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Abstract

Morelli (American Political Science Review, 1999) provides a ma-

joritarian bargaining model in which the parties make payoff demands

and the order of moves is chosen by the leading party. Morelli’s main

proposition states that the ex post distribution of payoffs inside the

coalition that forms is proportional to the homogeneous representa-

tion of the game. We provide a counterexample and prove a weaker

result: proportional payoffs hold if the rules are modified so that the

parties must move in decreasing order of weight.
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1 Introduction

In a parliamentary democracy, many important decisions including govern-

ment formation are the outcome of bargaining between the parties in Parlia-

ment. The most influential model of legislative bargaining is the closed rule

model of Baron and Ferejohn (1989). In this model, a party is randomly

recognized to propose a complete distribution of ministerial payoffs and the

remaining parties can accept or reject the proposal. This model has led

to many applications and extensions.1 It has some properties that may be

perceived as drawbacks: the proposer has a large advantage2 (he receives

more than half of the total payoff under simple majority), and there is a

multiplicity of subgame perfect equilibria. In order to single out a unique

prediction, the stationary equilibrium is selected. Stationary strategies are

simple but by no means uncontroversial: a stationary strategy requires a

party to always make the same proposal regardless of the history of the ne-

gotiations so far. Moreover, Norman (2002) shows that sharp predictions

using stationarity are only possible in the infinite horizon version of the

model: in the finite horizon version there is a continuum of equilibria, all of

them with history-independent strategies.

An alternative model of legislative bargaining by Morelli (1999) is based

not on complete proposals but on demands. Parties make individual de-

mands for ministerial payoffs and a coalition emerges between parties mak-

ing compatible demands. The Head of State chooses the first mover, and the

latter chooses the order in which the parties formulate demands. Morelli’s

1For example, McKelvey and Riezman (1992) analize seniority in legislatures. Other

papers incorporate policy preferences (see e.g. Baron, 1991; Jackson and Moselle, 2002),

different risk attitudes or discount factors (Harrington 1990, Eraslan 2002), different vot-

ing rules (Winter 1996, Snyder et al. 2005, Montero 2006) or arbitrary recognition prob-

abilities (Kalandrakis, 2006). Banks and Duggan (2000) show existence of stationary

equilibrium under very general conditions.
2This feature is also present in other proposal-making models (Austen-Smith and Banks

(1988), Bloch and Rottier (2002)).
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main result (Proposition 2) is that the ex post distribution of payoffs inside

the coalition that forms is proportional to the homogeneous representation

of the game regardless of which party is chosen to be the first mover. This

is an attractive result in at least two respects: the first mover has no dispro-

portionate advantage, and a sharp result can be obtained without resorting

to controversial equilibrium refinements.3

In this paper we provide a counterexample to Morelli’s Proposition 2.

In our counterexample, the first mover, even if it is the smallest party in

parliament, can exploit the competition between the other parties and cap-

ture the entire surplus if it is allowed to choose the order of moves. We then

go on to prove a weaker result: proportional payoffs hold if the rules are

modified so that the parties must move in decreasing order of weight. This

procedure mirrors the assumption of Austen-Smith and Banks (1988) that

parties are asked to try to form a government in decreasing order of weight.

Parties making demands in decreasing order of weight is not a completely

unnatural assumption. In some countries the largest party must be asked

to form the government first; in the absence of this rule the largest party is

still selected quite often.4 Moving first in the demand bargaining procedure

is not equivalent to being formateur (the rules of the game allow other par-

3The empirical evidence lies somewhere in between. A large body of empirical studies

(see e.g. Browne and Franklin 1973, Schofield and Laver 1985, Warwick and Druckman

2001) find little or no advantage to being formateur: a party’s share of cabinet posts is

nearly proportional to its share of legislative seats in the governing coalition. Ansolabehere

et al. (2005) find a formateur advantage using voting weights instead of seat shares,

though this advantage is well below the value predicted by the Baron-Ferejohn model.

Interestingly, experiments on majority games do not find as sharp a behavioral difference

between both types of procedures as the theory predicts (see Fréchette et al., 2005).
4The Greek constitution prescribes that the leader of the largest party must be chosen

as the first formateur; if he fails, the leader of the second largest party is selected, to be

followed by the leader of the third largest party if he too fails. Even if the constitution is

silent on this matter, a convention may emerge (Laver and Schofield, 1990, p. 210). For

a quantitative analysis of formateur selection see table 1 in Warwick (1996), table 3 in

Diermeier and Merlo (2004), and table 3 in Ansolabehere et al. (2005).
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ties to exclude the largest party), though in equilibrium the largest party is

always included in the government.

There have been other demand bargaining models in the literature. Bin-

more (1985) presents a three-player “market model” where demands are

carried over to the next round and infinite plays are possible. Selten (1992)

presents a general but relatively complicated model, including random draws

and costs of both formulating a demand and forming a coalition. Bennett

and van Damme (1991) study a simpler version in which each player selects

the next one to move, and show that there may be a multiplicity of subgame

perfect equilibria. Using a refinement, they select the proportional payoff

division for apex games. Winter (1994), Dasgupta and Chiu (1998), and

Vidal-Puga (2004) use various demand commitment procedures to imple-

ment the Shapley value in convex games.

2 Preliminaries

2.1 Weighted majority games

Consider a legislature in which n parties are represented. We denote these as

N = {1, 2, ..., n}. There is a budget of size 1 to be divided by majority rule.
Each party i has ωi votes, and a quota of q is needed for a majority. The

pair [q; (wi)i∈N ] is a weighted majority game. Notice that the game is not

affected if weights and quota are multiplied by the same positive constant.

Given a vector x ∈ RN and a coalition S ⊂ N , we denote as xS the sum

of the coordinates of the members of S, xS :=
P
i∈S

xi.

A coalition S ⊂ N is winning if ωS ≥ q; it is minimal winning if it

is winning and no T Ã S is winning. We denote as Ω (ω) the set of all

winning coalitions, and as Ωm (ω) the set of all minimal winning coalitions.

A dummy player is a player who does not belong to any minimal winning

coalition.

A weighted majority game is constant-sum if S ∈ Ω (ω) ⇐⇒ N\S /∈
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Ω (ω) for all S. It admits an equivalent homogeneous representation if there

exists a vector of votes
¡
ωh1 , ..., ω

h
n

¢
and a quota qh such that Ωm (ω) =

Ωm
¡
ωh
¢
=
©
S ⊂ N : ωhS = qh

ª
. A weighted majority game that admits an

equivalent homogeneous representation is called a homogeneous game.

Homogeneous representations do not always exist and when they exist

they may not be unique. For example, [5; 3, 2, 2, 1] and [7; 4, 3, 3, 1] are two

homogeneous representations of the same game. Peleg (1968) shows that

constant-sum homogeneous games have a unique homogeneous representa-

tion (up to multiplication by a positive constant and to the weight that is

assigned to dummies, which may be 0 or a sufficiently small number).

2.2 Morelli’s bargaining procedure

There are n parties, 1 unit of private benefits to be distributed between

them, and a policy to be chosen from the one-dimensional policy space

[0, 1]. Decisions are taken by weighted majority.

Party i has utility function ui = xi+1− β|θ− θ∗i |, where xi denotes the
share of private benefits accruing to i, θ is the policy implemented and θ∗i is

party i’s ideal policy.

Bargaining proceeds as follows: First, the Head of State chooses a party

i. Second, i chooses an order of play ρ : N → {1, 2, ..., n} so that i is the
first one in the order, i.e. ρ (i) = 1. Third, each party j demands a pair

(dj , θj) following the order of play, where dj ∈ [0, 1] is the share of the private
benefit j claims and θj ∈ [0, 1] is a policy. If, after party j makes its demand,
there exists a winning coalition S ⊂ {k : ρ (k) ≤ ρ (j)} such that dS ≤ 1 and
θk = θl for every k, l ∈ S, then j has the additional choice of forming S, in

which case the policy is implemented and the demands of parties in S are

granted. In case of more than one possible coalition, party j decides which

one is formed. If all parties have moved and no winning coalition has been

formed, the Head of State chooses a first mover again. If after T rounds

no agreement is reached, no private benefits are distributed and the policy
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outcome is the one preferred by the median voter.

Example 1 (cf. theorem 1 in Bennett and van Damme 1991 and Morelli

1999) There are three parties, with 1 vote each. The quota is 2. Parties do

not care about policy, that is, ui = xi. Let T = 1. In the unique subgame

perfect equilibrium parties 1 and 2 form a coalition and get 12 each.

Proof. Since the parties are symmetric the identity of the party chosen by

the Head of State is irrelevant, and the order of moves this party chooses is

irrelevant as well. Without loss of generality suppose party 1 is chosen to

move first, and it chooses party 2 to move second.

Proceeding by backwards induction, suppose it is party 3’s turn to move.

Ifmin(d1, d2) < 1, party 3 will form a coalition with the party with the lowest

demand; if d1 = d2, party 3 is indifferent between 1 and 2 and any choice is

part of an equilibrium at this subgame.

Now consider the situation faced by party 2 after observing d1. If 2

decides to formulate a demand and let the game go on, setting d2 > d1 leads

to a payoff of 0; setting d2 < d1 leads to d2. The payoff of setting d2 = d1

depends on party 3’s tie-breaking rule. As we will see below, party 3 must

break ties in favor of 2 in order for 2 to have a best response at all subgames.

Party 2 then compares the payoff of forming a coalition with party 1

(1−d1) and the payoff of matching party 1’s demand and inducing a coalition
with party 3 (d1). Party 2 sets θ2 = θ1 and forms a coalition if 1− d1 > d1

(i.e. if d1 < 1
2), and makes a demand if d1 > 1

2 . If 3 would break ties in

favor of 1, 2 would not have a best response after observing d1 > 1
2 : it would

want to set a demand as close as possible to d1, but not d1.

Party 1 obtains d1 if it sets d1 < 1
2 and 0 if d1 >

1
2 . Again, 1 does not

have a best response unless 2 breaks ties in its favor for d1 = 1
2 . Party 1 is

then chooses d1 = 1
2 and an arbitrary value of θ1.

The example illustrates an important property of this type of bargaining

procedure: parties will typically face choices among which they (but not

others) are indifferent, and they must break ties in a particular way in order
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for other parties to have a best response earlier on. We will use this property

repeatedly in the rest of the paper.

