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Abstract. We propose a new geometric approach for the analysis
of cooperative games. A cooperative game is viewed as a real val-
ued function u defined on a finite set of points in the unit simplex.
We define the concavification of u on the simplex as the minimal
concave function on the simplex which is greater than or equal to
u.

The concavification of u induces a game which is the totally
balanced cover of the game. The concavification of u is used to
characterize well-known classes of games, such as balanced, totally
balanced, exact and convex games. As a consequence of the anal-
ysis it turns out that a game is convex if and only if each one of
its sub-games is exact.
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1. Introduction

Geometric methods have been found fruitful in the analysis of coop-

erative games. Two major directions have been taken so far. The first

is identifying a game with a vector in R2n−1. This is done by ordering

all non-empty coalitions (S1, S2, . . . , S2n−1) and identifying the game v

with the 2n − 1 dimensional vector, whose the i’th coordinate is v(Si).

In this case, the set of all n-players cooperative games is identified with

R2n−1. This approach allows to use geometric and algebraic techniques

for the analyzes. It is possible to find a set of relatively simple games

that forms a basis (in the algebraic meaning) for the entire space. Such

an analysis may facilitate the analysis significantly. For instance, the

Shapley value, a solution concept which respects additivity, is deter-

mined by its behavior on the basis games.

The second geometric approach is to identify every coalition S ⊆ N

with the indicator of S, that is with the n-vector whose i’th coordinate

equals 1 if i ∈ S and 0 otherwise. In this case, every coalition corre-

sponds to an extreme point of the unit cube in Rn. Therefore, a game

is a real valued function defined on the set of extreme points of the unit

cube. Since the function is defined only on the set of extreme points,

it is natural to consider an extension of the domain to the entire cube.

A natural way of doing so is the multi-linear extension (Owen, 1972).

In this paper we propose a new geometric interpretation of a co-

operative game. Every coalition S is identified with a point in the

n-dimensional unit simplex. The coalition S is identified with the vec-

tor CS = IS

|S| where IS is the indicator of S. Thus, the coalition is

identified with the uniform distribution over the members of S. A

game v is converted to a function u defined over the points CS, S ⊆ N .

The value that the function u is assumes at the point CS is the average

of the worth of S, that is u(CS) = v(S)
|S| .

Given such a function u, we consider the concavification of u, de-

noted cavu, which is a function defined on the entire simplex. The
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concavification of a function u is defined as the minimum of all con-

cave functions that are greater than or equal to u. Since the minimum

of a family of concave functions is concave, cavu is the minimal concave

function which is greater than or equal to u.

The following argument might give the intuition for the reason why

considering cavu is beneficial. One of the most intuitive solution con-

cepts of a cooperative game is the core, defined by core(v) = {x ∈
Rn;

∑n
i=1 xi = v(N),

∑
i∈S xi ≥ v(S), S ⊆ N}. Let x be a particular

vector in core(v) and define the function1 fx(q) = xq for q ∈ ∆. fx

is a linear function on ∆ and therefore concave. Since x ∈ core(v) it

follows that fx(CS) ≥ u(CS) for every coalition S, with equality for

S = N . Thus, since cavu is the minimal concave function which is

greater than or equal to u, fx ≥ cavu on ∆ and fx(CN) = cavu(CN).

In other words, fx is a linear support for cavu at the point CN . This

argument suggests that there is a correspondence between core vectors

of the game v and linear supports of cavu at CN .

The paper contains results of three kinds. All demonstrate relations

between certain properties of the game v and the structure of the func-

tions u and cavu. The first kind of results deals with the core of v and

its sub-games. It turns out that v has a non-empty core if and only if

cavu and u coincide on the center of the simplex, CN . Moreover, the

core of every sub-game of v is non-empty if and only if cavu and u

coincide on all the points CS, S ⊆ N.

The second kind of results refers to exact games. Exact games

(Schmeidler, 1972) are characterized in terms of the concavification

of u. Furthermore, a condition similar to that of Shapley-Bondareva

(see Shapley, 1967 and Bondareva, 1962) theorem that characterizes

exact games is provided.

The third kind of results refers to convex games (Shapley, 1971). It

turns out that a game is convex if and only if each one of its sub-games

1xq denotes the inner product of x and q
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is exact. In addition a convex game is characterized by a property of

its concavification.

The paper is organized as follows. In section 2 we formally introduce

the function u and its concavification. Section 3 is devoted to the core

and Section 4 to exact games. The paper ends with Section 5 where

convex games are discussed.

