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Abstract

Most properties of binary relations considered in the decision literature can be ex-
pressed as the impossibility of certain “configurations.” There exists no condition of
this form which would hold for a binary relation on a subset of a finite-dimensional Eu-
clidean space if and only if the relation admits a maximal element on every nonempty
compact subset of its domain.
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1 Introduction

The choice of maximal elements of a binary relation is often used to model decision making
in various contexts (Fishburn, 1973; Sen, 1984; Aizerman and Aleskerov, 1995). For a
maximal element to be chosen, however, it must exist in the first place. Accordingly, there
is a considerable literature studying what conditions should be imposed on a binary relation
to ensure the existence of maximal elements on potential feasible sets (Gillies, 1959; Smith,
1974; Bergstrom, 1975; Mukherji, 1977; Walker, 1977; Kiruta et al., 1980; Danilov and
Sotskov, 1983; Campbell and Walker, 1990). This paper demonstrates that there may be
limits to such undertakings, independent of the ingenuity of particular authors.

As is well known, a binary relation admits a maximal element on every finite subset
of its domain if and only if it is acyclic. Here we assume that every compact subset may
emerge as the set of feasible alternatives. This, admittedly stylized, setting is a natural
second step from a purely technical viewpoint, even though a narrower class of feasible sets
may be justified in this or that particular context. Acyclicity obviously remains necessary,
but not sufficient. Acyclicity plus open lower contours is sufficient, but too exacting as
(weak) Pareto dominance, or lexicographic orders, show.

Smith (1974) found a condition necessary and sufficient for a preference relation (i.e.,
complete preorder) to attain a maximum on every compact subset of its domain. The
restriction, however, need not be justified in every potential application, especially when
the relation in question is supposed to reflect the preferences of several agents as well as
their abilities to influence the outcome. For instance, a Nash equilibrium in a strategic
game is naturally perceived as a maximal element of the individual improvement relation.

Here we put no a priori restriction on the relation. It turns out that no condition of a
reasonable form can be equivalent to the existence of maximal elements on every nonempty
compact subset of the universal domain.

The simplest admissible condition consists of, loosely speaking, one quantifier, either
there exists or there does not exist, followed by a description of a “configuration,” i.e., a
list of points with the relation (or its absence) fixed between some pairs, and with the con-
vergence (or the absence of it) fixed for some sequences. The exact definitions are semantic
rather than syntactic. Then we allow conjunctions of such “elementary” conditions and,
finally, disjunctive forms.

One justification for this particular notion of an admissible condition is its relative
simplicity (necessary and sufficient conditions more complicated than the original property
hardly make any sense). Another lies in the fact that all sufficient, as well as necessary,
conditions found so far in our setting can be represented in the form. Still, our theorem
does not cover more involved conditions (e.g., with several quantifiers), which are also used
for various purposes in the literature.

The next section contains necessary formal definitions; Section 3, the main theorem
and its proof. Implications for the theory of topological potential games are considered in
Section 4. A discussion of related questions completes the paper.
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2 Formulations

A binary relation on a set X is a Boolean function on X × X; as usual, we write y . x
whenever the relation . is true on a pair (y, x) and y 6 . x whenever it is false. Let Y ⊆ X;
x ∈ Y is a maximizer for . on Y if y 6 . x for every y ∈ Y . We denote IN = {0, 1, . . . } the
chain of natural numbers starting from zero.

An abstract configuration consists of P=, N=, P., N. ⊆ IN × IN and P→, N→ ⊆ IN IN ,
where IN IN means the set of mappings IN → IN , i.e., sequences in IN . Let . be a binary
relation on a metric space X and C be an abstract configuration. A realization of C
in X for . is a mapping µ : IN → X such that: µ(k′) = µ(k) whenever (k′, k) ∈ P=;
µ(k′) 6= µ(k) whenever (k′, k) ∈ N=; µ(k′) . µ(k) whenever (k′, k) ∈ P.; µ(k′) 6 . µ(k)
whenever (k′, k) ∈ N.; µ(ν(k)) → µ(ν(0)) whenever ν ∈ P→; µ(ν(k)) 6→ µ(ν(0)) whenever
ν ∈ N→.

Many properties of binary relations can be expressed as the impossibility to realize
a certain configuration. For example, to define the reflexivity of ., we can prohibit the
realization of a configuration with N. = {(0, 0)} and other sets empty; to define irreflexivity,
with P. = {(0, 0)}; transitivity, with P. = {(1, 0), (2, 1)} and N. = {(2, 0)}. Open lower
contours (lower continuity) are described by the prohibition of a configuration with P. =
{(0, 1)}, N. = {(0, k)}k≥2, and P→ = {ν+}, where ν+(k) = k + 1; weak lower continuity
(Campbell and Walker, 1990), by P. = {(0, 1)}∪{(k, 0)}k≥2 and P→ = {ν+} with the same
ν+(k). To formalize acyclicity in this style, we prohibit the realization of each of a countable

set of configurations parameterized with m ∈ IN : P
(m)
. = {(1, 0), (2, 1), . . . , (m + 1,m)}

and P (m)
= = {(0,m + 1)}. The list can easily be extended.