Proposition 2 in Morelli (1999) states that, when parties only care about

private benefits and there exists a unique equivalent homogeneous represen-

tation (ω, q), then there is a unique equilibrium payoff distribution, where a

winning coalition S∗ (ρ) is formed and each party i ∈ S∗ (ρ) receives a payoff
ωi
q proportional to its number of votes in the homogeneous representation.

This is indeed the case for some games including symmetric and apex

games, but not in general as the following counterexample illustrates.

Proposition 1 There are five parties, with 3, 2, 2, 1 and 1 votes respectively.

The quota is 5. This is a game with a unique homogeneous representation.

Let T = 1. The party chosen as the first mover can always find an order of

play that allows it to get the whole surplus.

Proof. See appendix A.

The intuition for this result is as follows. If party 1 (3 votes) is chosen

to be proposer, it can choose the order [14523], associated to votes [31122],

and get all the surplus. To see this, suppose party 1 demands the whole

surplus. Party 4 (with 1 vote) can either go along with party 1 and demand

0, or make a positive demand and try to form an alternative coalition with

parties 2 and 3. However, given the order of moves, any positive demand

can be undercut by party 5 and will result in coalition {2, 3, 5}. Thus, party
4 may as well demand 0 after observing a demand of 1 by party 1 (indeed,

it must demand 0 in order for party 1 to have a best response). Given that

party 4 demands 0, party 5 is helpless as well: a positive demand would

result in parties 2 and 3 forming a coalition with 4.

If party 2 (2 votes) is chosen to be proposer, it can choose the order

[23451], associated to votes [22113], and get all the surplus. Suppose the

first mover demands the whole surplus. This prevents the second mover

from getting a positive payoff in any coalition that includes the first mover.

The only other alternative, a coalition with the last mover, would always be
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sabotaged by the two small parties. Thus, the second mover may as well

demand 0 after observing a demand of 1 by the first mover. But this in turn

prevents party 4 from getting a positive payoff in a coalition with party 1:

party 1 will always prefer to form a coalition with party 3. Thus, party 4

may as well form a coalition and get 0.

If party 4 (1 vote) is chosen to be proposer, it can choose the order

[42315], associated to votes [12231], and get all the surplus. Suppose party

4 demands the whole surplus. Then party 2 may as well demand 0: any

positive demand can be undercut by party 3 and would lead to a coalition

of parties 1 and 3. On the other hand, if party 2 demands 0, party 3 cannot

get a positive payoff: a positive demand would result in party 1 forming a

coalition with party 2.

By committing itself to a demand and sequencing the order of moves

of the other parties in a suitable way, the first mover exploits the demand

competition between the other parties in its favor. This is the case even

though the first mover has no monopoly proposal power and the rules of the

game allow the first mover to be excluded from the government.

Morelli’s argument for proportionality was that a higher than propor-

tional demand would trigger the reaction of an alternative minimal winning

coalition that can divide payoffs proportionally: any party that deviates can

be replaced without changing the payoff shares for the others (see Morelli

1999 p. 818). Indeed, such a minimal winning coalition always exists, but by

choosing the order of moves the first mover can ensure that the members of

the coalition cannot coordinate on forming an alternative government. For

example, in the order [14523], after party 1 demands the whole surplus there

exists one minimal winning coalition that could exclude 1 and divide payoffs

proportionally: coalition {2, 3, 4}. However, the members of this coalition
do not move consecutively and party 4 knows that any attempt to induce

coalition {2, 3, 4} will be sabotaged by party 5. There is an alternative min-
imal winning coalition, {2, 3, 5}, whose members move consecutively, but
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they do not move immediately after party 1: any attempt of party 5 to form

{2, 3, 5} will be forestalled by party 4 setting a sufficiently low demand.
However, in the next section we restate Morelli’s result as follows: when

the voting game is homogeneous and constant-sum, and the order of moves is

exogenously determined to be by decreasing weight, then there is a unique

equilibrium payoff distribution, where a minimal winning coalition S∗ is

formed and each party i ∈ S∗ receives a payoff ωi
q proportional to its number

of votes in the homogeneous representation.

3 The model

Let [q; (wi)i∈N ] be a constant-sum homogeneous weighted majority game.

There is a budget of size 1 to divide. Party i’s utility function is ui = xi,

where xi is i’s share of the budget. Bargaining proceeds as follows. Parties

move in decreasing order of weight. We label the parties in this order, so

that party 1 moves first, followed by party 2, etc.

Each party i makes a demand di, following the order of play, where

di ∈ [0, 1] is the share of the private benefit party i claims. If, after party i

makes its demand, there exists a winning coalition S ⊂ {j : j ≤ i} such that
dS ≤ 1, party i has the additional choice of forming coalition S, in which

case the private benefits are distributed according to the demands made. If

there is more than one possible S, party i decides which one is formed. If

party n forms no coalition, the game ends with each party getting zero.

Given i ∈ N , we denote as Pi the set of predecessors of i. Namely:

Pi := {j ∈ N : j < i} .

Since parties only care about private benefits, we will assume that they

do not demand a policy outcome. We also assume T = 1, i.e., there is only

one round of bargaining.5

5Any finite T would lead to the same equilibrium outcome, regardless of whether parties

discount future payoffs.
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As it will become clear from the analysis, dummy players must get 0 in

equilibrium, so for simplicity we assume there are no dummy players. We will

use the homogeneous representation with ωn = 1; i.e. the weakest party has

exactly 1 vote. Under these circumstances, every party in a constant-sum

homogeneous game has a positive integer number of votes. Furthermore:

Lemma 1 Let [q; (wi)i∈N ] be a constant-sum homogeneous game. Then,

ωN = 2q − 1.

Proof. Because n is not a dummy player, there exists S ∈ Ωm (ω) such that
n ∈ S. Homogeneity implies ωS = q. Because S ∈ Ωm(ω), S\{n} must be
losing. Since the game is constant-sum, (N\S)∪ {n} ∈ Ω (ω). Moreover, by
deleting the weakest party (i.e. party n) we obtain a losing coalition N\S.
Thus, (N\S)∪ {n} ∈ Ωm (ω). So, ω(N\S)∪{n} = q and ωN\S = q− 1. Hence

ωN = ωS + ωN\S = q + q − 1 = 2q − 1.

Corollary 1 Let [q; (wi)i∈N ] be a constant-sum homogeneous game. Then,

S is maximal losing (i.e. N\S ∈ Ωm (ω)) iff ωS = q − 1.

Proof. Since (N, v) is constant-sum and homogeneous, S is maximal losing

iff N\S ∈ Ωm (ω), which means ωN\S = q and thus, under Lemma 1,

ωS = ωN − ωN\S = 2q − 1− q = q − 1.

Lemma 2 Let [q; (wi)i∈N ] be a weighted majority game. Then, there is a

party i such that Pi+1 ∈ Ωm (ω).

Proof. Suppose this was not the case. Consider the smallest index i such

that S = {1, ..., i} is a winning coalition. There is a minimal winning coali-
tion S0 ⊂ S, and S0 is obtained from S by deleting at least one party j < i.
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However this is impossible because by assumption {1, ..., i− 1} is a losing
coalition, and, since wj ≥ wi for all j < i, this coalition has at least as many

votes as S0.

Lemma 2 does not hold for arbitrary orders of the parties. For example,

if we take the game [3; 2, 1, 1, 1] and order the parties in such a way that

the party with 2 votes is in the third place, no set of parties {1, ..., i} is a
minimal winning coalition. If the parties play the game in this order, the

party that moves first cannot get a positive payoff for any demand, and this

leads to a continuum of subgame perfect equilibria.

Theorem 1 Let [q; (wi)i∈N ] be a constant-sum homogeneous game. Suppose

parties play a demand commitment game in decreasing order of weight. Then

in any subgame perfect equilibrium the minimal winning coalition of Lemma

2 forms with each party i demanding ωi
q .

Proof. See Appendix B.

The equilibrium strategies are roughly as follows (for a formal description

see Appendix B). Given the demands of the parties that have moved so

far, party i determines two things: the optimal coalition to be (eventually)

formed and the optimal demand to make.

In general, the optimal coalition S will control exactly q votes. This

coalition will generally include some parties that have moved before i, as

well as some parties moving after i. Since T = S ∩ Pi is a group of parties
that have already formulated a demand, 1 − dT is the benefit from buying

the votes of the parties in T ; this benefit will be shared by the parties in

S\T . Buying less votes leads to a higher benefit, but more votes from parties
moving after i will be needed to complete a winning coalition. The coalition

S is chosen such that the average benefit per vote, 1−dTq−ωT , is maximized.

The optimal demand for party i will normally be di = ωi
1−dT
q−ωT , that is,

party i will claim a share of the benefit proportional to its number of votes.

Only in some subgames outside the equilibrium path can party i demand

more than a proportional share.

11



Below we present a worked out example.

Example 2 There are five parties, with 3, 2, 2, 1 and 1 votes respectively.

The quota is 5. If the parties play a demand commitment game in decreasing

order there is a unique subgame perfect equilibrium, in which coalition {1, 2}
forms with d1 =

3
5 and d2 =

2
5 .

Proof. We proceed by backward induction.

At stage 5, party 5 faces a vector of demands (d1, d2, d3, d4). It has three

choices:

a) Form coalition {1, 4, 5} and get 1− d1 − d4.

b) Form coalition {2, 3, 5} and get 1− d2 − d3.

c) Form no coalition and get 0.

Suppose forming some coalition is optimal. Then party 5 will form coali-

tion {1, 4, 5} if 1 − d1 − d4 ≥ 1 − d2 − d3, or d4 ≤ d2 + d3 − d1. Ties are

broken in favor of forming the coalition that includes party 4, to guarantee

that party 4 has a best response in the previous stage. Hence the maximum

demand 4 can make and still get into a coalition with 5 is d4 = d2+ d3− d1.

At stage 4, party 4 faces a vector of demands (d1, d2, d3). It can form

coalition {2, 3, 4} or make a demand that will lead to {1, 4, 5}. It forms
{2, 3, 4} if 1− d2 − d3 ≥ d2 + d3 − d1, or

1− d2 − d3 ≥ 1− d1
2

.

Thus, party 4 is effectively comparing the average benefit associated to

buying the votes of 2 and 3 (in which case 1 vote is enough to complete

a winning coalition) or the votes of 1 (in which case 2 votes are needed to

complete a winning coalition and 4 must share the benefit with 5).