2. Concavification of a cooperative game

Let v be a cooperative game with N being the set of players, |N | = n.

We denote by ∆ the unit simplex of IRn, that is ∆ = {(q1, q2, . . . , qn);∑n
i=1 qi = 1, qi ≥ 0, i = 1, 2, . . . , n}. For any non-empty coalition

R ⊆ N and a player i ∈ N define Ci
R to be 1

|R| if i ∈ R and 0 otherwise.

Denote CR = (C1
R, ..., Cn

R). Notice that CR is in ∆ for every R.

For any non-empty coalition R define u(CR) = v(R)
|R| . u is a function

over a set of 2n − 1 points in the n dimensional simplex. u(CR) is the

average of the worth of coalition R.

Definition 1. The concavification of u, denoted cavu, is defined as the

minimum of all concave functions f : ∆ → IR such that f(CR) ≥ u(CR)

for every non-empty coalition R.

Remark 1. Since the minimum of a family of concave functions over

∆ is concave, cavu is concave. Thus, cavu is the minimal concave

function that is greater than or equal to u on every point of the type

CR.

Lemma 1. For every q ∈ ∆,

cavu(q) = max{
∑
R⊆N

αRu(CR);
∑
R⊆N

αRCR = q, αR ≥ 0 and
∑
R⊆N

αR = 1}.

Proof. Denote, w(q) = max
{∑

R⊆N αRu(CR);
∑

R⊆N αRCR = q, αR ≥
0 and

∑
R⊆N αR = 1

}
. Since w is concave and w ≥ u, cavu ≤ w. On

the other hand, if
∑

R⊆N αRCR = q where αR ≥ 0 and
∑

R⊆N αR = 1,

then by concavity of cavu, cavu(q) ≥ ∑
R⊆N αRcavu(CR) ≥ ∑

R⊆N αRu(CR).

Thus, cavu ≥ w.
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3. Convcavification and the core

We will use the following standard definition:

Definition 2. For a function f : ∆ → R and a point p ∈ ∆, a vector

x ∈ IRn is a linear support for f at p, if xp = f(p) and xq ≥ f(q) for

any q ∈ ∆.

The following proposition provides a simple characterization of games

with non-empty core.

Proposition 1. v has a non-empty core iff cavu(Cn) = u(Cn).

Proof. Assume first that v has a non-empty core and let x ∈ core(v).

Consider the linear (and in particular concave) function on ∆ defined

by f(q) = xq. Since x is in the core, for every non-empty coalition

R ⊆ N , f(CR) = xCR = x(R)
|R| ≥ v(R)

|R| = u(CR). It follows that

f(q) ≥ cavu(q) for every q ∈ ∆. By a similar argument, f(CN) =

xCn = u(CN). Therefore, u(CN) ≤ cavu(CN) ≤ xCN = u(CN), so

u(CN) = cavu(CN).

In the other direction, assume that cavu(Cn) = u(Cn). Since cavu

is concave it has a linear support at the point CN , call it x. By

assumption, xCN = cavu(CN) = u(CN). Also, for every R ⊆ N ,
x(R)
|R| = xCR ≥ u(CR) = v(R)

|R| , so x(R) ≥ v(R). Therefore, x ∈ core(v).

Remark 2. Shapley-Bondareva Theorem asserts that v has a non-

empty core iff the equation
∑

R

αRCR = CN ,(1)

where αR ≥ 0 and
∑

R αR = 1 implies
∑

R

αRu(CR) ≤ u(CN).(2)

The non-trivial part of this statement is the ”if” direction, which

turns out to be a simple consequence of Proposition 1 and Lemma 1.

Indeed, due to Lemma 1 and the fact that equation (1) implies equation
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(2), cavu(CN) ≤ u(CN). Thus, cavu(CN) = u(CN) and by Proposition

1, the core of v is not empty.

Corollary 1. Assume that v has a non-empty core. Then,

(a) x is in the core of v iff x is a linear support of cavu at CN .

(b) The dimension of the core is n− d, where

d = max
{

k; (i)
k∑

`=1

α`CR`
= CN ,

(ii)
k∑

`=1

α`u(CR`
) = u(CN),

(iii) α` > 0 for every ` = 1, ..., k; and

(iv) CR2 − CR1 , ..., CRk
− CR1 are linearly independent

}
.

Proof. (a) Follows from the proof of Proposition 1.

(b) The dimension of the set of supports at a certain point is the

dimension of the domain (here, ∆, whose dimension is n − 1) minus

the dimension of the facet of the graph of cavu that contains this point

in its relative interior. The dimension of this facet at CN is d− 1 and

therefore the dimension of the set of supports at this point, which is

the core, is n− 1− (d− 1) = n− d.