Remark. One can always dispense with P=, but a symmetric definition seems preferable.

A simplest configurational condition is defined by a set of abstract configurationsN . We
say that such a condition holds on a metric space X for a binary relation . if no configuration
C ∈ N admits a realization in X for .. The set of all simplest configurational conditions
is denoted S0.

Every condition from the class S0 is “inherited” (Walker, 1977): if such a condition
holds on X for ., then it also holds on every X ′ ⊆ X for the restriction of . to X ′. It seems
natural, therefore, to use such conditions when trying to characterize properties of binary
relations which are inherited by their nature (like the existence of a maximizer on every
compact subset). It is also worth noting that, e.g., all the properties of binary relations
considered in Duggan (1999) belong to the class S0.

Our impossibility result can be proven almost as easily for a wider class of conditions,
viz. for logical combinations of “negative” and “positive” conditions. We formalize such
combinations as “(infinite) disjunctive forms” made of (infinite) conjunctions of positive
and negative conditions.

A general configurational condition (C-condition) consists of a set A of indices, and
two sets of abstract configurations, P(α) and N (α), for every α ∈ A. We say that such
a condition C holds on X for . if there is α ∈ A such that every configuration C ∈ P(α),
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and no configuration C ∈ N (α), admits a realization in X for .. The set of all general
configurational conditions is denoted S1; obviously, S0 ⊂ S1.

Remark. We put no restriction on the cardinality, or the complexity, of the sets involved
in the definition of a C-condition: the more freedom is allowed, the more convincing our
negative result is.

3 The Result

Theorem. There exists no condition C ∈ S1 such that C would hold on a subset X of a
finite-dimensional Euclidean space for a binary relation . on X if and only if . admits a
maximizer on every nonempty compact subset of X.

Proof. Let C be such a condition. We consider X = {eit| t ∈ IR} (where i =
√−1);

geometrically, X is a circle embedded into the plane of complex numbers. We define a
binary relation y . x ⇐⇒ y = ei · x. Clearly, there is no maximizer for . on X; since X
is compact itself, C must not hold on X.

Picking x0 ∈ X, we denote X ′ = X \ {x0}. Let us show that every nonempty compact
Y ⊆ X ′ admits a maximizer for .. Supposing the contrary, we pick y0 ∈ Y ; since y0 is
not a maximizer, we can pick y1 ∈ Y such that y1 . y0; since y1 is not a maximizer, we
can pick y2 ∈ Y such that y2 . y1; etc. Since Y is compact, every limit point of {yk}k∈IN

must belong to Y . On the other hand, we have yk+1 = ei · yk; by the Jacobi theorem
(see, e.g., Billingsley, 1965), {yk}k∈IN is dense in X. Therefore, x0 is a limit point, hence
x0 ∈ Y ⊂ X \ {x0}. The contradiction proves our claim.

Therefore, C must hold on X ′, i.e., there is α ∈ A such that every configuration C ∈
P(α), and no configuration C ∈ N (α), admits a realization in X ′ for .. Every realization
µ : IN → X ′ ⊂ X being simultaneously a realization in X, and C not holding on X, there
must be C ∈ N (α) admitting a realization µ in X. We pick r ∈ X \ {x0/µ(k)}k∈IN and
define µ∗ : IN → X by µ∗(k) = r · µ(k). Clearly, µ∗(k) = µ∗(h) ⇐⇒ µ(k) = µ(h),
µ∗(k) . µ∗(h) ⇐⇒ µ(k) . µ(h), and µ∗(ν(k)) → µ∗(ν(0)) ⇐⇒ µ(ν(k)) → µ(ν(0)) for all
k, h ∈ IN and ν ∈ IN IN ; besides, x0 /∈ µ∗(IN) by the choice of r. Thus, µ∗ is a realization
of C in X ′, contradicting the choice of α.

4 Implications for the Theory of Potential Games

As usual, a strategic game Γ is defined by a finite set of players N , and strategy sets Xi

and preference relations ºi on X =
∏

i∈N Xi for all i ∈ N . With every strategic game, the
individual improvement relation .Ind on X is associated (y, x ∈ X, i ∈ N):

y .Ind
i x ⇐⇒ [y−i = x−i & y Âi x]; (1a)

y .Ind x ⇐⇒ ∃i ∈ N [y .Ind
i x]. (1b)
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By definition, a strategy profile x ∈ X is a Nash equilibrium if and only if x is a maximizer
for .Ind.

Monderer and Shapley (1996) introduced several classes of potential games, the “most
ordinal” being that of a “generalized potential game.” For a finite game, the property
amounts to the acyclicity of the individual improvement relation; every such game obviously
possesses a Nash equilibrium. Moreover, the existence of an equilibrium is preserved if
arbitrary restrictions are imposed on feasible choices of each player, although Takahashi
and Yamamori (2002) showed that the existence of a Nash equilibrium under arbitrary
restrictions on strategies does not imply the acyclicity of individual improvements.