From the inequality above, the maximum demand party 3 can make at

the previous stage and still induce {2, 3, 4} is

d3 =
1− 2d2 + d1

2
.
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At stage 3, party 3 faces a vector of demands (d1, d2). It can form

coalition {1, 3} or make a demand that will induce {2, 3, 4}. It makes a
demand if 1−2d2+d12 ≥ 1− d1 or

1− d2
3
≥ 1− d1

2
.

Again, party 3 may buy the votes of party 1 (in which case 2 votes are

required to complete a winning coalition), or the votes of party 2 (in which

case 3 votes are required to complete a winning coalition). It chooses the

alternative with the highest average benefit.

The maximum demand party 2 can make in the previous stage and still

induce coalition {2, 3, 4} is

d2 =
3d1 − 1
2

.

At stage 2, party 2 compares 1−d1 and 3d1−1
2 . It forms {1, 2} if 3d1−12 ≤

1− d1, or d1 ≤ 3
5 . This inequality can be rewritten as

1−d1
2 ≥ 1

5 (where
1
5 is

the average benefit of buying no votes).

Anticipating this, party 1 sets d1 = 3
5 . Party 2 will then set d2 =

2
5 and

coalition {1, 2} is formed.

4 Discussion

We have shown that Morelli’s proportionality result still holds if parties must

move in decreasing order of weight. But if parties move in decreasing order

of weight, the coalition that forms is the minimal winning coalition with the

smallest number of parties, as hypothesized by Leiserson (1968, p. 775). If

parties are asymmetric, the smaller parties are never part of the government.

One may ask whether the Head of State can achieve proportional payoffs

for an arbitrary minimal winning coalition by choosing the order of moves

appropriately. The answer is negative: for the game [5; 3, 2, 2, 1, 1], there

is no order of moves for which coalition {1, 4, 5} forms with a proportional
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payoff division. There are three types of possible orders for which the parties

in this coalition move first: [31122], [13122] and [11322]. It can be shown

that the first mover gets the whole budget in order [31122], whereas in the

other two orders the first mover gets half of the budget.

If the game is not constant-sum and homogeneous, proportionality may

break down. In some cases, this is due to the presence of a party that can

be ”held hostage” by others, as pointed by Morelli (1999).

Example 3 There are four parties, with 3, 2, 2 and 1 votes respectively. The

quota is 5. If the parties play a demand commitment game in decreasing

order the unique subgame perfect equilibrium results in coalition {1, 2} with
d1 =

1
2 and d2 =

1
2 .

Party 4 is helpless because there is only one minimal winning coalition it

can form. Knowing this, party 3 will either form a coalition with 1 and get

1−d1, or set d3 = 1−d2. Party 2 can then form a coalition with 1 (obtaining
1−d1) or set d2 = d1 and induce coalition {2, 3, 4}. Anticipating this, party 1
sets d1 = 1

2 . The game [5; 3, 2, 2, 1] has many homogeneous representations,

but in none of them do parties 1 and 2 have the same number of votes.

Proportionality can break down even if no party can be held hostage by

others, as the following example illustrates.

Example 4 Consider the game [7; 4, 3, 2, 2, 1, 1]. If the parties play a de-

mand commitment game in decreasing order, the unique subgame perfect

equilibrium results in coalition {1, 2} with d1 = d2 =
1
2 .

The game above is constant-sum but not homogeneous. None of the

parties can be held hostage in the sense of Morelli: given any two parties,

each of them can form a minimal winning coalition that does not include

the other. Moreover, coalition {1, 2} has exactly 7 votes. Nevertheless,

proportionality fails because {1, 3, 4} and {2, 3, 4} are both minimal winning
coalitions. From the point of view of parties 3 and 4, parties 1 and 2 are
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equally valuable even though they have a different number of votes. If

the turn reaches party 3, which of the two coalitions forms will depend on

whether d1 is higher or lower than d2. Anticipating this, party 2 has two

options: it can form a coalition with 1 and get 1 − d1, or set d2 = d1 and

induce coalition {2, 3, 4}. Party 2 will form a coalition if 1 − d1 ≥ d1, or

d1 ≥ 1
2 .

5 Conclusion

We have presented a demand bargaining model that makes sharp predictions

regarding coalition formation and payoff division. As in the original model

of Morelli, we need no controversial refinements of subgame perfect equilib-

rium. The model can be extended to any finite horizon, and its predictions

are independent of the discount factors and the risk attitudes of the parties.

Moreover, the first mover has no disproportionate advantage. Because only

the homogeneous representation matters, Gamson’s predictions (see Gam-

son, 1961) hold only approximately, unless the actual seat shares coincide

with the homogeneous weights.

From a normative point of view, proportional payoffs are intuitive in the

absence of policy preferences. They are also predicted by many solution con-

cepts like von Neumann-Morgenstern’s (1944) main simple solution, the set

of balanced aspirations (Cross, 1967), the competitive solution (McKelvey

et al., 1978) and the demand bargaining set (Morelli and Montero, 2003).

The empirical evidence is consistent with the proportional payoff prediction,

at least for parties other than the formateur (see Ansolabehere et al. (2005)

and the references therein). We have shown that Morelli’s appealing results

regarding proportionality in demand bargaining do not hold generally. How-

ever, one should keep in mind that they hold for some important types of

games, including symmetric and apex games.
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6 Appendix A: Proof of Proposition 1

We will denote min(a, b) by a ∧ b and max(a, b) by a ∨ b. There are three
types of parties that can be chosen to be first mover: the party with 3 votes,

one of the parties with 2 votes, and one of the parties with 1 vote. We will

examine each case in turn. Given the order chosen by the first mover, we

divide the game in stages (each stage corresponding to one party moving)

and construct an equilibrium starting by the last party to move. We then

show that there is no other equilibrium.

CASE 1: Party 1 (3 votes) is the first mover. It can choose the

order [14523], associated to votes [31122], and get the whole surplus.

Stage 5. Party 3 (2 votes) faces a vector of demands (d1, d2, d4, d5) and

a vector of policies (θ1, θ2, θ4, θ5). It has four choices6:

a) Form coalition {1, 3} and get 1− d1.

b) If θ2 = θ4, it can also form {2, 3, 4} and get 1− d2 − d4.

c) If θ2 = θ5, it can also form {2, 3, 5} and get 1− d2 − d5.

d) Form no coalition and get 0.

Parties 4 and 5 are interchangeable and no minimal winning coalition

includes {3, 4, 5}, so 3 will either include the cheapest of the two parties
in the coalition or none of them. Denote this party by m (formally, m ∈
argmin
i∈{4,5}

di). Suppose θ2 = θm and forming a coalition is optimal. Then 3

will form {1, 3} if 1 − d1 > 1 − d2 − dm, and {2, 3,m} in the reverse case.
Ties are solved in favor of a coalition with 2, and, if d4 = d5, of {2, 3, 5}.

Stage 4. Party 2 has two options: to form coalition {1, 2}, or to set
θ2 = θm and make a demand that will induce party 3 to form {2, 3,m}. The
maximum demand 2 can make and still induce {2, 3,m} is d2 = d1 − dm. If

d1−dm ≥ 1− d1, party 2 sets θ2 = θm and makes this demand; otherwise it

6 In fact, it may have more choices (e.g. forming coalition {2, 3, 4, 5}) but all of them
are dominated by at least one of these four. Without loss of generality we will not consider

dominated choices. We will also exclude some situations that do not arise in equilibrium

(e.g. demands so high that all coalitions are unfeasible).
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sets θ2 = θ1 and forms {1, 2}. Ties are solved in favor of inducing {2, 3,m},
and, if d4 = d5, of inducing {2, 3, 5}.

If party 5 wants to induce {2, 3, 5} it must set d5 ≤ d4, so that m = 5.

If d1 − d4 ≥ 1 − d1 setting d5 = d4 will do; otherwise d5 = 2d1 − 1. Thus,
the maximum d5 that induces {2, 3, 5} is d5 = d4 ∧ (2d1 − 1). Note that, if
d1 <

1
2 , party 5 cannot induce {2, 3, 5}: 2 will form {1, 2} for any d5 ≥ 0.

Stage 3. Party 5 faces (d1, d4) and (θ1, θ4). If θ1 = θ4, party 5 compares

1− d1 − d4 and d4 ∧ (2d1 − 1). Then party 5 forms {1, 4, 5} if 1− d1 − d4 ≥
d4 ∧ (2d1 − 1). If θ4 6= θ1, the only possible coalition for party 5 is {2, 3, 5},
or no coalition if {2, 3, 5} cannot be induced by any d5 ≥ 0. In either case
party 4 is excluded, so there is no reason for 4 to set θ4 6= θ1.

The maximum value of d4 that still induces {1, 4, 5} depends on the size
of d1. For a relatively large d1 (d1 ≥ 3

5) the critical value is d4 =
1−d1
2 .

Stage 2. The only alternative for party 4 is to induce coalition {1, 4, 5}.
If 35 < d1 < 1, party 4’s best response is to set θ4 = θ1 and d4 =

1−d1
2 ; a

higher demand would result in party 5 inducing coalition {2, 3, 5}. If d1 = 1
any demand is optimal, and ties are solved in favor of θ4 = θ1 and d4 = 1−d1

2 .

Stage 1. Party 1 sets d1 = 1 together with an arbitrary θ1.

We now show the uniqueness of equilibrium payoffs. Essentially we will

show that ties must be solved in favor of coalition {1, 4, 5} when d1 = 1

in order for an equilibrium to exist. It is enough to show that d1 = 1 − �

must lead to coalition {1, 4, 5} for any small � > 0 in a subgame perfect

equilibrium. Having established this, it follows that parties 4 and 5 must

solve ties in favor of party 1 if d1 = 1; otherwise party 1 would have no best

response.

Let d1 = 1− �. If party 4 sets d4 < 1−d1
2 , party 5’s unique best response

is to form coalition {1, 4, 5} regardless of the tie-breaking rules used by 2
and 3. It follows that 5 must form {1, 4, 5} for d4 = 1−d1

2 as well: otherwise

4 would not have a best response after observing d1 = 1− �.

Since {1, 4, 5} must form for d1 = 1 − �, it must also form for d1 = 1.
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Notice that in this case any value of d4 is optimal regardless of 5’s tie-

breaking rule; however, 4 and 5 must solve ties in favor of 1.

CASE 2: Party 2 (2 votes) is the first mover. It can choose the

order [23451], associated to votes [22113], and get all the surplus.

