) 2 A and ¹² > 0 such
that for some i the payo® ¼i(¹x)¡ ¹² cannot be secured at ¹x. Without loss of
generality, assume that i = 1. The fact that party 1 cannot secure ¼1(¹x)¡ ¹²
at ¹x implies that

8 ~x1 2 A1 and all ± > 0; 9x02 2 B±(¹x2) : ¼1(~x1; x
0
2) < ¼1(¹x1; ¹x2)¡ ¹²: (¤)

If (¹x1; ¹x2) 62 D(A), then ¼1 is continuous at ¹x. Therefore, 9¹± > 0 such
that ¼1(¹x1; x

0
2) > ¼1(¹x1; ¹x2)¡ ¹², 8x

0
2 2 B¹±(¹x2). Thus, if ¹x1 6= ¹x2, we have an

strategy for party 1, ¹x1, and an interval for x2, determined by ¹± > 0, such
that (¤) does not hold. Contradiction.

On the contrary, assume (¹x1; ¹x2) 2 D(A). If Â1 = 0, then ¼1 is contin-
uous on A, (see Roemer [23], Lemma 1). Hence, using the same argument
than before, we have a contradiction with (¤). Suppose then Â1 > 0. Since
¹x1 = ¹x2, ¼1(¹x) = Â1=2. Three cases are possible, according to the position
of ¹x1, µ

1 and xm on X:13

Case 1: µ1 < ¹x1 < xm. Consider an alternative ~x1 > ¹x1, ~x1 2 A1, close
enough to ¹x1. De¯ne ¹± = d(~x1; ¹x1) and B¹±(¹x2). We choose ~x1 such that µ

1 <
¹x1¡ ¹± and ¹x1+ ¹± < xm. Since µ1 < ¹x1 < xm, this number always exists. By
A1.b and A1.c, for all x

0
2 2 B¹±(¹x2), ¼1(~x1; x

0
2) = p(~x1; x

0
2)
¡
Â1 ¡ (1¡ ®)¹±

¢
,

where ® 2 (¡1; 1). Notice that p is discontinuous at ¹x, so p(~x1; x02) is well
above 1=2. On the other hand, p is bounded. Therefore, there exists ¹± > 0
small enough such that ¼(~x1; x

0
2) > Â1=2 ¡ ², for all x02 2 B¹±(¹x2) and all

² > 0, which contradicts (¤).14
12Recall that, for a sequence fxng, lim supn!1 xn = infn¸1 supk¸n x

k.
13The reader can verify that all remaining situations are variants of these three cases.

14Concretely, this is true for any ¹± <

¡
p(~x1;x

0
2)¡1=2

¢
Â1

p(~x1;x
0
2
)(1¡®) .
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Case 2: ¹x1 < µ
1 < xm. Like in the previous case, consider ~x1 and ¹±, such

that ¹x1+ ¹± < µ
1. By A1.b and A1.c, ¼1(~x1; x

0
2) = p(~x1; x

0
2)
¡
(1¡ ®)¹± + Â1

¢
,

® 2 (¡1; 1). Again, p(~x1; x
0
2) > 1=2. Moreover, (1 ¡ ®)¹± > 0. Hence,

¼(~x1; x
0
2) > Â1=2¡ ², for all x

0
2 2 B¹±(¹x2) and all ² > 0. Contradiction.

Case 3: µ1 < ¹x1 = xm. Since the probability of winning function
p(x1; x2) is continuous at (xm; xm), ¼1(xm; x2) is continuous in x2. There-
fore, by the same argument employed above, (¤) cannot be true.

Thus, G is payo® secure. 2

Proposition 2 For all Â1; Â2 2 <++, G is r.u.s.c.

Proof. Suppose, by contradiction, there exists (¹x; ¹¼) 2 cl(gr(¼)) such that
¹¼i ¸ ¼i(¹x)8i, and (¼1(¹x); ¼2(¹x)) 6= (¹¼1; ¹¼2). Then, (¹x1; ¹x2) 2 D(A). By
hypothesis, there exists i such that ¹¼i > ¼i(¹x). Without loss of generality,
suppose i = 1. Consider a sequence (xn1 ; x

n
2 ) µ A, such that (xn1 ; x

n
2 ) !

(¹x1; ¹x2). Notice that ¹¼1 = infn¸1 supk¸n ¼1(xk1; xk2) = p(xn1 ; x
n
2 )Â1. On the

other hand, ¼1(¹x1; ¹x2) = 1=2Â1. Therefore, [1¡ p(xn1 ; xn2 )]Â2 < 1=2Â2. But
this implies that ¹¼2 < ¹¼2(¹x). Contradiction. Hence, G is r.u.s.c. 2

By Lemma 1, G is also r.u.s.c. if Â1 = Â2 = 0. However, r.u.s.c. is
violated if Âi = 0 and Âj = +1. To see this, suppose that Â1 = 0 and
Â2 ! +1, with x(µ1) > xm. Take a sequence x

n = (xn1 ; x
n
2 ) µ A, such

that (xn1 ; x
n
2 ) ! (¹x; ¹x) 2 D(A). Suppose xm < ¹x < x(µ1), and assume that

xn converges to ¹x from below. For instance, take (xn1 ; x
n
2 ) = (¹x; ¹x ¡ 1

n),
where n > 0. Then, as n raises, party 2's payo®, 1 ¡ p(xn1 ; xn2 ), increases
above 1=2, and it drops down to 1=2 at (¹x1; ¹x2). On the other hand, party 1's
payo®, p(xn1 ; x

n
2 )Ã(x

n
1 ; x

n
2 ; µ

1), converges to 0 as n goes to in¯nity. Therefore,
¼i(¹x) · ¹¼i = lim supxn!¹x ¼i(x

n) for all i. However, ¼1(¹x) = ¹¼1, while
¹¼2 > 1=2. Hence, since (¹x; ¹¼) 2 cl(gr(¼)), we have that G violates r.u.s.c.15

The next proposition con¯rms that, under the assumptions above, G has
no equilibrium in pure strategies. Let µm = x

¡1(xm). By A1, x(µ) is strictly
increasing on £, so that µm is well de¯ned.

Assumption 4 Party 1 is policy motivated (i.e., Â1 = 0), and it represents
a type µ1 6= µm. Party 2 is o±ce motivated (i.e., Â2 ! +1).

