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Abstract

We examine a simple economic model of network formation where agents bene�t
from indirect relationships. We show that small-world features � short path lengths
between nodes together with highly clustered link structures � necessarily emerge for
a wide set of parameters.
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1 Introduction

Network structures play a central role in determining outcomes in many important sit-
uations. Examples include the worldwide web, co-author relationships among academics,
joint research venture projects among �rms, trade networks, the sharing of job opening (and
other sorts of) information through social networks, and P2P systems for �le sharing. Given
the large and increasing prevalence of situations where network structure are important, it
is necessary to understand the properties of these networks and how various aspects of the
network formation process determine those properties.

A variety of large social networks have been shown to exhibit certain characteristics. In
this paper we explore two prominent ones that together embody what has been coined as
�small worlds�(see Milgram (1967) and Watts (1999)). The �rst characteristic is that such
networks have small diameter and small average path lengths.1 The second characteristic
is that such networks have high clustering coe¢ cients relative to networks generated by an
independent random process.2

A number of models have been built to explain these (and other) characteristics of
social networks (see Jackson and Rogers (2004) for a discussion and list of references).
One prominent study is by Watts and Strogatz (1998). They show that if one starts with
a symmetric (regular) network where nodes are connected to their nearest neighbors and
where clustering is high, it takes only a small amount of random rewiring of links in order
to drastically reduce the network�s diameter and thus obtain a small world. Klemm and
Eguíluz (2002a,b) �nd high clustering in a model where nodes enter over time and only
connect to other nodes in a small set that are considered �active�, where this active set
evolves over time. High clustering and low diameter can also be explained via a model
that incorporates random linking combined with links formed through local search along
network paths, as shown by Jackson and Rogers (2004).

While these models can yield small-world characteristics, they are �mechanical�models,
where a particular process of link formation (or reformation) is speci�ed, but there is not
much explanation about why networks might form in accordance with such processes.3 This
paper examines economic-based reasoning for small worlds. We consider a model where links
generate explicit costs and bene�ts for agents, and then determine what networks will form
when agents form links in their self-interest. We analyze how the small- world features can
be traced to particulars of how the costs and bene�ts to agents vary.

We do not view �economic�models as a substitute for the more mechanical models of
network formation, but rather as a complement. The simple model presented here captures
some general features that one might expect many network situations to exhibit. Yet the
model is highly stylized, and the networks that are formed are much too regular to resemble

1The diameter is the maximum distance between any two nodes of the network, where distance between
nodes is de�ned as the number of links in the shortest path between them. This stylized fact is captured in
the famous �six degrees of separation� of John Gaure�s play. Stanley Milgram (1967) pioneered the study
of path length through a clever experiment in which people had to send a letter to another person who was
not directly known to them.

2Clustering coe¢ cients measure the frequency with which two neighbors of a given node are themselves
connected. Ideas behind clustering have been important in sociology since Simmel (1908), who pointed out
the interest in triads. For more discussion on clustering and some empirical examples, see Watts (1999).

3The Jackson and Rogers (2004) model can be seen to be consistent with utility maximization.
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�real�networks. So while the model provides some insights into the �why�behind small-
world characteristics, it is far too special to be a de�nitive model of real social networks. In
contrast, some of the mechanical models contain enough randomness and heterogeneity to
produce networks that appear closer to real networks, but they provide less insight into why
networks form as they do. By examining both types of models, we can better understand
how network structure is in�uenced by the (mechanical) node-meeting process and by the
(economic) incentives of agents to form links.

From the mechanical side it is known that in some situations a few random connections
between distant nodes can dramatically decrease network diameter, while from the economic
side we learn that in some situations distant nodes greatly bene�t (in terms of net utility)
from forming links precisely because of the distance, which provides an answer as to why
such shortcuts might be formed. The fundamental intuitions that emerge from the economic
side are: (i) high clustering results from low costs of attachment to similar (nearby) nodes,
and (ii) low diameter results from the large bene�t of attaching to dissimilar (distant) nodes
because of the substantial indirect access they provide to other distant nodes. A limited
number of such distant links emerge due to the high costs, but in concert with the high
interconnection rate at the local level, these distant links substantially decrease network
diameter and average path length.

The model here is built on a variation of the connections model of Jackson and Wolinsky
(1996), where agents bene�t from their direct connections and also from indirect connec-
tions. That is, friends of a friend generate value and so on. The departure from that model
is that we describe a simple geographically based cost structure to forming links. This cost
structure captures heterogeneity in link costs in a simple manner: agents are grouped on
�islands�, and costs of connection are relatively low within an island and relatively high
across islands. This cost structure, together with the indirect bene�ts structure of the
connections model, generates the small-world characteristics.