Stage 5. Party 1 (3 votes) faces a vector of demands (d2, d3, d4, d5) and

a vector of policies (θ2, θ3, θ4, θ5). It has four choices:

a) Form coalition {1, 2} and get 1− d2.

b) Form coalition {1, 3} and get 1− d3.

c) If θ4 = θ5, it can also form {1, 4, 5} and get 1− d4 − d5.

d) Form no coalition and get 0.

Suppose θ4 = θ5 and forming some coalition is optimal. Then party 1

forms {1, 4, 5} if 1− d4 − d5 ≥ 1− (d2 ∧ d3). Thus, the maximum demand

party 5 can make and still induce coalition {1, 4, 5} is d5 = (d2 ∧ d3)− d4.

Stage 4. If θ2 = θ3, party 5 can form {2, 3, 5} and get 1 − d2 − d3.

Alternatively, it can induce {1, 4, 5} by setting θ5 = θ4 and d5 = (d2∧d3)−d4.
It will do so if (d2 ∧ d3)− d4 ≥ 1− d2 − d3, or d4 ≤ d2 + d3 + (d2 ∧ d3)− 1.

Stage 3. Party 4 can induce coalition {1, 4, 5} by setting d4 = d2+d3+

(d2∧d3)−1. If θ2 = θ3, it can also form coalition {2, 3, 4}. It forms {2, 3, 4}
if 1− d2 − d3 ≥ d2 + d3 + (d2 ∧ d3)− 1.

Stage 2. If d2 ≥ 2
5 , party 3 can induce coalition {2, 3, 4} by setting

θ3 = θ2 and d3 =
2−2d2
3 . A larger demand or/and setting θ3 6= θ2 would

result in party 4 inducing {1, 4, 5}.
Stage 1. Party 2 sets d2 = 1 together with an arbitrary value of θ2.

To see that equilibrium payoffs are unique, let d2 = 1− �. If d3 < 2−2d2
3 ,

party 4 strictly prefers to form {2, 3, 4}. In order for 3 to have a best

response, 4 must solve ties in favor of {2, 3, 4} for d3 = 2−2d2
3 . But then

both 3 and 4 must solve ties in favor of party 2 for d2 = 1.

CASE 3: Party 4 (1 vote) is the first mover. It can choose the

order [42315], associated to votes [12231], and get all the surplus.

Stage 5. If θ1 = θ4, party 5 can form {1, 4, 5} and get 1 − d1 − d4.
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If θ2 = θ3, it can form {2, 3, 5} and get 1 − d2 − d3. It can also form no

coalition and get 0.

Suppose θ1 = θ4 and θ2 = θ3. Party 5 forms {1, 4, 5} if 1 − d1 − d4 ≥
(1− d2 − d3)∨ 0. If θ2 6= θ3, the relevant condition is 1− d1 − d4 ≥ 0. Thus
the critical value of d1 is (weakly) higher if θ2 6= θ3: because party 5 cannot

form {2, 3, 5}, party 1 can get a better deal in coalition {1, 4, 5}.
Stage 4. Party 1 can form the cheapest of coalitions {1, 2} and {1, 3}

and get 1− (d2 ∧ d3), or induce {1, 4, 5} by setting θ1 = θ4 and d1 = 1− d4

(if d2+ d3 > 1 or θ2 6= θ3) or d1 = d2+ d3− d4 (if d2+ d3 ≤ 1 and θ2 = θ3).

Thus for θ2 = θ3, party 1 forms a two-party coalition if 1 − (d2 ∧ d3) ≥
(d2 + d3 − d4) ∧ (1− d4).

Stage 3. Party 3 can form {2, 3, 4} (provided θ2 = θ4) or induce {1, 3}.
In order to induce {1, 3}, party 3 must set d3 ≤ d2, and can do no better

than setting θ2 = θ3. What is the highest value of d3 that still induces

coalition {1, 3}? If d4 > 1
2 there are two possible cases:

If d2 ≤ 1
2 , d3 = d2 will induce {1, 3}. If party 3 sets d3 = d2, we have

d3 + d2 ≤ 1, thus the relevant inequality for party 1 is 1− d2 ≥ 2d2 − d4, or

d2 ≤ 1+d4
3 . This is satisfied for d4 > 1

2 . Since party 3 can induce {1, 3} by
setting d3 = d2, party 3 will form {2, 3, 4} if 1− d2 − d4 ≥ d2, or d2 ≤ 1−d4

2 .

If d2 > 1
2 , {2, 3, 4} leads to a negative payoff. Thus, party 3 always

induces {1, 3}. This is achieved by setting d3 = d2 ∧ d4.
Stage 2. If 12 < d4 ≤ 1, it is a best response for party 2 to set θ2 = θ4

(setting θ2 6= θ4 would result in coalition {1, 3}) and d2 =
1−d4
2 .

Stage 1. Party 4 sets d4 = 1 and an arbitrary θ4.

Uniqueness can be established analogously to the previous cases.

7 Appendix B: Proof of Theorem 1

The result trivially follows if there is a veto player. In constant-sum games,

a veto player must be a dictator, thus ω1 = q, and d1 = 1 would be the

equilibrium outcome. We will assume from now on that ωi < q for all i.
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We denote as B (d, i) with i ∈ N and d ∈ RPi the subgame which begins

when it is party i’s turn, facing a vector d of demands. At subgame B (d, i),
party i will determine the optimal winning coalition S 3 i to be formed,

and will formulate a demand di that will lead to S being formed. We will

show how party i determines which coalition is optimal as well as how the

optimal coalition can be induced by the choice of di.

Suppose we are in B (d, i), and party i plans to make a demand in the

belief that a coalition S ∈ Ω (ω) with i ∈ S will be formed. This coalition

should include some parties from N\Pi (party i and possibly parties that

move after it) and may also include some predecessors from Pi. Let α be the

number of votes controlled by parties in S ∩ (N\Pi). Then, the parties in
S∩Pi should control at least q−α votes. We denote as b (i, α) the maximum
benefit that can be achieved by buying these q−α votes from parties in Pi.

b (i, α) := max {1− dT : T ⊂ Pi, ωT ≥ q − α} .

Party i can calculate b(i, α) for every feasible value of α. Notice that not

all integers between 0 and q are feasible for every player. First, α cannot be

so small that even the votes of all the parties in Pi would not suffice. Let

γi0 := q − ωPi .

In order for b(i, α) to exist we need α ≥ γi0.

Since party i must be in S, it seems reasonable to require α ≥ ωi as well.

The next lemma shows that this is unnecessary: there is no positive benefit

from buying more than q − ωi votes.

Lemma 3 Let γi0 ≤ α < ωi and assume no party j < i has made a strictly

dominated choice of dj. Then, b (i, α) ≤ 0. Moreover, b (i, α) = 0 implies

b (i, ωi) ≥ 0.

Proof. Let T ⊂ Pi such that ωT ≥ q − α. Since α < ωi, we have

ωT∪{i} = ωT + ωi > ωT + α ≥ q.
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Hence, since the game is homogeneous, T ∪ {i} cannot be a minimal
winning coalition. Moreover, party i is the party with less votes in T ∪ {i},
thus coalition T should be winning. This means that either dT ≥ 1 (implying
b(i, α) ≤ 0) or dT < 1, in which case the smallest party in T (party j)

would have been strictly better-off by setting a higher demand and forming

a coalition, regardless of the actions of the parties moving after j.

Moreover, when b (i, α) = 0, b (i, ωi) ≥ 0 follows from the fact that b (i, ·)
is nondecreasing in the second variable.

We will eliminate strictly dominated strategies, thus in all the subgames

we study it will be the case that b(i, α) ≤ 0 for γi0 ≤ α < ωi. Otherwise the

turn would never have reached party i.

Since there is no positive benefit from buying more than q − ωi votes,

and (given that there is no benefit left to be divided) the particular value

of α is irrelevant if b(i, α) = 0, any lower bound between 0 and ωi can be

equivalently used by party i. We take α to be greater or equal to:7

γi := max
©
1, γi0

ª
.

Moreover, party i is constrained by the number of votes owned by parties

in N\Pi. Thus, α must be smaller or equal to

δi := ωN\Pi .

Notice that δi+1 = δi − ωi for all i < n. Also, ωi < q implies γi0 ≤ δi+1.

It follows from lemma 4.9 in Ostmann (1987) that ωi ≤ δi+1 for all i < n,

thus γi ≤ δi+1 for all i < n.

For party 1 only α ≥ q is feasible and b(1, α) = 1 for all α ≥ q. For

party n, only α = 1 is feasible and b(n, 1) is simply n’s payoff from buying

the votes of one of the cheapest coalitions controlling at least q − 1 votes.
The following lemma shows how b (i+ 1, α) is determined from b(i, ·) and

di. It may be the case that, having α votes in its pocket, party i+1 cannot
7A lower bound of 1 has the advantage of being independent of i and allowing division

by all values of α, but the proof can be adapted to any other choice.
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form a winning coalition without party i. Then b (i+ 1, α) = b (i, α+ ωi)−di
irrespective of di. Otherwise party i+1 will compare the best coalition that

includes i with the best coalition that does not include i. Given that i is

included in the coalition, i+1 needs to buy the remaining votes (q−(α+ ωi))

from Pi, and the best way to do this leads to a benefit of b(i, α + ωi);

after paying di, there would be b (i, α+ ωi) − di left. Without party i,

the maximum benefit from buying q − α votes without buying i’s votes is

precisely b (i, α). Party i will then be included if di is sufficiently low.

Whether di is sufficiently low depends on the demands of the parties in

Pi. Because parties may be complements, in some cases no positive demand

by i would be low enough, as the following example illustrates.

Consider the game [10; 7, 3, 3, 3, 1, 1, 1]. Let i = 3, i + 1 = 4. We have

b(3, 7) = max(1 − d1, 1 − d2) and b(3, 4) = 1 − d1. Having 7 votes in its

pocket, party 3 may buy the votes of either party 1 (with a benefit of 1−d1)
or party 2 (with a benefit of 1−d2). On the other hand, having only 4 votes,
party 3 must buy the votes of party 1, with a benefit of 1− d1.

If party 4 wants to compute b(4, 4) it compares 1−d1 and 1−d2−d3. Thus
in this particular case parties 2 and 3 are complements. If d3 is high, then

b(4, 4) = 1−d1, which is precisely b(3, 4). If both d3 and d2 are sufficiently low,
then b(4, 4) = 1−d2−d3 and b(3, 7) = 1−d2, hence b(4, 4) = b(3, 4+ω3)−d3.
If d2 > d1, no positive value of d3 is sufficiently low.

Lemma 4 Assume we are in B (d, i+ 1). Let α such that γi+10 ≤ α ≤ δi+1.