Proposition 3 Suppose G satis¯es A1-A4. Then, NE(G) = ;.

Proof. We make the proof in three steps:
Step 1. (xm; xm) 62 NE(G). Consider a deviation for party 1, from xm

to x1 6= xm. By A1.b and A1.c, F (S(x1; xm)) < 1=2. Then, p(x1; xm) =
1 ¡ H[1=2 ¡ F (S(x1; xm))] < 1=2 = p(xm; xm). However, by continuity of
F and H, 9 ± > 0 such that p(x1; xm) > 0 for all x1 2 B±(xm). Moreover,

15It violates r.u.s.c because when the point in the diagonal is reached, parties' payo®s
all jump in the same direction.
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let ² = d(xm; x(µ
1)). ² > 0 because µ1 6= µm. By A1.b, Ã(x1; xm; µ1) > 0 for

all x1 2 B²(x(µ1)). Therefore, for all x1 2 B²(x(µ1))\B±(xm), ¼1(x1; xm) >
¼1(xm; xm), meaning that the deviation is pro¯table.

Step 2. For any x 6= xm, (x; x) 62 NE(G). Trivial. Let ± = d(x; xm).
Consider any deviation of player 2 to an alternative ~x 2 B±(xm). By the
assumptions on u(¢; µ), F (S(x; ~x)) < 1=2. Then, ¼2(x; ~x) = 1 ¡ p(x; ~x) >
1=2 = ¼2(x; x).

Step 3. Suppose, by contradiction, there exists (x1; x2) 62 D(A) such that
(x1; x2) 2 NE(G). Without loss of generality, let x(µ1) > xm. Then, x1 ¸
xm. Suppose not. Then, party 1 can deviate to ~x1 2 B±(xm), ± = d(x1; xm),
and increase both Ã and p. Moreover, if x1 = xm, then (xm; x2) 62 NE(G),
since 2 can deviate to xm and increase its probability of being in power.
Hence, x1 > xm. But then, for any x2 2 X, x2 6= x1, there exists ± > 0 such
that p(x1; ~x2) < p(x1; x2) for all ~x2 2 B±(x1).16 Therefore, NE(G) = ;. 2

Although the message of Proposition 3 is quite negative, Example 2
below shows that the fact that parties have asymmetric interests (i.e., Â1 6=
Â2) does not necessarily implies that PNE always fail to exist. Contrary, the
example highlights that the existence of an equilibrium in pure strategies
depends on the relationship between the electoral uncertainty, the aggregate
level of opportunism and its distribution among political parties.

Example 2 Consider the electoral game introduced above. Suppose » is
uniformly distributed on [¡¯; ¯]. Let µ1 < xm < µ2 and Âi 2 <++ for all i.
Consider an equilibrium candidate (x¤1; x¤2) for this game, with the property
that µ1 < x¤1 < x¤2 < µ2. Near the equilibrium, parties' payo® functions can
be written as

¼1(x1; x2) = p(x1; x2) (x2 ¡ x1 + Â1) ;
¼2(x1; x2) = (1¡ p(x1; x2)) (x2 ¡ x1 + Â2) ;

where p(x1; x2) =
1
2¯ [F (S(x1; x2)) ¡ 1

2 + ¯] if x1 6= x2, and p(x1; x2) = 1=2
otherwise. Taken the ¯rst order conditions, we have

f(x̂) (x2 ¡ x1 + Â1)¡ 2¯ = 2 (F (x̂)¡ 1=2)

¡f(x̂) (x2 ¡ x1 + Â2) + 2¯ = 2 (F (x̂)¡ 1=2) ; (2)

where x̂ = x1+x2
2 and f is the density function of µ. Assuming that µ is also

uniformly distributed on £ and solving (2), it follows that x¤1 = 1=2¡¯+Â1=2
and x¤2 = 1=2+¯¡Â2=2. It is easy to verify that, for 2¯¡ 1 < Âi < 2¯, the
pair

(x¤1; x
¤
2) =

µ
1

2
¡ ¯ + Â1

2
;
1

2
+ ¯ ¡ Â2

2

¶
16That is, if x1 > xm, party 2 would like to choose the largest platform that is less than

x1. However, since the policy space is continuous, this value is not well de¯ned.
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constitutes indeed a Nash equilibrium of the game. The ¯rst condition,
2¯ ¡ 1 < Âi, ensures that x

¤
1 > 0 and x¤2 < 1. On the other hand, in order

to guarantee that x¤1 < x¤2, we need

Â1 + Â2 < 4¯; (3)

which is ful¯lled if Âi < 2¯ for all i. In fact, this implies x
¤
1 < xm < x

¤
2.
17

Contrary, if (3) is not satis¯ed, that is, if the aggregate level of oppor-
tunism, measured by Â1+Â2, is high regarding to the electoral uncertainty,
represented by ¯, then (x¤1; x¤2) is not an equilibrium. Is there any other
candidate? Since µ1 < xm < µ2, it is clear that x1 > x2 cannot be a Nash
equilibrium. Hence, the only remaining possibility is x1 = x2.

Assume that Â1 + Â2 ¸ 4¯. Consider ¯rst the case where Â1 = Â2 = Â.
Take the pair (x1; x2) = (xm; xm) as the equilibrium candidate. (Recall
that xm = 1=2). Then, ¼i(xm; xm) = Â=2 for all i. Consider a deviation
x
0
1 = xm ¡ ±, ± > 0, for party 1. (Deviations to the right of xm or below µ1

are not pro¯table for 1.) Then,

¼1(x
0
1; xm) =

¡±2
4¯

+

µ
1

2
¡ Â1
4¯

¶
± +

Â1
2
:

The deviation is pro¯table, that is, ¼1(x
0
1; xm) > ¼1(xm; xm), if and only if

± < 2¯ ¡ Â. But, since Â ¸ 2¯, this requires ± < 0. Contradiction.
In the same way, consider a deviation x

0
2 = xm + ±, ± > 0, for party 2.

Following the same reasoning than before, ¼2(xm; x
0
2) > ¼2(xm; xm) if and

only if ± < 2¯¡Â, which contradicts again the initial hypothesis. Therefore,
since 2 cannot improve its payo® by deviating to the left of xm or above µ2,
it follows that (xm; xm) is a pure-strategy Nash equilibrium.

