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Abstract

Several authors have indicated a contradiction between consistent
aggregation of subjective beliefs and tastes, and a Pareto condition.
We argue that the Pareto condition that implies the contradiction is
not compelling. Society should not necessarily endorse a unanimous
choice when it is based on contradictory beliefs. Restricting the Pareto
condition to choices that only involve identical beliefs allows a utili-
tarian aggregation: both society’s utility function and its probability
measure are linear combinations of those of the individuals.

1 Introduction

Harsanyi (1955) offered an axiomatic justification of utilitarianism. He has

assumed that all individuals in society as well as society itself are von-
Neumann-Morgenstern (vNM) expected utility maximizers (von Neumann
and Morgenstern (1944)). In this model, one Pareto indifference condition
implies that the utility function of society is a convex combination of the

utility functions of individuals in society.
The vNM framework deals with a single individual facing lotteries over

outcomes. The use of this framework in Harsanyi’s social choice model pre-

supposes that all individuals face the same lotteries, that is, they agree on the
∗We wish to thank Philippe Mongin for helpful discussion and many detailed comments.
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probabilities of any given lottery. Thus individuals differ only in their pref-

erences but not in their beliefs. This, however, is rather restrictive. While
divergence of opinions is sometimes the result of different values assigned

by different individuals to outcomes, much of it is due to differences of be-
liefs (i.e., different probability distributions over states of nature). Everyone
wants peace and prosperity, but people have very different views about the
way to achieve these common goals.

In Savage’s (1954) model there is a separation between preferences rep-
resented by a cardinal (i.e., vNM) utility and information represented by a
(subjective) probability. This model permits the examination of Harsanyi’s

utilitarian aggregation in the more general case where individuals have dif-

ferent beliefs. Indeed, more recent works have studied utilitarian aggregation
in Savage-like models, aggregating individuals’ utilities into society’s utility

and individuals’ probabilities into society’s probability. Several authors have
found that such an aggregation, generalizing Harsanyi’s theorem, is impos-
sible when Pareto and nondictatorial conditions are imposed (Hylland and

Zeckhauser (1979), Mongin (1995)). Moreover, impossibility results have also
been recently obtained for more general classes of preferences (Mongin (1998)
and Blackorby et al. (2000)).

These impossibility results are troubling. If there is, indeed, no way to ag-
gregate preferences of all individuals, then a ruling party or a president may

feel exempted from seeking to represent society in its entirety even if elected
by an incidental majority. This seems to contradict our moral intuition on

this issue, which demands that a majority should not disregard opinions and
desires of minorities. Moreover, ignoring minorities may lead to instability
and inefficiency in a society where governments shift frequently between op-

posing parties. In this note we argue, however, that the impossibility results

are derived from a counter-intuitive axiom. Further, an appropriate weak-
ening of this axiom leads to a possibility result. Thus, we conclude that the
impossibility result cannot be cited as an indirect justification of ignoring
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minority views.

The Pareto condition that drives the impossibility of aggregation requires
that if all individuals in society agree on preferences between two alternatives,

so should society. Despite its apparently innocent formulation, we do not find
this condition very plausible in a model incorporating subjective beliefs, as
the following example shows.

Two gentlemen agree to fight a duel at dawn, although either can back

down. The result of a duel is that one wins and the other loses (fatally). The
gentlemen have opposite rankings of the three consequences: (1 wins and 2
loses), (no duel), and (2 wins and 1 loses). Assume, for example, that the

cardinal rankings of these consequences are (1, 0,−5) for the first gentleman
and (−5, 0, 1) for the second. The fact that both prefer duel to no duel, in
spite of their opposite taste for the consequences, is possible only because
they hold contradictory beliefs. Each of them believes, with a probability of
more than 90%, that he will win the duel. The combination of very different

utility functions and very different subjective probabilities yields the same
preferences. If they had similar beliefs, a duel would not take place.

A straightforward adaptation of Pareto’s condition implies that society
should rank duel above no duel, as both prefer it. Indeed, so do the Pareto

axioms used to obtain impossibility results. But we claim that the Pareto
condition cannot serve as an argument for society to prefer that a duel take

place.
Observe that we do not argue that a duel should not take place. A liberal

approach might suggest that society should have no preferences at all over
issues such as the duel. Moreover, even if one takes a more paternalistic ap-
proach, according to which society does have a complete preference relation,

society might favor a duel for a variety of reasons. We only argue that the
Pareto condition cannot be one of them.

Consider, first, the following example. Mary has to choose between two

cups containing hot drinks. She believes that the first contains coffee and
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the second – tea, and, given her strong preference for coffee, she prefers the

first cup. No other individual is affected by this choice. Hence all other
individuals are indifferent between Mary’s two choices. But everyone else is

convinced that Mary is in fact wrong, and that the contents of the cups are
reversed. Society may refrain from expressing preferences over Mary’s two
choices. But if society does have such preferences, we find that basing them
on a formal application of the Pareto condition is unjustified.