Then γi0 ≤ α+ ωi ≤ δi and furthermore:

a) if α < γi0, then b (i+ 1, α) = b (i, α+ ωi)− di;

b) if α ≥ γi0, then b (i, α) exists and

b (i+ 1, α) = max {b (i, α) , b (i, α+ ωi)− di} .

Proof. We have to prove that γi0 ≤ α+ ωi ≤ δi. It is straightforward:

α ≤ δi+1 =⇒ α+ ωi ≤ δi+1 + ωi = δi.

22



α ≥ γi+10 = q − ωPi+1 =⇒ α+ ωi ≥ q − ωPi+1 + ωi = q − ωPi = γi0.

a) If α < γi0, every T ⊂ Pi+1 with ωT ≥ q − α satisfies i ∈ T . Then:

b (i+ 1, α) = max
T⊂Pi+1:ωT≥q−α

(1− dT ) = max
T⊂Pi+1:i∈T,ωT≥q−α

(1− dT )

= max
T⊂Pi:ωT≥q−α−ωi

(1− dT )− di = b (i, α+ ωi)− di.

b) If α ≥ γi0, b (i, α) is well defined and

b (i+ 1, α) = max
T⊂Pi+1:ωT≥q−α

(1− dT )

= max

½
max

T⊂Pi+1:i/∈T,ωT≥q−α
(1− dT ) , max

T⊂Pi+1:i∈T,ωT≥q−α
(1− dT )

¾
= max

½
max

T⊂Pi:ωT≥q−α
(1− dT ) , max

T⊂Pi:ωT≥q−α−ωi
(1− dT )− di

¾
= max {b (i, α) , b (i, α+ ωi)− di} .

We have defined the best way to form a coalition that contains α votes

from N\Pi and at least q−α votes from Pi. It remains to choose the optimal

value of α, and the optimal demand di.

We denote as Σi the set of values between γi and δi that maximize

b (i, α) /α. Thus:

Σi := argmax
γi≤α≤δi

b (i, α)

α

The next lemma shows that the only interesting bargaining occurs when

b
¡
i, σi

¢ ≥ 0 for some/all8 σi ∈ Σi.
Lemma 5 Assume we are in a subgame perfect equilibrium (SPE) of B (d, i).
If b

¡
i, σi

¢
< 0 for some/all σi ∈ Σi, then every party gets zero.

Proof. Since b
¡
i, σi

¢
/σi is maximum, we deduce that b (i, α) < 0 for every

α ≥ γi. The same occurs for α = 0 since b (i, α) is nondecreasing in α. This

means that no winning coalition can be formed.

8Of course, b (i, σ) ≥ 0 for some σ ∈ Σi implies b (i, σ) ≥ 0 for all σ ∈ Σi.
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Thus, if b
¡
i, σi

¢
< 0 for some/all σi ∈ Σi, party i formulates an arbitrary

demand and the game eventually ends with no coalition being formed.

From now on, we will assume that b
¡
i, σi

¢ ≥ 0 for all σi ∈ Σi. We will
show that in equilibrium party i always chooses some α ∈ Σi.

The following lemma shows that all values of α between δi+1 + 1 and

δi+1 + ωi = δi lead to the same b(i, α). The extra votes are not valuable

because they are not enough to replace any party from Pi.

For example, in the game [10; 7, 3, 3, 3, 1, 1, 1], δ4 = 6 and δ5 = 3. Con-

sider the situation of party 4. If it takes α = 4, there are two ways to form a

winning coalition: buying the votes of party 1, or buying the votes of parties

2 and 3. Thus, b(4, 4) = max(1−d1, 1−d2−d3). If instead it takes α = 5 or
α = 6, exactly the same parties are needed: none of party 4’s predecessors

can be dispensed with despite the extra votes.

Lemma 6 Assume we are in the subgame B (d, i). Then©
T ⊂ Pi : ωT ≥ q − ¡δi+1 + α

¢ª
=
©
T ⊂ Pi : ωT ≥ q − δi

ª
for all α = 1, 2, ..., ωi.

Proof. “⊂” Let T ⊂ Pi such that ωT ≥ q − ¡ωN\Pi+1 + α
¢
. Then

ωT ≥ q − ¡ωN\Pi − ωi + α
¢
= q − ωN\Pi + (ωi − α) ≥ q − ωN\Pi .

“⊃” Let T ⊂ Pi such that ωT ≥ q−ωN\Pi . Then, T ∪ (N\Pi) is winning
and contains party i. We study two cases:

• T ∪ (N\Pi) \ {i} = T ∪ (N\Pi+1) is also winning. Then, ωT ≥ q −
ωN\Pi+1 and the result is proved.

• T ∪ (N\Pi+1) is losing. Then, since the game is constant-sum, we
conclude that its complement, (N\T ) ∩ Pi+1, is winning and contains
party i as the weakest member. By taking out party i, we obtain

the coalition (N\T )∩Pi which is losing (since its complementary T ∪
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(N\Pi) is winning). Thus, (N\T ) ∩ Pi+1 is minimal winning and T ∪
(N\Pi+1) is maximal losing. Hence, under Corollary 1:

ωT = q − ωN\Pi+1 − 1 ≥ q − ωN\Pi+1 − α.

Corollary 2 In B (d, i), we have b
¡
i, δi+1 + α

¢
= b

¡
i, δi

¢
for all α = 1, 2, ..., ωi.

Moreover, for all σi ∈ Σi, if b ¡i, σi¢ > 0,
σi > δi+1 =⇒ σi = δi+1 + 1.

Proof. Under Lemma 6, it is clear that b
¡
i, δi+1 + α

¢
= b

¡
i, δi

¢
for all

α = 1, 2, ..., ωi, since they minimize dT on the same coalitions T . Hence, if

b
¡
i, δi

¢
> 0,

b
¡
i, δi+1 + α

¢
δi+1 + α

<
b
¡
i, δi+1 + 1

¢
δi+1 + 1

for all α = 2, ..., ωi and thus the maximum is b
¡
i, δi+1 + 1

¢
/
¡
δi+1 + 1

¢
. Let

σi ∈ Σi such that σi > δi+1. Since σi = δi+1 + α for some α = 1, 2, ..., ωi,

we conclude the result.

Now we define the maximum demand party i can make at B(d, i). This
depends on what party i + 1 can achieve without party i. If party i + 1

decides to exclude party i, it is in a similar situation to party i except that

it has less feasible values for α. It will be choosing an α between γi and

δi+1, and the maximum benefit from buying q − α votes without party i is

precisely b(i, α). We define T i as the set of values between γi and δi+1 that

maximize b (i, α) /α (recall that γi ≤ δi+1, so the interval is nonempty).

T i := argmax
γi≤α≤δi+1

b (i, α)

α
.

Let τ i ∈ T i. Because γi ≤ τ i and τ i ≤ δi+1 < δi,
b(i,τ i)
τ i
≤ b(i,σi)

σi
for all

σi ∈ Σi.
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For any values of σi ∈ Σi and τ i ∈ T i, we define

d∗i :=


ωib(i,σi)

σi
if σi ≤ δi+1

b
¡
i, σi

¢− σi−ωi
τ i

b
¡
i, τ i

¢
if σi > δi+1 and b

¡
i, τ i

¢ ≥ 0
b
¡
i, σi

¢
if σi > δi+1 and b

¡
i, τ i

¢
< 0.

 (1)

It is easy to prove that d∗i is independent of the particular choice of σ
i and

τ i. By definition,
b(i,τ i)
τ i

and
b(i,σi)
σi

are independent of the τ i and σi chosen.

Also, b
¡
i, τ i

¢ ≥ 0 for some τ i ∈ T i if and only if b
¡
i, τ i

¢ ≥ 0 for all τ i ∈ T i.

If b
¡
i, σi

¢
= 0 for some σi, then b

¡
i, σi

¢
= 0 for all σi and b

¡
i, τ i

¢ ≤ 0 for all
τ i ∈ T i. Thus, d∗i = 0 regardless of the choice of σ

i and τ i. If b
¡
i, σi

¢
> 0,

d∗i is the same for all σ
i ≤ δi+1. If σi > δi+1, σi = δi+1 + 1. If Σi contains

some σi ≤ δi+1 as well as σi = δi+1 + 1, d∗i will still be independent of the

choice of σi because in this case T i = Σi\{δi+1 + 1}, thus b(i,τ i)
τ i

=
b(i,σi)
σi

.

In order to prove that d∗i is the equilibrium demand of party i, the

following lemmas will be useful. Notice that σi > ωi for some σi ∈ Σi
implies i < n, because ωn = 1 and γn = δn = 1.

Lemma 7 Assume we are in B (d, i). If σi > ωi for some σi ∈ Σi and party
i demands di ≤ d∗i , then

γi+1 ≤ σi − ωi ≤ δi+1 (2)

b
¡
i+ 1, σi − ωi

¢
= b

¡
i, σi

¢− di (3)

and, given any τ i ∈ T i,

b
¡
i+ 1, σi − ωi

¢
σi − ωi

≥


b(i,σi)
σi

if σi ≤ δi+1

b(i,τ i)
τ i

if σi > δi+1 and b
¡
i, τ i

¢ ≥ 0
0 if σi > δi+1 and b

¡
i, τ i

¢
< 0.

 (4)

Furthermore, inequality in (4) is strict iff di < d∗i .

Proof. Let σi ∈ Σi such that σi > ωi. We first prove (2):

σi ≤ δi =⇒ σi − ωi ≤ δi − ωi = δi+1.

σi ≥ γi ≥ γi0 = q − ωPi =⇒ σi − ωi ≥ q − ωPi − ωi = q − ωPi+1 = γi+10 .

σi > ωi =⇒ σi − ωi > 0 =⇒ σi − ωi ≥ 1.
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We have just proven that σi − ωi is a feasible value of α for party i+ 1.

Notice that for b
¡
i, σi

¢
> 0, homogeneity implies σi − ωi ≥ ωi+1.

We prove now (3) and (4). Under Lemma 4a), (3) is true when σi−ωi <
γi0. Then (4) follows immediately by replacing

b(i+1,σi−ωi)
σi−ωi by

b(i,σi)−di
σi−ωi and

then using di ≤ d∗i .
9 Assume then σi − ωi ≥ γi0. We have two cases:

1. If σi ≤ δi+1, then d∗i =
ωib(i,σi)

σi
. Since σi ∈ Σi, re-arranging terms,

b
¡
i, σi − ωi

¢
σi − ωi

≤ b
¡
i, σi

¢
σi

=⇒ b
¡
i, σi − ωi

¢ ≤ b
¡
i, σi

¢− ωib
¡
i, σi

¢
σi

=⇒ b
¡
i, σi − ωi

¢ ≤ b
¡
i, σi

¢− di.