What about if Â1 6= Â2? Is (xm; xm) a PNE? As before, a deviation
is pro¯table for party i if ± < 2¯ ¡ Âi. Suppose Â1 = 3¯=2 and Â2 =
5¯=2. Notice that we still have Â1 + Â2 ¸ 4¯. Therefore, there is no
Nash equilibrium with x1 < x2. Moreover, for ± < 1=4, any deviation
x
0
1 = xm ¡ ± is such that ¼1(x01; xm) > ¼1(xm; xm). So, (xm; xm) is not
a Nash equilibrium either. Finally, since x1 > x2 and x1 = x2 6= xm are
not equilibrium strategies, it follows that, for these values of Â1 and Â2, the
game has no PNE. 2

The previous example provides several interesting insights about elec-
toral competition. First of all, it shows that, although Âi > 0 creates
discontinuities in the payo® function, this does not necessary preclude the
existence of a PNE. At least for the uniform distribution case, no matter
how di®erent Â1 and Â2 are, if the aggregate level of opportunism is low
regarding to the electoral uncertainty, then a PNE always exists. In the
example, su±cient conditions are 2¯ ¡ 1 < Âi < 2¯ for all i. Moreover,

17Second order conditions also hold, because @2¼i=@x
2
i = ¡2 < 0 for all i.
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this equilibrium is such that x¤1 < x¤2. That is, equilibrium platforms do not
converge, though x¤i ! xm as Âi ! 2¯.

On the other hand, when the aggregate level of opportunism is high (i.e.,
when (3) does not hold), and it is relatively more concentrated in one party,
then a PNE may not exist. In the example, the game has no equilibrium
in pure strategies if (i) Â1 + Â2 ¸ 4¯, and (ii) Â1 < 2¯. This result is
obtained by the combination of two forces. On one hand, the relatively
more opportunistic party destroys equilibria with policy di®erentiation. On
the other, the relatively more ideological party, due to its excessive policy
orientation, impedes an equilibrium at the median position.

Remarkably, the non-existence of a PNE is not related to the dimension-
ality of the policy space, which is usually view in the literature of electoral
competition as the main source of existence problems. Regarding to this,
notice that our model satis¯es two extremely nice properties, frequently
invoked to guarantee the existence of equilibria: (i) the policy space is uni-
dimensional; and (ii) voters' preferences are single-peaked and symmetric,
so that they admit the existence of a strict Condorcet winner.

Furthermore, contrary to Ball's [3] explanation, we argue that it not
directly related neither with the discontinuity of the probability of winning
function. As we proved before, G satis¯es payo® security and r.u.s.c. for
all Â1; Â2 2 <++. Thus, according to Reny's [22] Corollary 3.3, our game
should always possess a pure-strategy Nash equilibrium, provided that each
party's payo® function is quasi-concave in its own strategy.

In other words, Proposition 1 and 2 show that the blame for the failure
of the hybrid electoral competition game to possess an equilibrium in pure
strategies for all parametric conditions can be completely assigned to the vi-
olation of quasi-concavity, rather than to the discontinuity of the probability
of wining function itself. Example 3 below illustrates this point.

Example 3 Consider the uniform case studied in Example 2. Let ¯ = 0:5
and Â1 = 0:75. Suppose x2 = 0:49. Then,

¼1(x1; 0:49) =

8><>:
¡0:5x21 + 0:375x1 + 0:3038 if µ1 < x1 < 0:49,
0:375 if x1 = 0:49,
0:5x21 ¡ 1:375x1 + 0:9362 if x1 > 0:49.

Notice that ¼1(0:375; 0:49) = 0:3741125, limx1!+0:49 ¼1(x1; 0:49) =
0:3675 and limx1!¡0:49 ¼1(x1; 0:49) = 0:3825. Therefore, the conditional
payo® ¼1(¢; 0:49) is not quasi-concave in x1, as we can take the con-
vex combination x¸1 = (1 ¡ ¸)0:375 + ¸0:491 and get ¼1(x

¸
1 ; 0:49) <

minf¼1(0:375; 0:49); ¼1(0:491; 0:49)g for all ¸ 2 (0; 1). 2
Summarizing, the previous analysis shows that, in general, it is impossi-

ble to guarantee that the hybrid electoral competition game has an equilib-
rium in pure strategies. This negative result was previously noted by Ball
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[3]. However, we argue here that it is not because of the mixed motivations,
nor the discontinuities themselves. The main reason behind it is that the
hybrid model allows parties' interests to be asymmetric. This is the real
driving force of the aforementioned non-existence result.

As the next proposition shows, when political parties have mixed, but
symmetric motivations, (i.e., when Â1 = Â2), the two-party electoral com-
petition game always has a PNE. For the uniform distribution, this was
already illustrated in Example 2, where Â1 = Â2 implies that the game has

a PNE at either (xm; xm) or at (x
¤
1; x

¤
2) =

³
1
2 ¡ ¯ + Â1

2 ;
1
2 + ¯ ¡ Â2

2

´
. Now,

we generalize this for any distribution.

Assumption 5 µ1 < µm < µ
2.18

Assumption 6 log(p(x1; x2)) and log(1¡ p(x1; x2)) are concave in x1 and
x2, respectively.

19

Theorem 1 Let Â1 = Â2 and assume G = [(Ai; ¼i); i = 1; 2] satis¯es A1-
A3, A5 and A6. Then, NE(G) 6= ;.

Proof. To prove Theorem 1 we proceed as follows. Consider the following
restricted game Ĝ = [(Âi; log(¼ijÂ)); i = 1; 2], where Â1 = [0; xm], Â2 =

[xm; 1], Â = Â1£Â2 and ¼ijÂ is the corresponding restriction of ¼i to Â. Âi is
a nonempty, compact and convex subset of <. The payo® function log(¼ijÂ)
is continuous on Â, because p(x1; x2) is continuous on Â. Furthermore,

log(¼1jÂ(x1; x2)) = log(p(x1; x2)) + log(Ã(x1; x2; µ
1) + Â1)

log(¼2jÂ(x1; x2)) = log(1¡ p(x1; x2)) + log(Ã(x2; x1; µ2) + Â2):

Therefore, log(¼ijÂ) is concave on xi. Thus, standard application of

Kakutani's ¯xed point theorem shows that Ĝ has a pure-strategy Nash
equilibrium. That is, there exists a pair (x¤1; x¤2) such that ¼1jÂ(x¤1; x¤2) ¸
¼1jÂ(x1; x¤2) and ¼2jÂ(x¤1; x¤2) ¸ ¼2jÂ(x¤1; x2) for all (x1; x2) 2 Â.20

Now, we show that (x¤1; x¤2) is indeed a PNE in the original game G =
[(Ai; ¼i); i = 1; 2]. To do that, we expand the set of strategies of both parties,
and we study the incentives for unilateral deviations from the equilibrium
candidate. For brevity, with carry out the analysis for party 1, but a similar
reasoning also applies for the other party.