An equivalence between the acyclicity of individual improvements and persistent exis-
tence of equilibria holds if a wider class of modifications of the original game is allowed
(strictly speaking, a modification of the concept of Nash equilibrium is needed as well).
We assume that any strategy may prove infeasible to the relevant player, and any strategy
profile may prove unacceptable to all players (say, entail a global nuclear conflict).

A finite restriction Γ0 of Γ is defined by the same set of players N , strategy sets ∅ 6=
X0

i ⊆ Xi, and a finite set of acceptable profiles ∅ 6= X0 ⊆ ∏
i∈N X0

i ; preferences in Γ0 are
somewhat modified: y º0

i x ⇐⇒ y ºi x whenever x, y ∈ X0, while y Â0
i x whenever

x /∈ X0 3 y. An acceptable Nash equilibrium is x0 ∈ X0 such that x0 º0
i (x0

−i, xi) for
every i ∈ N and xi ∈ X0

i . Acceptable Nash equilibria can be viewed as maximizers of the

individual improvement relation in Γ0 if we modify the definition (1), assuming x .Ind0
x

whenever x /∈ X0.

Proposition. Every finite restriction of Γ possesses an acceptable Nash equilibrium if and
only if the individual improvement relation in Γ is acyclic (i.e., Γ is a generalized potential
game).

Proof. Let .Ind be acyclic and Γ0 be a finite restriction of Γ. Then .Ind admits a maximizer
on X0, which is obviously an acceptable Nash equilibrium. Conversely, if there is a cycle
x0, x1, . . . , xm = x0 such that xk+1 .Ind xk, we define Γ0 by X0

i = {x0
i , x

1
i , . . . , x

m−1
i } for each

i ∈ N and X0 = {x0, x1, . . . , xm−1}. Clearly, there is no acceptable Nash equilibrium in
Γ0.

The Proposition seems to justify the following way to extend the notion of a “generalized
potential game” to infinite (topological) games: Replace “finite” with “compact” in the
definition of a restriction of Γ, and consider strategic games every compact restriction of
which possesses an acceptable Nash equilibrium. However, our theorem shows that this
class of games admits no simple description (at least, it cannot be described by the absence
of cycles in any sense of the individual improvement relation). On the one hand, the fact is
disappointing; on the other hand, it may be an indirect argument for the notion of a “purely
ordinal” potential game from Kukushkin (1999), where the existence of an acceptable Nash
equilibrium in every compact restriction is ensured.
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5 Concluding Remarks

5.1. In the proof, we did not have to assume that the hypothetical C-condition works for
any subset of a Euclidean space, however complicated; it was only applied to a circle and
to an open interval. Admittedly, our relation was exotic, but this property is quite usual
for mathematical counterexamples. Actually, that relation can be interpreted as the best
response improvement relation in a strategic game (Kukushkin, 1999, Example 2) although
the game itself is certainly artificial. Unfortunately, the class of “natural” relations seems
impossible to define.

5.2. Considering formal restrictions on the relation, there is a condition from S0 which
is necessary and sufficient for an interval order to admit a maximizer on every compact
subset of its domain (Kukushkin, 2005, Theorem 4). On the other hand, the restriction to
transitive relations would leave our Theorem intact, only requiring a bit more complicated
proof based on the transitive closure of the same relation ..

5.3. There are quite natural conditions on binary relations admitting no (obvious) repre-
sentation of the form allowed here. Consider, for instance, the existence of a maximizer on
the whole X,

∃x 6 ∃y [y . x],

or (the key condition in the definition of) a semilattice order,

∀a, b ∃c [
c ≥ a & c ≥ b &6 ∃d [d ≥ a & d ≥ b & not d ≥ c]

]
.

Either formulation ends with a “normal” negative condition: something is impossible.
However, that “something” is preceded with one or two extra quantifiers, and, in the latter
case, also with positive requirements, which was not allowed by our definitions of Section 2.
Thus, our Theorem does not preclude the possibility that the existence of a maximizer on
every compact subset could be equivalent to a (combination of) condition(s) of such a form.
Moreover, if there is no restriction on the use of quantifiers and logical operations, such
a combination can be written down explicitly (Kukushkin, 2005, Section 5); however, it
could not claim any usefulness in any applications.

5.4. Of greater interest to economists may be the existence of maximizers on convex,
compact subsets. The current notion of a C-condition gives no means to express convexity,
so it seems implausible that a condition of that form could be equivalent to the property.
A simple modification of our notions changes the situation: let us add a ternary relation
meaning “x is a convex combination of y and z.” Apparently, every sufficient condition in
the literature now belongs to S0. The question of whether a condition of the form can be
necessary and sufficient remains open.

5.5. The impossibility statement ascribed by Walker (1977, last paragraph) to P. Fishburn
can be viewed as a precursor of this result. There is a big difference, however: What was
shown there was the impossibility of a condition sufficient for the existence of a maximizer
on every compact subset and simultaneously necessary for the existence of a maximizer on
a single compact set. Since much more was expected of the hypothetical condition, the
impossibility result is much weaker. Actually, the requirements were so strong that there
was no need to specify the class of admissible conditions.
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