Proposition 1 reveals the relation between non-emptiness of the core

and the concavification of u. It seems natural at this point to ask

whether the same relation holds for the sub-games of v. We denote by

vR the sub-game of v where the set of players is restricted to R. The

following Lemma asserts that the previous result holds for sub-games

as well.

Lemma 2. For any coalition R, the core of vR is non-empty iff cavu(CR) =

u(CR).

Proof. Fix some coalition R. Denote by ∆R the vectors in ∆ that vanish

outside of R (i.e., the vectors whose support is R). cavu restricted

to ∆R is a concave function. Assume that cavu coincides with u on
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CR. Since CR is in the relative interior of ∆R it has a linear support

xR ∈ IRn, whose coordinates out of R vanish. By the argument of

Proposition 1 the vector xR, restricted to R, is in the core of vR.

Conversely, suppose that xR = (xi
R)i∈R is in the core of vR. Define

yR = (yi
R)i∈N ∈ IRn as follows. If i ∈ R, then yi

R = xi
R. Otherwise,

yi
R = M , where M is a large number to be determined later. Note,

that if T ⊆ R, then yRCT = xRCT . Since xR is in the core of vR,

then for every T ⊆ R, yRCT ≥ vR(T )
|T | = v(T )

|T | = u(CT ), with equality

when T = R. If M is large enough, then yRCS ≥ v(S)
|S| = u(CS) for

every S. Therefore, yR defines a linear function (in particular, concave)

over ∆ which attains the value u(CR) on CR and values which are

greater than or equal to u(CS) on CS, for other coalitions S. It follows

that cavu(CR) ≤ yRCR. Since, cavu(CR) ≥ u(CR) = yRCR we have

cavu(CR) = u(CR) as needed.

Corollary 2. v is a market game iff cavu = u.

Proof. It is well known (see Shapley and Shubik ,1969 ) that v is a

market game iff the core of every sub-game of v is not empty. By

Lemma 2 it is equivalent to cavu = u.

Remark 3. For every game v, the corresponding cavu induces a game

v̄ defined as follows. For every coalition R, v̄(R) = |R|cavu(CR). By

Corollary 2, v̄ is a market game. This is the smallest market game

which is greater than v itself. v̄ is the totally-balanced-cover of the

game v.

Remark 4. Kalai and Zemel (1982) assert that a market game is a

minimum of finitely many linear functions. Indeed, if v is a market

game, then cavu = u, as Corollary 2 states. Thus, cavu is the mini-

mum of its supports at the points of the sort CR. Since there are finitely

many of those, the assertion follows.
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4. Convcavification and exact games

Definition 3. (Schmeidler, 1972) The game v is exact if for every

coalition R there is x in the core of v such that v(R) = x(R).

Proposition 2. The following are equivalent

(a) v is exact.

(b) u is the minimum of a family of linear functions {f`}` over ∆ such

that f`(CN) = u(CN) for every `.

(c) The equation

∑
R

αRCR = βCT + (1− β)CN ,(3)

where αR ≥ 0,
∑

R αR = 1, T is a coalition and β ∈ [0, 1], implies

∑
R

αRu(CR) ≤ βu(CT ) + (1− β)u(CN).(4)

Proof. To show that (a) implies (b) assume that v is exact. For every

coalition R let xR ∈ Rn be such that xRCS = xR(S)
|S| ≥ v(S)

|S| = u(CS)

for every S, with equality for S = R, N . Define fR(q) = xRq, and let

w(q) = minR{fR(q)}. It is not hard to see that w(CR) = u(CR) for

every coalition R, so (b) follows.

Next, assume that (b) holds. Then for every R there is a linear

function fR such that fR ≥ u and fR(q) = u(q), q = CR, CN . Denote

the segment connecting the points (CR, u(CR)) and (CN , u(CN)) by L.

L is on the graph of fR. Since cavu is concave, L is below the graph

of cavu. As cavu ≤ fR, L is above the graph of cavu. Thus, L is

on the graph of cavu. In particular, βcavu(CR) + (1− β)cavu(CN) =

βu(CR) + (1− β)u(CN) for every β ∈ [0, 1].

Now, assume that equation (3) holds. Due to concavity of cavu,∑
R αRcavu(CR) ≤ βcavu(CT )+(1−β)cavu(CN). Thus,

∑
R αRu(CR) ≤∑

R αRcavu(CR) ≤ βu(CT ) + (1− β)u(CN), which proves (c).