There are two possibilities to consider, depending on the features of the
equilibrium in Ĝ.

18In words, A5 simply means that party 1 is left-oriented and party 2 right-oriented.
19Although this assumption is not nice, it is standard in the literature. The point is

that, as it happens in the Wittman model, no simple conditions can be stated to guarantee
the concavity of these functions. For more on this, see Roemer [24].

20Recall that log(¢) is a continuous and strictly increasing function.
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Case 1: If x¤1 = x¤2 = xm, then it is immediate to see that there is
no deviation ~x1 > xm such that ¼1(~x1; xm) > ¼1(xm; xm) = Â1=2. In
e®ect, this requires (p(~x1; xm)¡ 1=2)Â1+ p(~x1; xm)(xm¡ ~x1) > 0. However,
p(~x1; xm) < 1=2, xm < ~x1, and Â1 ¸ 0. Therefore, such alternative ~x1 does
not exist. Repeating the argument for the other party, it follows that, if
(xm; xm) 2 NE(Ĝ), then it also belongs to NE(G).

Case 2: If x¤1 < x¤2, then three cases are possible. Suppose x¤1 < xm = x¤2.
Then, the conditional payo® log(¼1(x1; xm)) is continuous and concave on
A1, and

argmax
A1

¼1(x1; xm) = x
¤
1: (¤)

That is, party 1's best response to xm does not change in going from
Â1 = [0; xm] to A1 = [0; 1]. On the other hand, if x¤1 < xm < x¤2, then (¤)
holds because log(¼1(x1; xm)) is continuous everywhere except at x

¤
2, and it

drops down to the right of x¤2. The conditional payo® is not longer concave,
but it is strictly quasi-concave, so that its unique maximum on A1 coincides
again with its restricted maximum on Â1.

Finally, suppose x¤1 = xm < x¤2. In this case, we cannot immediately
conclude that (¤) holds, because x¤1 is a corner solution in the restricted
game and, therefore, ¼1(x1; x

¤
2) could increase to the right of xm. However,

we prove below that such a pair of strategies cannot be an equilibrium in Ĝ.
The argument is as follows. Assume, by contradiction, (x¤1; x¤2) 2 NE(Ĝ).
Then, taking @¼i=@xi and evaluating it at (x

¤
1; x

¤
2), we have

1

2
(x¤2 ¡ x¤1 + Â) h

µ
1

2
¡ F

µ
x¤1 + x¤2
2

¶¶
f

µ
x¤1 + x¤2
2

¶
¸ p(x¤1; x¤2);

and

1

2
(x¤2 ¡ x¤1 + Â) h

µ
1

2
¡ F

µ
x¤1 + x¤2
2

¶¶
f

µ
x¤1 + x¤2
2

¶
= 1¡ p(x¤1; x¤2):

But p(x¤1; x¤2) > 1=2. Hence, these two conditions cannot be simultaneously
satis¯ed. Contradiction. This complete the proof. 2

The result above generalizes the well known existence results for the
Downsian and Wittman electoral competition games. It clearly shows that
the blame for the non-existence of pure-strategy Nash equilibria for all para-
metric conditions does not lie on the discontinuities of the payo® functions
nor the mixed motivations assumption, but on the asymmetric interests of
political parties.

To overcome this di±culty of the hybrid model, in the next section we
examine whether the mixed extension of G possesses a Nash equilibrium.
After that, in Section 5, we provide a complete characterization of the set
of equilibria for the uniform distribution case.
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4 Mixed-strategy analysis

Consider the two-party hybrid electoral competition game G introduced in
Section 2. Let ¢(Ai) be the space of all (Borel) probability measures on
Ai = [0; 1], i = 1; 2. A mixed strategy for party i is an element ¹i 2 ¢(Ai).
In what follows, we endow ¢(Ai) with the topology of weak convergence.
That is, we say that a sequence of measures f¹ni g µ ¢(Ai) converges to
¹¤i 2 ¢(Ai) if

R
Ai
g(xi)d¹

n
i !

R
Ai
g(xi)d¹

¤
i for all real-valued and continuous

function g de¯ned on Ai. We denote ¢(A) = ¢(A1)£¢(A2).
Since the discontinuity of the parties' payo® functions is the main prob-

lem to prove the existence of a PNE in G, before continuing it is necessary to
show that each ¼i is in fact a Borel measurable function on A, so that it will
always make sense to talk about mixed strategies and the expected value of
¼i under ¹ = (¹1; ¹2) 2 ¢(A). Observe that this cannot be guaranteed by
invoking neither continuity nor semi-continuity of the payo® functions. As
we showed in Example 1, both conditions are violated in our game.

Let (A;B(A); ¹) be a Borel probability space, where B(A) is a Borel
¾-algebra on A and ¹ : B(A) ! <+ a probability measure on B(A). A
real-valued function z : A! < is measurable with respect to B(A) if, for all
® 2 <, fx 2 A : z(x) < ®g 2 B(A).
Lemma 2 Each party payo® function ¼i : A ! < is a Borel measurable
function on A.

Proof. We prove the lemma for ¼1. The argument for ¼2 is identical. De¯ne
the function ¼¤1(x1; x2) = [1¡H(1=2¡F (S(x1; x2))] (Ã(x1; x2; µ1)+Â1) for all
(x1; x2) 2 A. Let ¹D(A) = f(x1; x2) 2 A : x1 = x2 and xi 6= xmg. It is clear
that f(x1; x2) 2 A : ¼1(x1; x2) 6= ¼¤1(x1; x2)g = ¹D(A). Moreover, ¹( ¹D(A)) =
0, since ¹D(A) can be covered by countably many open rectangles, each of
which of measure zero. Hence, ¼1 and ¼

¤
1 are equivalent with respect to the

measure ¹, (Kolmogorov and Fomin [17], De¯nition 2, pp. 288), because
they coincide at all points except on a set of measure zero. Furthermore,
¼¤1 is continuous on A. Therefore, it is measurable. But, since a function
equivalent to a measurable function is itself measurable (Kolmogorov and
Fomin [17], Theorem 12, pp. 289),21 it follows that ¼1 is Borel measurable
on A as well. 2

Now we can complete the description of the mixed extension of the hybrid
electoral competition game. To do that, we extend parties' payo® functions
to the domain of mixed-strategy pro¯les in the usual way:22

Ui(¹1; ¹2) =

Z
A
¼i(x) d(¹1; ¹2); ¹i 2 ¢(Ai)8i

21This is because, for any ® 2 <, the sets fx 2 A : ¼1(x) < ®g and fx 2 A : ¼¤1(x) < ®g
can di®er only by a set of measure zero. Hence, if the latter is measurable, so is the former.