There are other economic studies that have looked at the connections model with geo-
graphic costs, such as Johnson and Gilles (2000), Carayol and Roux (2003), and Galeotti
et al. (2004). The �rst two papers examine situations where agents are arranged on a
line or circle and link costs are proportional to distance. Intuitively, such models generate
higher rates of connection on a local scale, and due to the positive indirect bene�ts from
connection they sustain some distant connections, thus exhibiting small-world features. In-
deed, Carayol and Roux (2003) show that, in certain situations, some of the pairwise stable
networks exhibit small-world characteristics, and through simulation that, at least for one
parameterization, stochastic stability tends to select small-world networks. Thus, the im-
portant insight � that connections-like models can result in small-world networks � is not
new to our paper but rather is due to Carayol and Roux (2003).4 The model of Galeotti
et al. (2004) allows for a more general geographic cost structure than those cited above,
and includes as a special case the cost structure that we analyze here. However, Galeotti et
al. focus on the case where bene�ts decay negligibly with distance, so that any equilibrium
network is minimally connected. Because minimally connected networks exhibit no cluster-
ing, their results are in contrast to what we �nd here, where decay is a central feature of
the model and clustering is an important aspect of the emerging networks.

4Such characteristics can also be seen in some of the networks found to be pairwise stable by Johnson
and Gilles (2000), but this aspect was not their focus.
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The simple islands-based variation of the (truncated) connections model is much more
tractable than other geographic variations of the connections model. This allows us to obtain
a more complete picture of the networks that emerge in equilibrium and to show that all
stable and, in fact, all e¢ cient networks necessarily exhibit the small-world characteristics
of small diameter and high clustering.

2 Background De�nitions

2.1 Networks

Let N = f1; 2; : : : ; ng denote a set of agents, which we identify with nodes. A network
g is a list of unordered pairs of agents fi; jg describing which agents are connected. For
simplicity, write ij to represent the link fi; jg, so ij 2 g indicates that i and j are linked
under the network g. A shorthand notation for the network obtained by adding (deleting)
link ij to an existing network g is g + ij (g � ij.

For any network g and agent i, let Ni(g) be the neighborhood of i in g, that is, the set
of agents linked to i in the network g, so that Ni(g) = fj j ij 2 gg.

2.2 Utility and E¢ ciency

Let ui(g) (de�ned below) denote the net utility that agent i receives under the network g,
inclusive of all costs and bene�ts.

A network is e¢ cient if it maximizes
P
i ui(g). This is a strong de�nition of e¢ ciency,

which corresponds to a utilitarian measure (or Pareto if transfers are unrestricted).

2.3 Pairwise Stability

A network g is pairwise stable if

(i) for all ij 2 g, ui(g) � ui(g � ij) and uj(g) � uj(g � ij), and

(ii) for all ij =2 g, if ui(g + ij) > ui(g) then uj(g + ij) < uj(g).

Pairwise stability captures the idea that mutual consent is necessary to form or maintain
a link. A network is stable if no two individuals both want to add a link and no single
individual wants to sever a link. This is a weak requirement; it does not, for instance,
consider changes in multiple links at the same time.5 Nevertheless, since our results will
show that all pairwise stable networks turn out to exhibit small-world features, the results
are strengthened by the use of a stability concept that is permissive.

2.4 Distance and Diameter

A path in a network g 2 G between agents i and j is a sequence of agents i1; : : : ; iK such
that ikik+1 2 g for each k 2 f1; : : : ;K � 1g, with i1 = i and iK = j. The length of such
a path is K � 1, the number of links involved. The distance between two agents i and j,

5See Jackson (2004) for a review of some of the di¤erent methods that have been used to study strategic
network formation.
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denoted d(i; j), is the minimum path length between i and j (and set to be in�nite if no such
path exists). The diameter of a network g is then de�ned as �d(g) = maxi;j2N :d(i;j)<1 d(i; j),
the maximum distance between any two connected nodes.