Finally, assume (c). Lemma 1 and (c) imply that cavu(βCR + (1−
β)CN) ≤ βu(CR)+(1−β)u(CN). Concavity and the fact that cavu ≥ u
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imply that

cavu(βCR + (1− β)CN) = βu(CR) + (1− β)u(CN).

Thus, L is on the graph of cavu. Therefore, there is x which is a

linear support of cavu at both, CN and CR. By corollary 1 x ∈ core(v)

and since it is a linear support at CR, x(R) = v(R). This proves that

v is exact.

Remark 5. Note the similarity between the condition of Shapley-Bondareva

Theorem (i.e., (1) implies (2) – see Remark 2) and Proposition 2 (c)

(i.e., (3) implies (4)).

5. Convcavification and convex games

Definition 4. (Shapley 1971) The game v is convex if for any two

coalitions S and T , v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T ).

Notation 1. (a) For a permutation π over N , denote by Ri
π the coali-

tion {π(1), π(2), . . . , π(i)}, i = 1, . . . , n.

(b) Let v be a game and π an order over the set of players N . Then the

vector of marginal contributions, with respect π is xπ = (x1
π, . . . , xn

π),

where xi
π = v(Ri

π)− v(Ri−1
π ), i ∈ N .

(c) Let q = (q1, . . . , qn) ∈ ∆. πq denotes a permutation of the players

such that qπq(1) ≥ qπq(2) ≥ . . . ≥ qπq(n). When there is more than one

such permutations, i.e., qi = qj for some i 6= j, πq is any one of them.

(d) For q = (q1, . . . , qn) ∈ ∆, let Ri
q = Ri

πq
and xq = xπq .

Remark 6. The assertion that v is convex implies that v is exact is

well known. It follows from the fact that in a convex game the vector

of marginal contributions, with respect to an order π, xπ, is in the core

of v. Thus, if according to π the players of R are ordered first and then

all the rest, xπ(R) = v(R). Thus, v is exact.

The next proposition relates convex games to the structure of the func-

tion u.
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Proposition 3. The following are equivalent

(a) v is convex.

(b) vR is exact for every coalition R.

(c) The equation
∑

R

αRCR = βCT + (1− β)CS,

where αR ≥ 0,
∑

R αR = 1, T ⊆ S are two coalitions and β ∈ [0, 1]

implies
∑

R

αRu(CR) ≤ βu(CT ) + (1− β)u(CS).

Proof. The fact that (a) and (c) of Proposition 2 are equivalent implies

that (b) and (c) are equivalent.

Assume (c) and we will show (a). Let S and T be two coalitions.

Then, |S|
|S|+|T |CS + |T |

|S|+|T |CT = |S∩T |
|S|+|T |CS∩T + |S∪T |

|S|+|T |CS∪T . (c) implies that
|S|

|S|+|T |u(CS) + |T |
|S|+|T |u(CT ) ≤ |S∩T |

|S|+|T |u(CS∩T ) + |S∪T |
|S|+|T |u(CS∪T ). This is

equivalent to v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T ). Thus, v is convex.

If v is convex, then every vR is convex, and therefore, by Remark 6,

every vR is exact. Thus, (a) implies (b).

Remark 7. Proposition 2 (c) and Lemma 1 imply that when v is ex-

act and q is on the segment connecting CN and CR (for some coalition

R), cavu(q) is equal to corresponding weighted average of u(CN) and

u(CR). Proposition 3 (c) asserts that, when v is convex, this prop-

erty holds also for other coalitions than the grand one: if q is on the

segment connecting CS and CT and T ⊆ S, then cavu(q) is equal to

corresponding weighted average of u(CS) and u(CT ).

We conclude with two propositions which provide different charac-

terizations of convex games. The first one uses cavu to describe the

set of convex games, while the second asserts that a game is convex if

and only if u has a certain consistency property. However, both these

propositions heavily relies on the fact that in a convex game the vector

of marginal contributions of the players (for any order) is in the core.

For the next proposition recall Notation 1 (d).
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Proposition 4. v is convex if and only if for every q ∈ ∆,

cavu(q) = qxq.

Proof. Assume first that v is convex, and fix some q ∈ ∆. Without loss

of generality we may assume that q1 ≥ q2 ≥ . . . ≥ qn, so π = πq is the

identity, and Ri = Ri
q = {1, 2, . . . , i}. Since v is convex, xq ∈ core(v).

Thus, by Corollary 1 (a), xq is a linear support of cavu at the point

CN . In particular, qxq ≥ cavu(q).