Hence, (3) follows under lemma 4b). Moreover

b
¡
i+ 1, σi − ωi

¢
σi − ωi

=
b
¡
i, σi

¢− di

σi − ωi
≥ b

¡
i, σi

¢− ωib(i,σi)
σi

σi − ωi

=

¡
σi − ωi

¢
b
¡
i, σi

¢
σi (σi − ωi)

=
b
¡
i, σi

¢
σi

with strict inequality iff di < d∗i .

2. If σi > δi+1, recall that γi ≤ σi − ωi ≤ δi+1. Then for any τ i ∈ T i

b
¡
i, τ i

¢
τ i

≥ b
¡
i, σi − ωi

¢
σi − ωi

.

Re-arranging terms,

σi − ωi
τ i

b
¡
i, τ i

¢ ≥ b
¡
i, σi − ωi

¢
=⇒ b

¡
i, σi − ωi

¢
+ b

¡
i, σi

¢− σi − ωi
τ i

b
¡
i, τ i

¢ ≤ b
¡
i, σi

¢
=⇒ b

¡
i, σi − ωi

¢
+ di ≤ b

¡
i, σi

¢
.

Hence, (3) follows under lemma 4b).

To show (4), we distinguish two subcases:

9Actually, σi − ωi < γi0 implies σ
i ≤ δi+1, so two of the three cases are void.
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(a) If b
¡
i, τ i

¢ ≥ 0, then d∗i = b
¡
i, σi

¢− σi−ωi
τ i

b
¡
i, τ i

¢
b
¡
i+ 1, σi − ωi

¢
σi − ωi

=
b
¡
i, σi

¢− di

σi − ωi

≥ b
¡
i, σi

¢− b
¡
i, σi

¢
+ σi−ωi

τ i
b
¡
i, τ i

¢
σi − ωi

=
b
¡
i, τ i

¢
τ i

with strict inequality iff di < d∗i .

(b) If b
¡
i, τ i

¢
< 0, then d∗i = b

¡
i, σi

¢
and thus

b
¡
i+ 1, σi − ωi

¢
σi − ωi

=
b
¡
i, σi

¢− di

σi − ωi
≥ 0

with strict inequality iff di < d∗i .

Lemma 8 Assume we are in B (d, i+ 1) and σi > ωi for some σi ∈ Σi.
a) If di < d∗i , then i ∈ S for all S ∈ argmax

T⊂Pi+1:ωT≥q−σi+1
(1− dT ) and all

σi+1 ∈ Σi+1.
b) If di = d∗i , then σi − ωi ∈ Σi+1. Moreover, S ∈ argmax

T⊂Pi:ωT≥q−σi
(1− dT )

implies S ∪ {i} ∈ argmax
T⊂Pi+1:ωT≥q−(σi−ωi)

(1− dT ).

c) If di = d∗i , given σi+1 ∈ Σi+1 and S ∈ argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT ),

i ∈ S implies S ∩ Pi ∈ argmax
T⊂Pi:ωT≥q−σi

(1− dT ) for some σi ∈ Σi.

Proof. a) Let σi+1 ∈ Σi+1. Suppose there exists S ∈ argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT )

such that i /∈ S. Then, b
¡
i+ 1, σi+1

¢
= b

¡
i, σi+1

¢
. We see three cases:

1. If σi ≤ δi+1,

b
¡
i+ 1, σi+1

¢
σi+1

=
b
¡
i, σi+1

¢
σi+1

≤ b
¡
i, σi

¢
σi

(Lemma 7)
<

b
¡
i+ 1, σi − ωi

¢
σi − ωi

which contradicts that σi+1 ∈ Σi+1.
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2. If σi > δi+1,

b
¡
i+ 1, σi+1

¢
σi+1

=
b
¡
i, σi+1

¢
σi+1

≤ b
¡
i, τ i

¢
τ i

(Lemma 7)
<

b
¡
i+ 1, σi − ωi

¢
σi − ωi

which contradicts that σi+1 ∈ Σi+1.

b) Let α such that γi+1 ≤ α ≤ δi+1. Under Lemma 4, either b (i+ 1, α) =

b (i, α+ ωi)− di or b (i+ 1, α) = b (i, α). We have to prove that

b (i+ 1, α)

α
≤ b

¡
i+ 1, σi − ωi

¢
σi − ωi

.

If b (i+ 1, α) = b (i, α), we proceed like in case a).

If b (i+ 1, α) = b (i, α+ ωi)− di, we have three cases:

1. If σi ≤ δi+1, then

b (i+ 1, α)

α
=

b (i, α+ ωi)− di
α

=
b (i, α+ ωi)− ωib(i,σi)

σi

α

≤
b(i,σi)
σi

(α+ ωi)− ωib(i,σi)
σi

α

=
b
¡
i, σi

¢
σi

(Lemma 7)
≤ b

¡
i+ 1, σi − ωi

¢
σi − ωi

.

2. If σi > δi+1 and b
¡
i, τ i

¢ ≥ 0 for some/all τ i ∈ T i, then either
b(i,α+ωi)
α+ωi

≤ b(i,τ i)
τ i

(if α + ωi ≤ δi+1) or b (i, α+ ωi) = b
¡
i, σi

¢
(if

α+ ωi > δi+1, by Corollary 2).

If α+ ωi ≤ δi+1,

b (i+ 1, α)

α
=

b (i, α+ ωi)− di
α

=
b (i, α+ ωi)− b

¡
i, σi

¢
+ σi−ωi

τ i
b
¡
i, τ i

¢
α

≤
α+ωi
τ i

b
¡
i, τ i

¢− σi

τ i
b
¡
i, τ i

¢
+ σi−ωi

τ i
b
¡
i, τ i

¢
α

=
b
¡
i, τ i

¢
τ i

(Lemma 7)
≤ b

¡
i+ 1, σi − ωi

¢
σi − ωi

.
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If α+ ωi > δi+1,

b (i+ 1, α)

α
=

b (i, α+ ωi)− di
α

=
b (i, α+ ωi)− b

¡
i, σi

¢
+ σi−ωi

τ i
b
¡
i, τ i

¢
α

=
σi − ωi

α

b
¡
i, τ i

¢
τ i

.

If b
¡
i, σi

¢
> 0, corollary 2 implies σi = δi+1 + 1. Then α− ωi > δi+1

implies α + ωi ≥ δi+1 + 1 = σi, or
¡
σi − ωi

¢
/α ≤ 1. If b(i, σi) = 0,

b(i, τ i) = 0, implying σi−ωi
α

b(i,τ i)
τ i

= b(i,τ i)
τ i

. In either case,

b (i+ 1, α)

α
≤ b

¡
i, τ i

¢
τ i

(Lemma 7)
≤ b

¡
i+ 1, σi − ωi

¢
σi − ωi

.

3. If σi > δi+1 and b
¡
i, τ i

¢
< 0 for some/all τ i ∈ T i, then either

b (i, α+ ωi) < 0 (if α + ωi ≤ δi+1) or b (i, α+ ωi) = b
¡
i, σi

¢
(if

α+ ωi > δi+1, by Corollary 2).

If b (i, α+ ωi) < 0,

b (i+ 1, α)

α
=

b (i, α+ ωi)− di
α

< −di
α
≤ 0 ≤ b

¡
i+ 1, σi − ωi

¢
σi − ωi

.

If b (i, α+ ωi) = b
¡
i, σi

¢
,

b (i+ 1, α)

α
=

b (i, α+ ωi)− di
α

= 0 ≤ b
¡
i+ 1, σi − ωi

¢
σi − ωi

.

We now prove the second statement. Let S ∈ argmax
T⊂Pi:ωT≥q−σi

(1− dT ). We

have to prove b
¡
i+ 1, σi − ωi

¢
= 1− dS∪{i}. Using (3),

b
¡
i+ 1, σi − ωi

¢
= b

¡
i, σi

¢− di = 1− dS − di = 1− dS∪{i}.

c) Since i ∈ S, b(i+ 1, σi+1) = b(i, σi+1 + ωi)− di, or

b(i, σi+1 + ωi) = b(i+ 1, σi+1) + di. (5)

Let σi > ωi. We have shown that σi − ωi ∈ Σi+1, thus
b(i+ 1, σi+1)

σi+1
=

b(i+ 1, σi − ωi)

σi − ωi
. (6)
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1. If σi ≤ δi+1 for some σi ∈ Σi, it follows from (6) and (3) that

b(i+ 1, σi+1)

σi+1
=

b(i, σi)

σi
. (7)

Then

b(i, σi+1 + ωi)

σi+1 + ωi

(5)
=

b(i+ 1, σi+1) + di
σi+1 + ωi

=
b(i+ 1, σi+1) + ωi

σi
b
¡
i, σi

¢
σi+1 + ωi

(7)
=

σi+1

σi
b
¡
i, σi

¢
+ ωi

σi
b
¡
i, σi

¢
σi+1 + ωi

=
b(i, σi)

σi
.

Hence σi+1 + ωi ∈ Σi and b
¡
i, σi+1 + ωi

¢
= b

¡
i+ 1, σi+1

¢
+ di =

1− dS∩Pi .

2. If σi > δi+1 for all σi ∈ Σi, δi+1 + 1 always belongs to Σi.
Suppose S ∩ Pi /∈ argmax

T⊂Pi:ωT≥q−σi
(1− dT ) for all σi ∈ Σi. Then it must

be the case that for any σi either ωS∩Pi < q − σi, or ωS∩Pi ≥ q − σi

but 1− dS∩Pi is not maximal.

Suppose ωS∩Pi < q − σi for all σi ∈ Σi. Since δi+1 + 1 ∈ Σi, it
follows from Lemma 6 that ωS∩Pi < q− δi. But then ωS∩Pi +ωN\Pi =

ωS∩Pi+1 + ωN\Pi+1 < q, contradicting the assumption that ωS∩Pi+1 ≥
q − σi+1.

Suppose ωS∩Pi ≥ q − σi but 1− dS∩Pi < 1− dT for some σi ∈ Σi and
T ⊂ Pi with ωT ≥ q − σi.