2.5 Clustering

There are a variety of ways that clustering has been measured. One is a well-known measure
from the sociology literature (see, e.g., Wasserman and Faust 1994) that examines the
percentage of �transitive triples.� This technique looks at cases where node i has a link to
j and j has a link to k, and then asks whether i has a link to k. The percentage of times in
a network that the answer is �yes�is the fraction of transitive triples.6 To distinguish this
from the other common notion of clustering, we call this total clustering, de�ned as

C(g) =

P
i#fjk 2 g j k 6= j; j 2 Ni(g); k 2 Ni(g)gP
i#fjk j k 6= j; j 2 Ni(g); k 2 Ni(g)g

:

Another measure, which is sometimes easier to compute on a given network, is a varia-
tion whereby clustering is measured in the neighborhood of each individual node and then
averaged across individuals (see, e.g., Watts 1999). We refer to this as average clustering,
which is based on the following de�nition of individual clustering for a node i:

Ci(g) =
#fjk 2 g j k 6= j; j 2 Ni(g); k 2 Ni(g)g
#fjk j k 6= j; j 2 Ni(g); k 2 Ni(g)g

:

The average clustering coe¢ cient is then

Cavg(g) =
X
i

Ci(g)

n
:

3 Small Worlds in an Islands�Connections Model

We examine a simple �islands�version of the (truncated) connections model of Jackson and
Wolinsky (1996). There are K islands, each with J agents on it. Forming a link between
agents i and j costs each of the agents c if i and j are on the same island and C otherwise,
where C > c > 0.

This geography provides a simple way of introducing heterogeneity among agents. Dis-
tance can be thought of as representing actual physical separation, but can also describe
di¤erences among agents in terms of social or political preferences, research interests, com-
patibility of R&D programs, and so forth.

There are many interpretations of the bene�ts, but one way to think of a link is as
a social relationship that can o¤er bene�ts in terms of favors, information, and the like.
The important aspect is that agents also bene�t from indirect relationships: a friend of
a friend relationship confers bene�ts, although of a lesser value than a direct friendship,
as do �friend of a friend of a friend� relationships, and so forth. The bene�t deteriorates

6This fraction has been referred to as �clustering�in the recent statistical physics literature (e.g., see the
survey by Newman (2003)) and is also sometimes referred to as �cliqueshness�.
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geometrically with the distance of the relationship, as described by the parameter � � 1.
However, agents pay costs only for maintaining their direct relationships.

The overall utility to an agent i in network g is

ui(g) =
X

j 6=i:d(i;j)�D
�d(i;j) �

X
j:ij2g

cij ;

where cij = c if i and j are on the same island and cij = C otherwise.78

This version of the connections model truncates bene�ts at a lengthD. Thus, no indirect
bene�ts are obtained from other agents who are at a distance of more than D. For large
D, the basic connections model and the truncated connections model can be quite similar.
The truncation here seems natural and is particularly helpful in making the results simple
to present and prove. We assume D � 2, since otherwise agents bene�t only from direct
links and the network issues are degenerate. When D � KJ � 1 the maximal distance is
never a constraint, so the model is identical to the basic connections model.

3.1 Small-World Characteristics of the Islands�Connections Model

We now show how the islands�connections model generates small diameter and high clus-
tering, resulting in small-world networks.

Proposition 1 If c < � � �2 and C < � + (J � 1)�2, then any network that is pairwise
stable and/or e¢ cient is such that

1. the agents on any given island are completely connected to each other,

2. the diameter is no greater than D + 1, and

3. and if � � �3 < C, then a lower bound on individual, average, and total clustering is
(J�1)(J�2)

J2K2 .9

Proof. If two agents on the same island are not connected in some network, then they
would each gain at least � � �2 � c > 0 by adding the link, and so the network cannot be
pairwise stable or e¢ cient. Now suppose that there are two agents (on distinct islands),
say i and j, such that d(i; j) � D + 2. As just argued, in any pairwise stable or e¢ cient
network, j is directly connected to all members of his island and so is i. Thus i is at a
distance of at least D+1 from each member of j�s island and so enjoys no bene�t from any
of these agents; the same is true for j from i�s island. Thus, by linking to j, i would gain at
least � + (J � 1)�2 � C > 0 (and vice versa), so this cannot be pairwise stable or e¢ cient.

7This cost structure is the same as that of the insiders�outsiders model of Galeotti et al. (2004).
8There are some straightforward ways in which this could be extended and remain fairly tractable. For

instance, one could have an island structure within an island structure, so that there are three or more cost
levels, indicating at what level individuals inhabit the same island. A second extension is to allow individuals
to belong to several islands at once and have costs determined by whether or not two agents have an island
in common.