For k = 1, . . . , n define αk = k(qk − qk+1) (with the convention that

qn+1 = 0). Notice that α ∈ ∆. Indeed, αk ≥ 0 for every k since

qk ≥ qk+1, and
∑n

k=1 αk =
∑n

k=1 k(qk − qk+1) =
∑n

k=1 qk = 1. Consider

the convex combination
∑n

k=1 αkCRk . For any coordinate 1 ≤ j ≤ n

we have,

n∑

k=1

αkC
j
Rk =

n∑

k=j

k(qk − qk+1)
1

k
=

n∑

k=j

(qk − qk+1) = qj

It follows that
∑n

k=1 αkCRk = q. By Lemma 1,

cavu(q) ≥
n∑

k=1

αku(CRk) =
n∑

k=1

k(qk − qk+1)
v(Rk)

k

=
n∑

k=1

(qk − qk+1)v(Rk) =
n∑

k=1

qk

(
v(Rk)− v(Rk−1)

)
= qxq.

Thus, cavu(q) ≥ qxq and therefore cavu(q) = qxq, as required.

As for the inverse direction, assume that for every q ∈ ∆, cavu(q) =

qxq. We will use Proposition 3 to show that v is convex. Let T ⊆ S be

two coalitions, 0 ≤ β ≤ 1, and denote q = βCT + (1 − β)CS. Assume

that the equation
∑

R αRCR = q holds with αR ≥ 0 and
∑

R αR = 1.

By Lemma 1,
∑

R αRu(CR) ≤ cavu(q).

The vector q has the following formation:

qi =





β
|T | +

1−β
|S| i ∈ T

1−β
|S| i ∈ S \ T

0 i /∈ S
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Consider the permutation of q according to πq. The first |T | coordinates

of this vector will equal β
|T | + 1−β

|S| , the next |S| − |T | coordinates will

equal 1−β
|S| , and the last n − |S| will equal 0. Moreover, R

|T |
q = T , and

R
|S|
q = S. Therefore, by assumption we obtain,

cavu(q) =

|T |∑
i=1

(
β

|T | +
1− β

|S|
)

xi
q +

|S|∑

i=|T |+1

1− β

|S| xi
q

=

(
β

|T | +
1− β

|S|
) |T |∑

i=1

xi
q +

1− β

|S|
|S|∑

i=|T |+1

xi
q

=

(
β

|T | +
1− β

|S|
)

v(T ) +
1− β

|S| (v(S)− v(T ))

= β
v(T )

|T | + (1− β)
v(S)

|S| = βu(CT ) + (1− β)u(CS).

Therefore,
∑

R αRu(CR) ≤ cavu(q) = βu(CT ) + (1 − β)u(CS). By

Proposition 3 v is convex.

Proposition 4 states that when a game is convex, cavu(q) is the

weighted average (according to q) of the marginal contributions of the

players when ordered according to the order of the coordinates of q.

Proposition 5. v is convex iff there is a family {f`}` of linear functions

such that whenever R ⊆ S, u(CR) = min{f`(CR); f`(CS) = u(CS)}.

Proof. If the above condition holds, then due to Proposition 2 (b), v

and each of its sub-games are exact. Therefore, by Proposition 3, v is

convex.

To show the converse, assume that v is convex. Consider an order

π of the set of players and the vector of marginal contributions with

respect to π, xπ. Let fπ(q) = xπq. We show that the collection of linear

functions {fπ} over all permutations π satisfies the above condition.

First, since xπ is in the core of v for every π, we have for every R,

fπ(CR) = xπCR ≥ v(R)
|R| = u(CR). In particular, u(CR) ≤ min{fπ(CR);

fπ(CS) = u(CS)} for every R ⊆ S.
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For two particular coalitions R ⊆ S choose any order π with the

property that the first |R| players in π are the coalition R and the

first |S| players are the coalition S. Then obviously, u(CR) = fπ(CR)

and u(CS) = fπ(CS). It follows that u(CR) ≥ min{fπ(CR); fπ(CS) =

u(CS)} and the proposition follows.

Proposition 5 is a kind of consistency property. Consider the set

N as the set of states and v as a non-additive probability over N .

Suppose that non-additive probability (Schmeidler, 1989) v is obtained

by taking the minimum over a set of additive probabilities (see Gilboa

and Schmeidler, 1989). v is convex if this set of additive probabilities

owes the following property.

Upon receiving the information that the event R occurred, the non-

additive probability is updated and becomes vR. However, vR itself is

also obtained as a minimum of additive probabilities: of those according

to which the probability of S is precisely v(S).
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