If σi+1 + ωi > δi+1,

b(i, σi+1 + ωi)
(6)
= b(i, σi) > 1− dS∩Pi = b(i+ 1, σi+1) + di

contradicting (5).

If σi+1 + ωi ≤ δi+1, b(i,σi+1+ωi)
σi+1+ωi

≤ b(i,τ i)
τ i

. There are two possibilities.
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• If b(i, τ i) ≥ 0, it follows from (6) and (3) that b(i+1,σi+1)
σi+1

= b(i,τ i)
τ i

.

Then

b(i, τ i)

τ i
(σi+1 + ωi) ≥ b(i, σi+1 + ωi)

(5)
= b(i+ 1, σi+1) + di =

=
b(i, τ i)

τ i
σi+1 + b

¡
i, σi

¢− (σi − ωi)
b
¡
i, τ i

¢
τ i

implying b(i,τ i)
τ i
≥ b(i,σi)

σi
, thus b(i,τ i)

τ i
= b(i,σi)

σi
. Then b(i,σi+1+ωi)

σi+1+ωi
=

b(i,σi)
σi

. Hence σi+1 + ωi ∈ Σi and the result follows.
• If b(i, τ i) < 0, it follows from (6) and (3) that b(i+1,σi+1)

σi+1
= 0.

Then

b(i, σi+1 + ωi) = b(i+ 1, σi+1) + di = b(i, σi).

Hence b(i, σi) = 1− dS∩Pi and the result follows.

Lemma 9 Assume we are in B (d, i+ 1) and di > d∗i .

a) If b
¡
i, τ i

¢ ≥ 0 for some/all τ i ∈ T i, then

i /∈ S for all S ∈ argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT ) and all σi+1 ∈ Σi+1.
b) If b

¡
i, τ i

¢
< 0 for some/all τ i ∈ T i, then every party obtains zero.

Proof. a) Let σi+1 ∈ Σi+1 and τ i ∈ T i. We need to prove that b
¡
i, σi+1

¢
exists and b

¡
i, σi+1

¢
> b

¡
i, σi+1 + ωi

¢− di. This will be due to party i+ 1

having the option of setting α = σi (if σi ≤ δi+1) or α = τ i (if σi > δi+1).

We examine each case in turn:

1. If σi ≤ δi+1, then di >
ωib(i,σi)

σi
.

Since σi ≤ δi+1, b(i+ 1, σi) exists. Moreover, lemma 4b) implies

b(i+ 1, σi) ≥ b(i, σi). (8)

In principle, there are three possibilities for σi+1: either σi+1 < γi0,

or σi+1 ≥ γi0 and b
¡
i, σi+1

¢ ≤ b
¡
i, σi+1 + ωi

¢ − di, or σi+1 ≥ γi0 and
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b
¡
i, σi+1

¢
> b

¡
i, σi+1 + ωi

¢ − di. We will show that the first two

possibilities lead to a contradiction. In both cases, Lemma 4 implies

b
¡
i+ 1, σi+1

¢
= b

¡
i, σi+1 + ωi

¢− di. (9)

From (9) we can deduce:

b
¡
i+ 1, σi+1

¢
σi+1

=
b
¡
i, σi+1 + ωi

¢− di

σi+1

<
b
¡
i, σi+1 + ωi

¢− ωib(i,σi)
σi

σi+1

≤
(σi+1+ωi)b(i,σi)

σi
− ωib(i,σi)

σi

σi+1

=
b
¡
i, σi

¢
σi

(8)
≤ b

¡
i+ 1, σi

¢
σi

.

which contradicts that σi+1 ∈ Σi+1. Thus, σi+1 ≥ γi0 (i.e. b
¡
i, σi+1

¢
does exist) and b

¡
i, σi+1

¢
> b

¡
i, σi+1 + ωi

¢ − di. We conclude then

that i /∈ S for all S ∈ argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT ) .

2. If σi > δi+1, then di > b
¡
i, σi

¢− σi−ωi
τ i

b
¡
i, τ i

¢
.

Under Lemma 4b):

b
¡
i+ 1, τ i

¢
= max

©
b
¡
i, τ i

¢
, b
¡
i, τ i + ωi

¢− di
ª ≥ b

¡
i, τ i

¢
. (10a)

Suppose b
¡
i, σi+1

¢
does not exist (i.e. σi+1 < γi0), or b

¡
i, σi+1

¢
exists

and b
¡
i, σi+1

¢ ≤ b
¡
i, σi+1 + ωi

¢− di. In both cases, under Lemma 4,

b
¡
i+ 1, σi+1

¢
= b

¡
i, σi+1 + ωi

¢− di. (11)

We will prove that (11) leads to a contradiction, so that b
¡
i, σi+1

¢
exits and b

¡
i, σi+1

¢
> b

¡
i, σi+1 + ωi

¢− di, which implies i /∈ S for all

S ∈ argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT ) as desired.

We have two cases:
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• If σi+1 + ωi ≤ δi+1. Then b(i,σi+1+ωi)
σi+1+ωi

≤ b(i,τ i)
τ i

and

b
¡
i+ 1, σi+1

¢
σi+1

=
b
¡
i, σi+1 + ωi

¢− di

σi+1

<
b
¡
i, σi+1 + ωi

¢− b
¡
i, σi

¢
+ σi−ωi

τ i
b
¡
i, τ i

¢
σi+1

≤
σi+1+ωi

τ i
b
¡
i, τ i

¢− σi

τ i
b
¡
i, τ i

¢
+ σi−ωi

τ i
b
¡
i, τ i

¢
σi+1

=
b
¡
i, τ i

¢
τ i

(10a)

≤ b
¡
i+ 1, τ i

¢
τ i

which is a contradiction.

• If σi+1 + ωi > δi+1, then under Corollary 2, b
¡
i, σi+1 + ωi

¢
=

b
¡
i, σi

¢
. If b

¡
i, σi

¢
> 0, σi = δi+1 + 1 and σi+1 + ωi ≥ σi, which

implies
¡
σi − ωi

¢
/σi+1 ≤ 1. If b ¡i, σi¢ = 0, b ¡i, τ i¢ = 0. Hence:

b
¡
i+ 1, σi+1

¢
σi+1

=
b
¡
i, σi+1 + ωi

¢− di

σi+1

<
b
¡
i, σi+1 + ωi

¢− b
¡
i, σi

¢
+ σi−ωi

τ i
b
¡
i, τ i

¢
σi+1

=
σi − ωi
σi+1

b
¡
i, τ i

¢
τ i

≤ b
¡
i, τ i

¢
τ i

(10a)

≤ b
¡
i+ 1, τ i

¢
τ i

which is a contradiction.

b) Recall that we assumed b(i, σi) ≥ 0 for all σi ∈ Σi. Thus, b ¡i, τ i¢ < 0
for some τ i ∈ T i implies σi > δi+1. Under Corollary 2, this means b

¡
i, σi

¢
=

b
¡
i, δi

¢
. Let α be such that γi+1 ≤ α ≤ δi+1. Under Lemma 4, we have two

cases:

1. b (i+ 1, α) = b (i, α+ ωi)− di. Then

b (i+ 1, α) < b (i, α+ ωi)− b
¡
i, δi

¢
.

Since α+ ωi ≤ δi, b (i, α+ ωi) ≤ b
¡
i, δi

¢
and thus b (i+ 1, α) < 0.
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2. b (i+ 1, α) = b (i, α). Then γi0 ≤ α ≤ δi+1 and

b (i+ 1, α)

α
≤ b

¡
i, τ i

¢
τ i

< 0

and thus b (i+ 1, α) < 0.

Since b (i+ 1, α) < 0 for all α, we conclude b
¡
i+ 1, σi+1

¢
< 0 for all

σi+1 ∈ Σi+1 and thus by Lemma 5 all the parties get zero.

Let us consider the following strategy profile for the parties. In B (d, n),
party n forms a coalition S ∪ {n} with S ∈ argmax

T⊂Pn:ωT≥q−ωn
(1− dT ) after

demanding dn = 1−dS. If there is more than one possible choice of S, party
n uses the following tie-breaking rule: First, select only the coalitions that

contain the party with the highest index (party n − 1, or, if party n − 1 is
in none of the coalitions, party n − 2 etc.). If there are several coalitions
containing this party, select the ones that contain the party with the second

highest index, etc., until only one coalition is left.

Let i < n and assume we have defined the strategies for parties in

B (d, i+ 1). In B (d, i), party i proceeds as follows:

1. If σi > ωi for all σi ∈ Σi, party i demands di = d∗i given as in (1).

2. If Σi = {ωi}, party i forms coalition S ∪ {i} with S ∈ argmin
T⊂Pi:ωT≥q−ωi

dT .

If there is more than one possible choice of S, party i uses the tie-

breaking rule: Among all the optimal coalitions S ∈ argmin
T⊂Pi:ωT≥q−ωi

dT ,

party i selects the ones that contain the party with the highest index

(i− 1, or, if party i− 1 is in none of the coalitions, party i− 2, etc). If
there are several coalitions containing this party, select the ones that

contain the party with the second highest index, etc., until only one

coalition is left.

3. If {ωi} Ã Σi, party i can anticipate the coalition S∗ that will be

formed should it demand d∗i and its followers play the strategies we

have defined.
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(a) If i /∈ S∗, party i forms coalition S∪{i} with S ∈ argmin
T⊂Pi:ωT≥q−ωi

dT .

If there is more than one possible S, party i uses the tie-breaking

rule.

(b) If i ∈ S∗, party i compares the coalitions S ∈ argmax
T⊂Pi:ωT≥q−ωi

(1− dT )

and S∗ ∩ Pi. Among them, party i selects a coalition following

the tie-breaking rule. If S∗ is chosen, party i demands di = d∗i
given as in (1). If S 6= S∗ is chosen, then party i demands

1− dS = b (i, ωi) = d∗i .and forms coalition S ∪ {i}.

The role of the tie-breaking rule is to ensure that parties have a best

response at all stages (cf. Example 1).

Proposition 2 The above strategies constitute a SPE for any B (d, i).

Proof. We proceed by backwards induction on i. For i = n, its strategy is

clearly optimal.

Assume now the result is true for B (d, i+ 1) and moreover assume the
following two conditions hold:

Condition 1 The formed coalition satisfies

S ∩ Pi+1 ∈ argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT )

for some σi+1 ∈ Σi+1. (This condition holds trivially for i + 1 = n

because Σn = {ωn}).