By a similar token, the duel is preferred by both gentlemen only because
they differ in their beliefs. Society cannot, perhaps, judge who is more ac-
curate in his probability assessments. But it is evident that at least one of

them is wrong: every probability assessment would induce at least one of the

gentlemen to back down. In this situation, we argue, the Pareto condition
cannot serve as a reason for society to prefer that a duel take place.

Our duel example is similar to an example in Raiffa (1968), suggesting the
rejection of the Pareto condition in the face of contradictory beliefs. Raiffa
deals with aggregation of the opinions of different experts. These experts

are consulted about both the desirability of outcomes and the plausibility
of scenarios. Thus, each expert provides a utility function and a probability
measure. Raiffa notes that it might well be the case that all experts will prefer

alternative a over b, while b will be preferred to a if one adopts the average

utility function and the average probability measure. Thus, Raiffa (1968)
argues against the Pareto condition whenever it contradicst expected utility

maximization with respect to average utility and average probability. By
contrast, we argue that the Pareto condition is unpalatable without reference

to a particular method of aggregation. 1 Moreover, whereas Raiffa deals with
a single decision maker, who is unsure about the measurement of utility and of

probability, our focus is on social welfare, where conflict of interest is inherent.
Thus, in Raiffa’s problem one may be “wrong” both about probabilities and

1Postlewaite and Schmeidler (1987) argue against welfare comparisons in a general
equilibrium model with differential information but without common prior.
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about utilities, whereas in the social welfare set-up only probabilities admit

a notion of correctness.
In this note we suggest a weaker Pareto condition, which is more plausible

in a model that separates tastes and beliefs. With this condition a nondicta-
torial separate aggregation of tastes and of beliefs, a la Harsanyi, is possible.
Our Pareto condition is restricted to alternatives in which individuals may
differ only in their tastes and not in their beliefs. More specifically, an al-

ternative is said to be a lottery if all individuals agree on the distribution of
outcomes induced by this alternative. We require that if all individuals are

indifferent between two alternatives, which are lotteries in our sense, then
society too is indifferent between them. Note that if such an alternative has

finitely many consequences, it corresponds to a classical vNM lottery. Thus,
by Harsanyi’s theorem, our Pareto condition implies that society’s utility
function is a linear combination of the utility functions of the individuals.
More surprisingly, this condition also implies that the probability measure of
society is an affine combination of those of the individuals. Conversely, our

Pareto condition is satisfied whenever society’s utility is a linear combina-
tion of the individuals’ utilities and society’s probability measure is an affine

combination of those of the individuals.

In conclusion, we argue that the impossibility theorems result from a
Pareto condition that is far from compelling. It is based on the requirement
that society approves unanimous preferences of individuals, even when una-
nimity is the result of conflicting tastes and conflicting beliefs. Our Pareto
condition restricts social approval of unanimity only to those cases where all
individuals have identical beliefs. This seems to be the natural extension of
Harsanyi’s utilitarianism for the expected utility model to that of subjective
expected utility.

The next section presents the main result, while Section 3 contains the
proof.
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2 The Main Result

Let (S, Σ) be a σ-measurable space, where S is a set of states (of nature),
and Σ is a σ-algebra of events. Denote by X a set of outcomes endowed

with a σ-algebra. The set A = {a | a: S → X, a is Σ − measurable} is
the set of alternatives (or acts in Savage’s terminology). Society is a set of
individuals N = {1, ..., n}. Individual i ∈ N has preferences %i⊂ A × A,
whereas society’s preferences are denoted %0⊂ A × A. For 0 ≤ i ≤ n, the
relations ∼i and �i are defined as the symmetric and asymmetric parts of
%i, as usual. We assume that each of preference relations is represented by
expected utility maximization, that is, for 0 ≤ i ≤ n there are a measurable
and bounded utility function ui : X → R and a probability measure µi on Σ

such that, for every a, b ∈ A, a %i b iff
∫

S ui(a(s))dµi ≥
∫

S ui(b(s))dµi. We
assume that, for each 0 ≤ i ≤ n, µi is countably additive and non-atomic,

and that ui is not constant.2

Let Λ = {E ∈ Σ | for all 1 ≤ i, j ≤ n, µi(E) = µj(E)}. Thus, an event E
is in Λ when all individuals agree on its probability.

An alternative a is a lottery if for each measurable subset of outcome, Y ,

a−1(Y ) ∈ Λ. Thus, in a lottery all individuals agree on the probability of
the events that are involved in the definition of the lottery. Note the formal

difference between lotteries as defined here and vNM lotteries over X. The
latter are probability distributions over X (with finite support) while the first
are measurable functions. Nevertheless, it is easy to show that finitely-valued
lotteries, as defined here, can be identified with vNM lotteries over X. This
is done in Claim 4 in the proof of the Theorem.
The restricted Pareto condition: For all lotteries a and b, if for every
i ∈ N , a ∼i b, then a ∼0 b.

2Conditions on preferences guaranteeing representation by a subjective countably ad-
ditive probability measure and a bounded utility function are well known. See Savage
(1954) and Villegas (1964), or Arrow (1965).
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Theorem The Restricted Pareto Condition holds iff µ0 is an affine combi-
nation of {µi}n

i=1 and u0 is a linear combination of {ui}n
i=1.