22Notice that ¼i is bounded, because p(x) and Ã(x; µ
i) are bounded on A. Therefore,

by Lemma 2, ¼i is ¹-integrable and its expected value is well-de¯ned.
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Observe that each Ui : ¢(A) ! < is well-de¯ned, since any Borel mea-
surable function onA is measurable in the associated product measure space.

De¯nition 5 A mixed-strategy Nash equilibrium of G = [(Ai; ¼i); i = 1; 2]
is a pair of probability measures (¹¤1; ¹¤2) 2 ¢(A) such that U1(¹

¤
1; ¹

¤
2) ¸

U1(¹1; ¹
¤
2) and U2(¹

¤
1; ¹

¤
2) ¸ U2(¹¤1; ¹2) for all (¹1; ¹2) 2 ¢(A).

That is, a mixed-strategy Nash equilibrium of G is a Nash equilibrium
of the mixed extension G = [(¢(Ai); Ui); i = 1; 2]. We denote ME(G) the
set of all such equilibria.

To prove thatME(G) 6= ; is not a trivial matter, since one is required to
study in¯nite-action games with discontinuous payo®s. In order to solve this
problem, we will use Reny's [22] su±cient condition, according to which a
(compact and Hausdor®) game possesses a mixed-strategy Nash equilibrium
if its mixed extension satis¯es a property called better reply security.

Let U : ¢(A) ! <2 be the mixed extension's vector payo® function,
de¯ned as U(¹) = (U1(¹); U2(¹)) for all ¹ 2 ¢(A).23

De¯nition 6 G = [(¢(Ai); Ui); i = 1; 2] is better reply secure if whenever
(¹¤; U¤) 2 cl(gr(U)) and ¹¤ is not an equilibrium, some player i can secure
a payo® strictly above U¤i at ¹¤.24

Proposition 4 G is better reply secure.

Proof. Suppose not. That is, assume by contradiction that there exists
(¹¤; U¤) 2 cl(gr(U)), ¹¤ 62ME(G), such that no party i 2 f1; 2g can secure
a payo® strictly above U¤i at ¹¤.

This is equivalent to say that, for all i, all ¹¹i 2 ¢(Ai), and all ± > 0,
there exists ¹

0
¡i(±) such that k¹

0
¡i(±)¡ ¹¤¡ik < ± and

Ui(¹¹i; ¹
0
¡i(±)) · U¤i ; (4)

where k ¢ k is the norm in ¢(A). We disprove (4) in the following way.
Step 1. Since ¹¤ is not an equilibrium pro¯le, that is, since ¹¤ 62ME(G),

there must exist j 2 f1; 2g, and ¹̂j 2 ¢(Aj) such that

Uj(¹̂j ; ¹
¤
¡j) > Uj(¹

¤
j ; ¹

¤
¡j): (5)

Step 2. If ¹¤¡j is atomless on [0; 1], then ¹¤(D(A)) = 0. Since ¼j is
continuous on A¡D(A), U¤j = Uj(¹¤j ; ¹¤¡j). Thus, (5) implies Uj(¹̂j ; ¹¤¡j) >
U¤j . Moreover, by continuity of Uj in ¹¤¡j , for all ² > 0 there exists ±² > 0
such that Uj(¹̂j ; ~¹¡j) > Uj(¹̂j ; ¹¤¡j)¡ ², for all ~¹¡j such that k~¹¡j¡¹¤¡jk <

23The graph of U and its closure are de¯ned as before.
24As before, party i can secure a payo® ® 2 < at ¹ 2 ¢(A) if there exists ¹¹i 2 ¢(Ai)

such that Ui(¹¹i; ¹
0
¡i) ¸ ® for all ¹

0
¡i in some open neighborhood of ¹¡i.
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±². Hence, for ² small enough, j can secure a payo® strictly above U¤j .
Contradiction.

Step 3. On the contrary, suppose ¹¤¡j is not atomless. Since ¹¤¡j
is a probability measure, it has at most countably many atoms. Denote
A(¹¤¡j) = fx 2 [0; 1] : ¹¤¡j(fxg) > 0g. Consider ¹xj 2 supp(¹̂j), such thatZ

A¡j
¼j(¹xj ; x¡j) d¹¤¡j ¸ Uj(¹̂j ; ¹¤¡j): (6)

Step 4. If ¹xj 62 A(¹¤¡j), then ¼j is continuous in x¡j . Thus, for all ² > 0
there exists ±² such thatZ

A¡j
¼j(¹xj ; x¡j) d~¹¡j >

Z
A¡j

¼j(¹xj ; x¡j) d¹¤¡j ¡ ² (7)

for all ~¹¡j such that k~¹¡j ¡ ¹¤¡jk < ±². Therefore, for ² small enough, (5),
(6) and (7) imply thatZ

A¡j
¼j(¹xj ; x¡j) d~¹¡j > Uj(¹¤j ; ¹

¤
¡j); (8)

for all ~¹¡j such that k~¹¡j ¡ ¹¤¡jk < ±².
Then, if Uj(¹

¤
j ; ¹

¤¡j) ¸ U¤j , we are done. By (8), it follows that j can
secure a payo® strictly above U¤j . Hence, U¤j > Uj(¹

¤
j ; ¹

¤¡j), which means
that ¹¤j is not atomless.