9For the bounds on clustering we assume that � � �2 6= C. If � � �2 = C then there is a great deal of
indi¤erence over links, and the set of pairwise stable networks explodes.
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We next show that a lower bound for an individual�s clustering (and thus average clus-
tering) occurs when each of an agent�s inter-island links is involved in no transitive triples.
To obtain the lower bound on clustering, we now note that in the case where at most one
connection from a given agent to any other island exists, the worst case for the clustering
calculation is when none of the node�s distant links are themselves connected. All of the
agent�s pairs of intra-island neighbors are themselves neighbors, and none of the agent�s
pairs involving an inter- island neighbor are linked. Thus there are (J � 1)(J � 2)=2 pairs
of i�s neighbors that are linked out of a maximal total of (J + L � 1)(J + L � 2)=2 pairs
of neighbors, if the individual has L inter-island links. This leads to a lower bound of
(J � 1)(J � 2)=[(J + L� 1)(J + L� 2)]. Noting that L � J(K � 1), we have a loose lower
bound of (J � 1)(J � 2)=(J + J(K � 1))2, resulting in the claimed expression.

The lower bound on the total clustering coe¢ cient is established as follows. For a given
network, write i�s clustering coe¢ cient as ai=bi, where ai is the number of links among
neighbors in i�s neighborhood and bi is the number of pairs of neighbors in i�s neighborhood.
We have established a lower bound for ai=bi. Note that total clustering is (

P
i ai)=(

P
i bi)

and that this is clearly greater than mini(ai=bi).10

The case identi�ed in Proposition 1 can be considered a small world in a rather strong
sense. The diameter is bounded above by D+1, and average path lengths will be consider-
ably smaller still since each island is fully connected. Next observe that average clustering
is approximated by K�2. Thus, clustering can remain large when n is very large, provided
that per-island population is not too small. In cases where C is large enough so that the
number of inter-island links is lower (bounded by KJ), then the lower bound for clustering
is even higher (on the order of (J=(J +K))2); and then even for large K relative to J , the
clustering is much larger than one would observe in a completely random network (which
goes to 0 as the population grows, holding the probability of links constant, as �rst studied
by Erdös and Rényi (1960)).

We emphasize that Proposition 1 applies to networks that are either pairwise stable or
e¢ cient, and thus it shows that there are some similarities between these sets of networks.
Obtaining the precise relationship between pairwise stable networks and e¢ cient networks
is more complex. We are able to characterize the e¢ cient networks in some cases when the
intra-island costs are low, and they show some interesting patterns. From this we can see
that for some range of inter-island costs the pairwise stable and e¢ cient networks coincide,
whereas for other cost ranges the set of pairwise stable networks, though always exhibiting
small-world features, can be quite varied.

Proposition 2 Let c < ���2. In any e¢ cient network, each island is internally completely
connected. Inter-island links in e¢ cient networks are characterized as follows.

1. If C < � � �2 then the unique e¢ cient network is the completely connected network.

2. If ���2 < C < ���3 and K = 2, then the e¢ cient networks are those such that there
are exactly J links between the two islands, and on at least one island each agent is
involved in exactly one of the J links.

10 It is straightforward to check that (a1 + a2)=(b1 + b2) � min(a1=b1; a2=b2). The result then follows by
induction.

7



3. If � � �3 + 2(J � L� 1)(�2 � �3) < C < � � �3 + 2(J � L)(�2 � �3) and K = 2, then
the e¢ cient networks are those such that there are exactly 1 � L < J links between
the two islands and no agent is involved in more than one of these links.

4. If �� �3+2(J � 2)(�2� �3) < C and K = 2, then the e¢ cient networks have at most
one link between the two islands.

Case 4 can be broken down further: for low costs there is exactly one link between the
two islands; and for higher costs the islands are isolated. When there are many islands, the
characterization of e¢ cient networks gets a bit more complicated, as star-like structures
can be e¢ cient. For instance, when K is very large and C < � � �3, completely connecting
all agents within each island, and then connecting every agent on every island other than
island 1 directly to the same agent on island 1 can be more e¢ cient than having intra-island
links that don�t all pass through the same island.

Proof. Given that c < � � �2, e¢ ciency clearly requires all intra-island links to form. The
only question concerns the con�guration of inter-island links. If C < � � �2, then clearly
the unique e¢ cient network is complete.