This theorem does not restrict the coefficients used in the affine and lin-
ear combinations that define beliefs and tastes of society. One may wish to

augment our condition to obtain results according to which µ0 and u0 are
convex combinations of {µi}n

i=1 and of {ui}n
i=1, respectively, with strictly pos-

itive coefficients, and perhaps also with equal coefficients, at least in the case

of beliefs (where interpersonal comparisons are natural). Such derivations
are beyond the scope of this note.

3 Proof of the Theorem

The restricted Pareto condition is sufficient. Assume that this con-

dition holds. We prove, first, that the condition implies that µ0 is an affine

combination of {µi}n
i=1. Next, we show that this implies also that u0 is a

linear combination of {ui}n
i=1.

Denote µ = (µi)n
i=1 and µ̂ = (µi)n

i=0. Let Z and Ẑ be the ranges of the

vector measures µ and µ̂ correspondingly. Note, that Z is the projection of
Ẑ, and for any ẑ ∈ Ẑ, µ̂(S) − ẑ ∈ Ẑ. Due to the Lyapunov Theorem, both
Z and Ẑ are convex.

Claim 1: If (z0, 1
2µ(S)) ∈ Ẑ, then z0 = 1

2 .

Proof: Assume the contrary. Then, without loss of generality, for some event
E, µ0(E) > 1

2 while µ(E) = 1
2µ(S). Choose x, y ∈ X with u0(x) > u0(y).

Consider alternatives a, b such that a is x on E and y on Ec, while b is y on
E, and x on Ec. Then a ∼i b for each i ∈ N but a �0 b, contrary to our

assumption.

Proposition 3 in Mongin (1995) states that, under the conclusion of Claim
1, µ0 is an affine combination of {µi}n

i=1. The following two claims constitute
a shorter proof of this fact, and are given here for the sake of completeness.

7



Claim 2: For every z ∈ Z there exists a unique z0 = z0(z) such that
(z0, z) ∈ Ẑ.

Proof: Assume that ẑ = (z0, z) and ŵ = (w0, z) are in Ẑ, with z0 < w0.
Since µ̂(S)−ŵ ∈ Ẑ, it follows from the convexity of Ẑ that 1

2 ẑ+ 1
2(µ̂(S)−ŵ) =

(1
2z0+ 1

2(1−w0), 1
2µ(S)) ∈ Ẑ. This contradicts Claim 1, as the first coordinate

of this point is less than 1
2 .

Claim 3: For every z, w ∈ Z and every 0 ≤ β ≤ 1, z0(βz + (1 − β)w) =

βz0(z) + (1− β)z0(w).

Proof: Let ẑ = (z0(z), z) and ŵ = (z0(w), w). By the convexity of Z,
βẑ+(1−β)ŵ ∈ Ẑ. The first coordinate of this point is βz0(z)+(1−β)z0(w).
The last n coordinates are βz+(1−β)w, and thus the result follows by Claim
2.

By Claim 3, z0(z) is an affine function on Z, that is, there are (λi)i∈N ∈ RN

such that z0(z) =
∑

i∈N λizi. Hence, for each event E, µ0(E) =
∑

i∈N λiµi(E).
Substituting S for E in the last equality we conclude that

∑

i∈N λi = 1.
Now we show that u0 is a linear combination of {ui}n

i=1. We first recall a
well-known conclusion of the Lyapunov Theorem (proved by induction).

Claim 4: Assume that p1, ...pm are non-negative numbers whose sum is
1. Then there is a partition of S, (E1, ...Em) such that, for all 1 ≤ j ≤ m
µ(Ej) = pjµ(S).

Using Claim 4 we can identify finitely-valued lotteries with vNM lotteries

over X. Specifically, given a vNM lottery L with a finite support over X, one

may use Claim 4 to construct a lottery a ∈ A such that L is the distribution
on X defined by a. Moreover, for all 0 ≤ i ≤ n, all such lotteries a are
∼i-equivalent since they have the expected utility. Conversely, any finitely-
valued lottery a ∈ A defines a distribution over X, which is a vNM lottery.

It follows that, restricting {%i}0≤i≤n to lotteries in A one may apply
Harsanyi’s (1955) theorem to conclude that u0 is a linear combination of

{ui}n
i=1. (For a recent proof of Harsanyi’s Theorem, DeMeyer and Mongin

(1995) is recommended.)
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The restricted Pareto condition is necessary. Let a, b be lotteries.
Since µ0 is an affine combination of {µi}n

i=1, µ0(E) = µi(E) for all i ∈ N and
all E ∈ Λ. Therefore, for every lottery c,

∫

S ui(c)dµi =
∫

S ui(c)dµ0. For all

i ∈ N , the condition a ∼i b implies that
∫

S(ui(a) − ui(b))dµi = 0. Hence,
for all i ∈ N ,

∫

S(ui(a) − ui(b))dµ0 = 0. Since u0 is a linear combination of

{ui}n
i=1,

∫

S(u0(a)− u0(b))dµ0 = 0 also follows, and a ∼0 b is proved.
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