Step 5. Assume that U¤i < Ui(¹¤i ; ¹¤¡i), i 6= j, and that
9 ¹̂i 2 ¢(Ai) such that Ui(¹̂i; ¹¤¡i) ¸ Ui(¹¤i ; ¹¤¡i): (9)

Then, there must exist ¹xi 2 supp(¹̂i) such that
R
A¡i ¼i(¹xi; x¡i) d¹

¤¡i > U¤i .
Step 6. If ¹xi 62 A(¹¤¡i), then ¼i is continuous in x¡i. Repeating the

argument in Step 4, it follows that for ² small enough,Z
A¡i

¼i(¹xi; x¡i) d~¹¡i > U¤i ;

for all ~¹¡i such that k~¹¡i ¡ ¹¤¡ik < ±². Contradiction.
Step 7. On the other hand, if ¹xi 2 A(¹¤¡i), consider ~xi close to ¹xi, such

that ~xi 62 A(¹¤¡i), andZ
A¡i

¼i(~xi; x¡i) d¹¤¡i ¸
Z
A¡i

¼i(¹xi; x¡i) d¹¤¡i: (10)

Since ¹¤¡i has at most countably many atoms, this alternative ~xi always
exists. In e®ect, following the argument in Proposition 1's proof, we know
that there exists ¹± and ~xi = ¹xi + ¹± such that ¼i(~xi; x

0
¡i) ¸ ¼i(¹xi; x¡i) for all

x
0
¡i 2 B¹±(x¡i). Hence,Z

B¹±(x¡i)
¼i(~xi; x¡i)d¹¤¡i ¸

Z
B¹±(x¡i)

¼i(¹xi; x¡i)d¹¤¡i: (11)
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Moreover, by continuity of
R
x¡i 62B¹±(x¡i)

¼i(¹xi; x¡i)d¹¤¡i in xi, for all ² > 0Z
x¡i 62B¹±(x¡i)

¼i(~xi; x¡i)d¹¤¡i >
Z
x¡i 62B¹±(x¡i)

¼i(¹xi; x¡i)d¹¤¡i ¡ ²; (12)

for all ~xi in some open neighborhood of ¹xi. Therefore, for ² small enough,
(11) and (12) imply (10). Finally, carrying out the reasoning in Step 6 for
~xi, instead of for ¹xi, we conclude thatZ

A¡i
¼i(~xi; x¡i) d~¹¡i > U¤i ;

for all ~¹¡i such that k~¹¡i ¡ ¹¤¡ik < ±². Contradiction.
Step 8. Therefore, (9) cannot be true. That is, if U¤i < Ui(¹¤i ; ¹¤¡i), then

Ui(¹̂i; ¹
¤
¡i) < Ui(¹

¤
i ; ¹

¤
¡i) for all ¹̂i 2 ¢(Ai): (13)

But, remember that ¹¤i (= ¹¤¡j) is not atomless. Moreover, ¹¤ must
assign positive probability mass to some pairs in the diagonal, because
Ui(¹

¤
i ; ¹

¤¡i) > U¤i and Uj(¹¤j ; ¹¤¡j) < U¤j . Therefore, Step 7 indicates that i
can improve its payo® by reassigning an arbitrary small amount of proba-
bility mass to an alternative out of the diagonal. This increases i's expected
payo® discretely, contradicting (13).

Step 9. Notice that the complement of the case analyzed in Step 4, (that
is, the case where ¹xj 2 A(¹¤¡j)), is ruled out by applying the same argument
than in Step 7.

Step 10. Thus, in order to complete the proof, the only remaining pos-
sibility to consider is that U¤i ¸ Ui(¹

¤
i ; ¹

¤¡i). Since we have assumed that
(¹¤; U¤) 2 cl(gr(U)), and U¤j > Uj(¹¤j ; ¹¤¡j), this means that G is not recip-
rocally upper semi-continuous.25

Then, by hypothesis, for any sequence ¹n ! ¹¤, we have that 26

lim
¹n!¹¤

µZ
A
¦(x) d¹n

¶
>

Z
A
¦(x) d¹¤:

The above inequality can be rewritten as

lim
¹n!¹¤

Z
A¡D(A)

¦(x) d¹n ¡
Z
A¡D(A)

¦(x) d¹¤ >

>
Â1 + Â2
2

ÃZ
D(A)

d¹¤ ¡ lim
¹n!¹¤

Z
D(A)

d¹n
!
: (14)

25If the sum of the party payo® functions ¦ = ¼1+¼2 is u.s.c. on A, Proposition 5.1 in
Reny [22] implies that the mixed extension G is r.u.s.c., because U1 + U2 is u.s.c. in ¹ on
¢(A). Hence, Â1 6= Â2. (Recall that, by Lemma 1, if Â1 = Â2, then ¦ is continuous on
A.)

26Observe that, by the boundedness of ¼i and the compactness of Ai, when ¹
n ! ¹¤,

the sequence fR
A
¦(x) d¹ng always converges. Thus, without loss of generality, we assume

that the limit, lim¹n!¹¤
¡R

A
¦(x) d¹n

¢
, always exists.
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But, since ¦ is continuous on A¡D(A), and Âi 2 <+ for all i, by the weak
convergence, both the LHS and the RHS of (14) tends to zero. Contradic-
tion.

Therefore, G is better reply secure. 2
Now, we present the main result of the paper:

Theorem 2 The two-party hybrid electoral competition game has a mixed-
strategy Nash equilibrium; i.e., ME(G) 6= ;.

Proof. Immediate from Proposition 4 and Reny's [22] Corollary 5.2 to The-
orem 3.1. 2

Compared to Ball [3], our result in Theorem 2 have two main di®erences.
First, in our model the probability of winning the election is endogenously
derived, instead of being given by an exogenous function. This is important
because the properties required to ensure the existence of a MNE are not
imposed on this function, but on more fundamental primitives of the model.
Furthermore, by modeling explicitly the electoral uncertainty, we also get a
better understanding of the game, which allowed to prove in Section 3 the
existence of a PNE when parties have symmetric motivations, and to carry
out comparative statics in the next section.

On the other hand, our existence analysis is also di®erent because it
is based on Reny's conditions (namely, on better reply security). Instead,
Ball's [3] analysis relies on Dasgupta and Maskin's [8] approach (namely,
on Theorem 5b). Related to this, it is important to emphasize that better
reply security is virtually an ordinal property, (Reny [22], pp. 1034), in the
sense that, if fi : < ! < is continuous and strictly increasing for every
i = 1; 2, then [(¢(Ai); Ui); i = 1; 2] is better reply secure if and only if
[(¢(Ai); fi ± Ui); i = 1; 2] is. So, our result in Proposition 4 and Theorem
2 hold for every continuous and strictly monotone transformation of the
payo® functions. In particular, it extends to the alternative speci¯cation
of the MMA discussed in Section 2. We now shift to the characterization
analysis.