Now consider the case where � � �2 < C < � � �3. Fix a pair of islands and call the
number of links between them L. If L < J , then there is at least one agent on each island
without a link to the other island. Connecting them adds at least 2(�� �3�C) > 0. Thus,
e¢ ciency requires that L � J . If L > J and not all agents on an island are involved in
one of these links, then the links can be rearranged so that each agent on that island is
involved in at least one link without reducing total utility. So suppose that all agents on
one of the islands are involved in at least one link to the other island. There must be an
agent on that island with more than one link to the other island. Removing one such link
saves 2C � 2(� � �2) > 0. So e¢ ciency requires L = J in this cost range. Consider the
expression

V (x1; x2; L) = 2L� + 2 [Jx1 + Jx2 � x1x2]
�
�2 � �3

�
� 2L�2 + 2J2�3;

which is the utility obtained by the members of island 1 from connections to island 2 plus
the reverse, where xi � L is the number of agents on island i having links to the other island.
Maximizing V with respect to x1 and x2 when L = J requires that x1 = L or x2 = L, i.e.,
on at least one island all agents must have a link to the other island. Maximizing V when
L < J requires that x1 = x2 = L, i.e., no agent can be involved in more than one link to
the other island. Now, if there are L links between two islands (where the links satisfy this
condition), the utility that agents on one of the islands get from connections to agents on
the other island is (J � L) (L�2 + (J � L)�3) +L(� + (J � 1)�2). The gain in utility from
having L + 1 links versus L links is then � � �3 + 2(J � L � 1)(�2 � �3). The condition in
part 3 then follows from having it be worthwhile to add L links but not L+ 1.

If �� �3+2(J � 2)(�2� �3) < C, then any link beyond the �rst one between two islands
will not be bene�cial. Hence, in this case there is at most one link between any two islands,
as stated in part 4.

These results apply to cases where the intra-island cost of connections is low enough
that agents are completely connected within their own island. The analysis becomes more
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complex when the intra-island connection cost rises, so that not all agents within an island
are connected. Nevertheless, we can still establish some small-world characteristics for a
higher cost range. For instance, we can deduce bounds on diameter as follows. Consider
the case where � � �2 < c < � and C < � + (J � 1)�D. Even though an individual island
will not be completely connected, if two agents on the same island were at distance greater
than D, then each would gain at least � � c > 0 by connecting, so the network could not
have been pairwise stable. In light of this, consider agents i and j on di¤erent islands and
suppose that d(i; j) � 2D + 1. Then each would be at distance at least D + 1 from every
agent on the other�s island and so would derive no bene�t from them. Thus, i and j could
each secure at least � + (J � 1)�D � C > 0 by adding a link to the other island. Therefore
the diameter of all pairwise stable networks is no greater than 2D, and the average path
length is smaller than this worst case distance.

While high intra-island costs do not con�ict with obtaining small diameters, clustering
is another matter. Positive clustering requires the presence of �triangles�, where an agent�s
neighbors are connected to each other. Although this can occur in pairwise stable networks
when c > � � �2, it is not a general characteristic of pairwise stable networks in this cost
range.11 We make two remarks in this regard. First, there is still a sense in which the
resulting pairwise stable networks will be �clustered�despite the possible absence of trian-
gles. Intuitively, clustering should measure the relative density of nearby links compared to
far away links, but the common measures fail to capture this more general property. Our
islands cost structure will still generate this kind of feature. Second, there is a sense in
which �islands�should be de�ned by the (given) relative costs � so that agents placed in
the same island are, in fact, precisely those who have low costs of linking to each other and
thus will naturally tend to be clustered.

4 Discussion

In addition to the small-world properties there are other characteristics shared by many
socially generated networks, such as a distribution of node degrees (number of links per
node) that are approximately �scale-free�or follow a power law, at least in the upper tail.12

Thus, there tend to be many more nodes with very small and very large degrees than one
would see if the links were formed independently.13

In our model there is substantial room for variation in degree across nodes � for in-
stance, in who forms inter-island links � as well as in the pattern of intra-island links.
There is little in the model that explicitly ties down this structure. A conjecture is that a
variation of the model that marries a random process to how nodes meet with the economic
and strategic concerns analyzed here would begin to account for the degree distribution and
could result in features consistent with observables.

11Note that this is not an artifact of the �islands�geography, since any connections-based model will have
an analogous property involving the cost of the shortest links.
12The degree of a node is the cardinality of its neighborhood. An example of a distribution satisfying a

power law is the Pareto distribution, where the frequency of nodes with degree d is proportional to d�
 for
some 
 > 1. For an informative overview, see Mitzenmacher (2004).
13See Jackson and Rogers (2004) for a more complete list of the properties and references for them.
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