Condition 2 The above S and σi+1 are such that S ∩ Pi+1 is one of the

most favorable sets for party i (i.e. i /∈ S implies i /∈ T for all T ∈
argmax

T⊂Pi+1:ωT≥q−σi+1
(1− dT ) and all σi+1 ∈ Σi+1). Among them, it is one

of the most favorable to party i − 1, etc. (This condition holds for
i+ 1 = n because Σn = {ωn} and n applies the tie-breaking rule).

We check that this remains true for B (d, i). Let τ i ∈ T i. We have two

cases:
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1. If σi > ωi for all σi ∈ Σi, then it is straightforward to check that
party i obtains stricly less than d∗i by forming coalition. If i demands

d∗i , S ∪ {i} ∈ argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT ) for σi+1 = σi − ωi ∈ Σi+1.
The induction hypothesis (Conditions 1 and 2) implies that d∗i will

be accepted. Assume party i deviates by demanding di > d∗i . If

b
¡
i, τ i

¢ ≥ 0, under Lemma 9a) party i does not belong to any coalition
in argmax

T⊂Pi+1:ωT≥q−σi+1
(1− dT ) for any σi+1 ∈ Σi+1 and its final payoff

is zero under the induction hypothesis (Condition 1). If b
¡
i, τ i

¢
< 0,

under Lemma 9b), its final payoff is zero.

Moreover, Conditions 1 and 2 hold for i. Condition 1 follows from

Lemma 8b) and the induction hypothesis applied to Conditions 1 and

2. Condition 2 follows from the tie-breaking rule applied by the party

j > i that eventually forms coalition.

2. If ωi ∈ Σi, then 1−dS = b (i, ωi) = d∗i for all S ∈ argmax
T⊂Pi:ωT≥q−ωi

(1− dT ).

This means that if party i forms a winning coalition it obtains a final

payoff of b (i, ωi). Suppose party i deviates and demands di > b (i, ωi).

It is enough to check that i /∈ S for all S ∈ argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT )

and all σi+1 ∈ Σi+1. Under the induction hypothesis applied to Con-
dition 1, this means that party i will not be included in any eventual

winning coalition, and its final payoff will be zero, while the original

strategy yields a nonnegative payoff.

For constant-sum homogeneous games it is always the case that ωi ≤
δi+1, thus b(i+ 1, ωi) is well defined. Under Lemma 4b),

b (i+ 1, ωi) = max {b (i, ωi) , b (i, 2ωi)− di} ≥ b (i, ωi) (12)

Suppose that i ∈ S for some S ∈ argmin
T⊂Pi+1:ωT≥q−σi+1

dT and some σi+1 ∈
Σi+1. This means

b
¡
i+ 1, σi+1

¢
= b

¡
i, σi+1 + ωi

¢− di
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and hence

b
¡
i+ 1, σi+1

¢
σi+1

=
b
¡
i, σi+1 + ωi

¢− di

σi+1

<
b
¡
i, σi+1 + ωi

¢− b (i, ωi)

σi+1

≤
σi+1+ωi

ωi
b (i, ωi)− b (i, ωi)

σi+1

=

¡
σi+1 + ωi

¢
b (i, ωi)− ωib (i, ωi)

ωiσi+1

=
b (i, ωi)

ωi

(12)

≤ b (i+ 1, ωi)

ωi

which is a contradiction. This contradiction proves that i /∈ S for all

S ∈ argmin
T⊂Pi+1:ωT≥q−σi+1

dT , as desired.

We now check that Conditions 1 and 2 hold for i. If party i forms

coalition, Condition 1 holds with σi = ωi, and Condition 2 holds

because of the tie-breaking rule. If party i demands d∗i so that S
∗

is induced, it must be the case that {ωi} Ã Σi. Hence, there exists
σi ∈ Σi with σi > ωi. Then, Condition 1 follows from Lemma 8b) and

the induction hypothesis applied to Conditions 1 and 2. Condition 2

follows from the tie-breaking rule applied by the party that eventually

forms coalition.

The next proposition shows uniqueness of equilibrium payoffs. Equi-

librium strategies are not unique for some subgames. In subgames B (d, i)
where no coalition can be formed (i.e., b(i, σi) < 0), any demand vector is

part of a SPE and equilibrium payoffs are always 0 for all parties. Multiplic-

ity may also arise in subgames where a coalition can be formed but d∗i = 0,

as the following example illustrates.

Example 5 Consider the game [5; 3, 2, 2, 1, 1] and suppose d1 = d2 = 1.

Equilibrium strategies at B (d, 3) are not unique, but equilibrium payoffs are.
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At B (d, 3) we have d∗3 = 0 and Σ3 = {2, 3}. If we look at this subgame
in isolation, several equilibrium outcomes are possible: coalition {1, 3} (as-
sociated to σ3 = 2), coalition {2, 3, 4} or {2, 3, 5} (associated to σ3 = 3),

coalition {2, 3, 4, 5} (which is not a minimal winning coalition), coalition
{1, 4, 5} (which does not include party 3), or even no winning coalition at
all. Intuitively, since the parties in {3, 4, 5} cannot get a positive payoff,
they are indifferent between all these situations. However, parties that have

moved before are not indifferent. If we take into account that the strate-

gies must be part of an equilibrium for all the subgames, and in particular

for subgame B (d, 2), some of the equilibrium strategies at B (d, 3) are not
equilibrium strategies for B (d, 2) and are discarded (cf. example 1). In par-
ticular, a coalition containing party 2 must be formed in order for party 2

to have a best response at B (d, 2). Nevertheless, multiplicity remains: after
party 2 sets d2 = 1, there are three possible equilibrium coalitions: {2, 3, 4},
{2, 3, 5} and {2, 3, 4, 5}. Nevertheless, all equilibrium strategies lead to the

same payoffs.

Proposition 3 Assume we are in a SPE in B (d, i). If b(i, σi) ≥ 0 for

some/all σi ∈ Σi, party i’s payoff is d∗i as defined in (1); otherwise party i’s
payoff is zero.

Proof. We proceed by backwards induction on i. We prove the following

three hypotheses:

1. If b(i, σi) < 0, all parties get zero in every SPE of B (d, i).

2. If b(i, σi) > 0, party i receives d∗i > 0 in every SPE of B (d, i) and the
coalition that forms satisfies S ∩ Pi ∈ argmax

T⊂Pi:ωT≥q−σi
(1− dT ) for some

σi ∈ Σi.

3. If b(i, σi) = 0,

a) party i gets d∗i = 0 in every SPE of B (d, i);

39



b) there is a SPE of B (d, i) in which a winning coalition forms;

c) if a winning coalition S forms, then S ∩ Pi ∈ argmax
T⊂Pi:ωT≥q−σi

(1− dT )

for some σi ∈ Σi.

The induction hypothesis holds for party n. Now suppose it holds for

party i+ 1. Does it hold for party i?

1. If b(i, σi) < 0, all parties get zero (Lemma 5).

2. If b(i, σi) > 0, party i cannot get more than d∗i by forming coalition.

If party i demands more than d∗i and b(i, τ i) ≥ 0, we know from

Lemma 9a) that i /∈ argmax
T⊂Pi+1:ωT≥q−σi+1

(1− dT ) for all σi+1 ∈ Σi+1.
The induction hypothesis implies that party i gets zero. If party i

demands more than d∗i and b(i, τ i) < 0, we know from Lemma 9b)

that party i gets zero.

Now we show that party i can get at least d∗i . This is immediate if

ωi ∈ Σi. Suppose ωi /∈ Σi. Since b(i, σi) > 0, we know d∗i > 0. The

value of d∗i+1 induced by d∗i may be strictly positive or 0. Suppose

party i demands di < d∗i . Then the corresponding value of d
∗
i+1 is

strictly positive. Under Lemma 8a), party i belongs to all coalitions

associated with some element of Σi+1, and the induction hypothesis

for d∗i+1 > 0 implies that party i gets di. Thus, the perfectness of the

equilibrium implies that d∗i is accepted (otherwise, party i would not

have a best response).

Moreover, Lemma 8c), the induction hypothesis and the fact that

d∗i is accepted imply that the coalition that forms satisfies S ∩ Pi ∈
argmax

T⊂Pi:ωT≥q−σi
(1− dT ) for some σi ∈ Σi.

3. If b(i, σi) = 0, then d∗i = 0 and, moreover, α ∈ Σi if and only if
b (i, α) = 0.
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a) It is trivial that party i gets d∗i = 0. If di > d∗i , the induction

hypothesis implies that no coalition to which party i belongs will form.

b) There is an equilibrium of the subgame in which a coalition associ-

ated with σi ∈ Σi forms. This is clearly the case for ωi ∈ Σi. Other-
wise, it is optimal for party i to demand d∗i = 0. Then b

¡
i+ 1, σi+1

¢
=

0 for all σi+1 ∈ Σi+1 and the induction hypothesis implies that there
is a SPE of B (i, d) in which a winning coalition is formed.

c) Assume a winning coalition S is formed with S∩Pi /∈ argmax
T⊂Pi:ωT≥q−σi

(1− dT )

for all σi ∈ Σi. This means that, for a given σi ∈ Σi, either ωS∩Pi ≥
q − σi but 1− dS∩Pi is not maximal, or ωS∩Pi < q − σi.

Assume first there exists σi ∈ Σi such that ωS∩Pi ≥ q−σi but 1−dS∩Pi
is not maximal. Since b

¡
i, σi

¢
= 0, this means dS∩Pi > 1 and it cannot

be optimal at any subgame to form S.

Assume now ωS∩Pi < q − σi for all σi ∈ Σi. Since b ¡i, σi¢ = 0 and

b (i, α) is nondecreasing in α, δi ∈ Σi; thus ωS∩Pi < q−δi. This means
ωS∩Pi + ωS∩(N\Pi) < q. Thus, S is not a winning coalition.

Corollary 3 In any SPE, the coalition of Lemma 2 forms with each party

demanding di = ωi
q .

Proof. Denote this coalition by S∗. Because of lemma 2, S∗ = Pl+1 for

some value of l. We can show di =
ωi
q for i = 1, ..., l by induction on i.

Party 1 finds Σ1 = {q} and, since q ≤ δ2 (due to the absence of veto

players and the game being constant-sum) sets a demand d∗1 =
w1
q . Given

this demand, q − ω1 ∈ Σ2.
Assume now dj =

ωj
q for all j ∈ Pi, and q − ωPi ∈ Σi. Then,

d∗i =
ωib (i, q − ωPi)

q − ωPi
=

ωi

³
1− ωPi

q

´
q − ωPi

=
ωi
q
.
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