5 Equilibrium characterization

The result in Theorem 2 is of no help in ¯nding or describing equilibria of
G. However, it is a useful fact to know, as it indicates that this task is
not meaningless. Next, we focus on the equilibrium characterization of the
most simple case, the uniform case. We hope this will highlight features of
electoral competition that can be extended to more general settings.

Suppose the preference parameter µ and the error term » are both uni-
formly distributed, and assume that µ1 < 1=2 < µ2, so that party 1 is left-
oriented and 2 right-oriented. Denote Gu the resulting electoral competition
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game. To ¯x the notation, let ¢(Ai) be the set of probability distributions
on [0; 1], and Si the support of the equilibrium mixed strategy for party i,
with xi = inf Si and xi = supSi.

The following lemma summarizes the results found in Example 2:

Lemma 3 If either Â1 + Â2 < 4¯, or Âi ¸ 2¯ for all i = 1; 2, then Gu has
a unique Nash equilibrium, given by (x1; x2) = (

1
2 ¡¯+ Â1

2 ;
1
2 +¯¡ Â2

2 ) and
(x1; x2) = (

1
2 ;

1
2), respectively.

Proof. Immediate from the analysis in Example 2. 2

Lemma 4 If Âi < 2¯ for some i, there is no symmetric equilibrium in Gu.

Proof. Without loss of generality, assume that Â1 < 2¯. If Â1 + Â2 < 4¯,
then the claim follows immediately from Lemma 3. Thus, suppose Â1 +
Â2 ¸ 4¯. Without the bene¯t of each step being explained, we claim that,
if (G1; G2) = (G;G) is a symmetric MNE, the support of G is a closed
interval.27 Moreover, the upper bound x = 1=2.28 Then, if G has an atom
on 1/2, that is, if both parties assign positive probability mass to the pair
(1=2; 1=2) on the diagonal, then party 1 can increase its expected payo®
by reassigning all this probability mass to a point arbitrary close to 1/2.
Instead, if G assigns zero probability mass on 1/2, then party 2 can transfer
some probability from the left to 1/2. In either case, (G;G) is not an
equilibrium pro¯le. 2

Proposition 5 If Â1 + Â2 ¸ 4¯ and Âi < 2¯ for some i, then Gu has an
asymmetric mixed-strategy Nash equilibrium (G1; G2) 2 ¢(A1)£¢(A2), and
every such equilibrium satis¯es the following properties:

1. If Â1 < 2¯, then S1 = S2 = [x; x] µ [µ1; 1=2],
2. If Â2 < 2¯, then S1 = S2 = [x; x] µ [1=2; µ2],
3. Each Gj is atomless and di®erentiable on (x; x), with density gj,

4. G1 has an atom on x, and G2 on x,

5. g1 is strictly decreasing and g2 is strictly increasing on (x; x), and

6. Each Gj converges weakly to the point mass on 1=2, as Âi ! 2¯.

Proof. Under the hypothesis of Proposition 5, the existence of an asymmetric
MNE follows from Theorem 2 and Lemma 4. Regarding to its properties,
we prove them in the following way. Suppose Â1 < 2¯. (The other case is
similar.)

27See Claim 1 below for a similar argument.
28Recall that (G1; G2) is a MNE if and only if, for each player i, (1) Ui(x;Gj) = Ui(z;Gj)

for all x; z 2 Si, and (2) Ui(x;Gj) ¸ Ui(z;Gj) for all x 2 Si and all z 62 Si.
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Claim 1: S1 = S2 = [x; x] µ [µ1; 1=2]. The fact that S1 µ [µ1; 1=2] is
immediate, since every alternative greater than 1/2, or smaller than µ1,
is strictly dominated for 1 and, therefore, it is never played with positive
probability in a MNE. On the other hand, x1 = x2. Contrary, if x1 > x2,
it is easy to see that µ1 < x2 < 1=2. But then, for ² > 0 small enough,
U1(x1; G2) < U1(x1 ¡ ²;G2), contradicting that G1 is an equilibrium strat-
egy. Similarly, if x1 < x2, it turns out that, for ² > 0 su±ciently small,
U2(G1; x2) < U2(G1; x2 ¡ ²). Thus, x1 = x2 = 1=2, where the last equality
follows from the fact that, if x1 = x2 < 1=2, then 2 can assign a positive
probability mass on x2+ ², ² > 0, and increase its expected payo® given G1.

By a similar reasoning and after many calculations, it also follows that
x1 = x2. The main argument is that, if x1 < x2, there will exist policies
x; y 2 (x1; x2) among which party 1 cannot be indi®erent. That means that
there will be alternatives in (x1; x2) that do not belong to S1. But then
party 2 can increase its probability of winning by moving a positive mass to
these points. Thus, x1 = x2 and, therefore, S2 µ [µ1; 1=2].

Finally, we prove Sj is a closed interval. Consider ¯rst S2. Let x 2 (x; x)
and assume by contradiction that x 62 S2. If x 62 S1, then party 2 can
increase its expected payo® by reassigning an arbitrary small amount of
probability mass to x (which increases its probability of winning). Thus,
x 2 S1. Moreover, since x was arbitrary chosen, it turns out that S1 = [x; x].
That means that, for ² > 0 conveniently chosen, we have that U1(x;G2) =
U1(x + ²;G2), and that the probability mass assigned by G2 to the right
of x and x+ ² is exactly the same. But then party 1 should strictly prefer
x to x + ², because the former is closer to its ideal point. Contradiction.
Therefore, S2 = [x; x]. A similar argument shows S1 = [x; x].
Claim 3: Gj is atomless and di®erentiable on (x; x). To show that Gj is dif-
ferentiable on (x; x), it is su±cient to prove that it is continuous on (x; x).29

Denote Gj(x
¡) = limy!¡xGj(y) (respectively, Gj(x

+) = limy!+xGj(y))
the left-limit (respectively, the right-limit) of Gj at x. Consider ¯rst the
case where j = 2. Assume, by contradiction, that G2 is discontinuous at
some x 2 (x; x).

If G2(x) ¡ G2(x¡) > 0, G2 has an atom at x. But then, for any ² > 0
arbitrary close to zero, party 1 cannot be indi®erent between x and x ¡ ².
This is because the utility derived from these policies is almost the same,
but the probability of winning is much lower at x¡², since the discontinuity
of G2 at x implies that those policies greater than or equal to x are played
with higher probability mass by 2. That is, for ² > 0 su±ciently small,
U1(x;G2) > U1(x¡ ²;G2). But this contradicts that S1 is a closed interval.
Therefore, G2(x) = G2(x

¡).30 Moreover, since x was arbitrary chosen, it

29If Gj is di®erentiable on (x; x), then we can write Gj(x) =
R x
x
gj(y) dy, where gj is

said to be the density of Gj .
30G2(x) cannot be smaller than G2(x

¡) because G2 is non-decreasing on (x; x).
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follows that G2 is left continuous and atomless on (x; x).
So, it must be that G2(x

+) > G2(x). However, following the same
reasoning than before, for ² > 0 small enough, U1(x + ²;G2) > U1(x;G2).
This implies that x 62 S1. Contradiction. Hence, G2(x) = G2(x

+). This,
together with left continuity, shows that G2 is continuous and, therefore,
di®erentiable on (x; x). A similar argument applies for G1.

Claim 4: G1 has an atom on x, and G2 on 1/2. Consider a pair y < z in
(x; x). By de¯nition, U1(y;G2) = U1(z;G2). However, given that Â1 < 2¯, if
the expected probability of winning of party 1 is higher or even the same at
y than at z, then 1 will always prefer to be close to its ideal point; i.e., at y.
Thus, if party 1 is indi®erent between y and z, its chances of winning must
be lower at y than at z. That is, player 2 must assign higher probability
mass to the right of y. Since this must be true for every pair in the support,
no matter how close they are to 1/2, it follows that G2 must have an atom
on 1/2.31 A similar argument proves G1 has an atom on x.

Claim 5: g1 is strictly decreasing and g2 is strictly increasing on (x; x). We
conjecture that this is because, when party 1 moves to the right along the
support of G1, its expected probability of winning the contest must raise
by a strictly increasing amount, to compensate the utility lost generated by
being further from its most preferred ideological position. Thus, G2 must
be strictly convex and, therefore, g2 strictly increasing.

Similarly, when party 2 moves to the left in the support, it must also
increase its expected probability of winning in a strictly increasing way, since
it has to be compensated for being farther of its ideology and the median.
(Recall that the expected payo® given G1, U2(G1; x), must be constant on
S.) Hence, G1 must be concave, implying that g1 is strictly decreasing.
Claim 6: Gj converges weakly to the point mass on 1=2, as Âi ! 2¯. This is
because x = x¤1 =

1
2 ¡¯+ Â1

2 whenever x¤1 ¸ µ1. Thus, x! 1=2 as Â1 ! 2¯.
2

Regarding to the results of this section, notice ¯rst that, although in our
model political parties have di®erent ideologies, which in principle could be
quite distinct, the fact that they also care about the election itself provides
new and interesting predictions. For example, the previous analysis shows
that, when the opportunism is high and relatively more concentrated in one
party, say the rightist one, not only a PNE might not exist, but also the
support of each mixed-strategy equilibrium is such that no party proposes
policies to the right of the median voter. That is, regardless of their ideolo-
gies, both parties announce policies on the left of the political spectrum. As
we said before, this is simply because, no matter how far its ideology is from

31In fact, it must assign at least half of the probability mass on 1/2. As we said, this is
because the expected probability of winning of party 1 should be always smaller at policies
close to its ideal point.
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the median position, the relatively more opportunistic party always moves
on to the political side of the other party to undercut its platform.

Finally, another interesting result arising from Proposition 5 and Lemma
3 is that the equilibrium correspondence ¡ : fGu(¯)g ) ME(Gu(¯)) is in
fact discontinuous in ¯. To see this, suppose Â1+Â2 ¸ 4¯, and let Â1 < 2¯,
so that 2 is the relatively more opportunistic party. Then, as the uncertainty
increases, party 1's probability distribution concentrates on the lower bound
of S, and G2 on the upper bound. But, by Lemma 3, there exists ¯¤ such
that every mixed-strategy equilibrium disappears above this critical value.
That is, for ¯ > ¯¤, parties' incentives to randomize vanish. And, in the
unique equilibrium of the game, each party proposes a policy on its own
ideological side. Similar results arise if the aggregate level of opportunism
decreases.

6 Final remarks

This paper deals with a unidimensional, two-party electoral competition
game. Instead of assuming that parties have single and symmetric motiva-
tions, we suppose here that they are interested in winning the election, but
also in the policy implemented after the contest.

The main implications of this assumption are the following. First, payo®
functions are neither continuous nor semi-continuous on the strategy space.
The game satis¯es payo® security and reciprocally upper semi-continuity,
but conditional payo®s might violate quasi-concavity. As a consequence,
the existence of a pure-strategy Nash equilibrium can be guaranteed only
if political parties have symmetric motivations, being the Downsian and
Wittman equilibria two particular corollaries of this result.

On the other hand, for the case of asymmetric motivations, a Nash equi-
librium always exists, but it is probably one in mixed strategies. The exis-
tence of such equilibrium is guaranteed because the mixed extension of the
hybrid electoral competition game satis¯es Reny's [22] better reply security
for all parametric conditions. This result extends Ball's [3] analysis to the
case where the probability of winning the election is endogenously derived;
and, together with the result above, it generalizes previous existence results
on unidimensional electoral competition.

Finally, the characterization of the set of equilibria for the uniform distri-
bution case shows that, when parties have mixed and probably asymmetric
motivations, four variables shape the electoral outcomes. These variables
are: parties' ideology, the opportunism of each party, the aggregate level
opportunism, and the electoral uncertainty. Depending on the values of
these parameters, we might have PNE or MNE. More importantly, we might
end up with both parties proposing platforms at the median position, to the
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right of the median, to the left, or with one party in each side of the political
spectrum.

Interestingly, these results stand in sharp contrast with the standard
prediction of the Downsian game, where regardless of the level of electoral
uncertainty, both parties locate at the median position. Moreover, they
substantially di®er as well from the Wittman equilibria, where parties' ide-
ologies constitute the main driven force of electoral outcomes. It is left for
a future work to explore their validity for more general models of electoral
uncertainty.
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