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The present paper is structured around two main constructions, fixed points of functors and fibrations and 

sections of functors. Fixed points of functors are utilized to resolve problems of infinite regress that have 

recently appeared in economics. Fibrations and sections are utilized to model solution concepts abstractly, so 

that we can solve equations whose arguments are solution concepts. Most of the objects (games, solution 

concepts) that we consider can be obtained as some kind of limit of their finite subobjects. Some of the 

constructions preserve computability. The paper relies heavily on recent work on the semantics of program- 

ming languages. 
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1. Introduction 

Recent work in game theory and in applied areas such as industrial organization 
has considered problems that involve infinite regress. Some authors, such as 
Mertens and Zamir (1985) and Lipman (1991), have resolved the infinite regress ‘by 
hand’, i.e. by working hard to exploit the special features of their models. The 
message of the present paper is that such resolutions of infinite regress can be 
thought of as proofs of existence of fixed points of certain ‘maps’ (called functors) 
defined on certain ‘spaces’ (called categories). This change of perspective is useful 
in several respects. First, there is a general theory of existence, uniqueness, stability 
and continuity of such fixed points that can be invoked to check whether a 
particular infinite regress problem can be resolved or not. The theory was developed 
by computer scientists; Section 2 of the present paper provides an exposition. 
Secondly, having a general theory allows us to see the already existing examples of 
resolutions of infinite regress as cases of a single construction. Thirdly, we can 
resolve infinite regress in cases that had been considered intractable up to now, such 

Correspondence to: Spyros Vassilakis, Economics Department, University of Pittsburgh, Pittsburgh, PA 

15260, USA. 

0165-4896/92/$05.00 0 1992-Elsevier Science Publishers B.V. All rights reserved 



174 S. Vassilakis / Economic applications of Scott domains 

as the regress reported in Crawford (1985, p. 825) as intractable and resolved in 

Vassilakis (1990). Fourthly, we can investigate whether each particular regress can 

be resolved effectively. 

In the present paper I have tried to summarize my earlier results, to motivate the 

constructions with economic examples, and to give a reasonably complete picture 

of the mathematical fundamentals, with some emphasis on the effectiveness of the 

main constructions, omitting most proofs but providing detailed references to the 

sources where proofs can be found. I have also included new results and open 

problems to indicate the direction this project is taking. 

To motivate the introduction of the new mathematical tools, we begin with a bit 

of history. The economist’s workhorse is the competitive model of exchange; it 

assumes that economic agents determine their demands and supplies by maximizing 

their objective functions taking prices as given; that there is a price quoted for each 

commodity; and that all trade takes place at prices that simultaneously clear all 

markets. Why should agents take prices as given? Who sets prices? How do prices 

reflect the actions of agents in all markets? These questions (Kreps, 1990, p. 4) have 

motivated the introduction of game theory into economics. The environment in 

which individuals have to make decisions is modelled as a game g. A prediction on 

g is a subset of the set of all possible outcomes in g. A rule that assigns a prediction 

to each game g is called a solution concept. An outcome predicted by a solution 

concept is an equilibrium of g. Equilibria might fail to exist, be unique or be 

efficient. In some games, lack of existence, uniqueness or efficiency is just an 

artifact of the formalism, but in other games it has been argued that ‘institutions 

will evolve’ to restore, to some extent, these properties of equilibria. The examples 

that follow illustrate the meaning of this argument and show that its consistent 

application generates an infinite regress. 

The first example shows how lack of existence provides incentives for institution 

formation. Shepsle (1986) considers a game g = (N, X, u), where each player i E N 

has preferences over a set of alternatives X described by a utility function 

ui: X-+ R. The solution concept is ‘majority voting’: an alternative y in X is an 

equilibrium if there is no alternative x preferred to y by a strict majority of the 

players. Shepsle denotes by W(y) the set of alternatives preferred to y by a strict 

majority of the players, and describes the ‘paradox of voting’ as follows: 

* For almost all utility functions and for all alternatives y in X, W(y) is not empty 

(equilibria do not exist). 

l Vor almost all utility functions and for any two alternatives x,y there is a finite 

sequence Z,, . . . , Z, of alternatives such that 

(i) a strict majority prefers Z, to x: 

Z1 E W(x); 

(ii) a strict majority prefers Zi to Z;_i 

Z;E W&i), i= 1, . . ..K. 
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(iii) a strict majority prefers y to Z, 

In other words, the nonexistence problem is particularly severe: an agenda-setter, 

namely an individual who can dictate the kind and order of alternatives players vote 

on, can induce any alternative y as the final outcome of majority voting. This result 

provides strong support for the position that ‘institutions matter’, where by institu- 

tions we mean the rules that govern the process of voting. A striking example is cited 

by Shepsle (1986, p. 56): while it takes one line to describe majority rule, the rules 

that govern the process of voting in the U.S. House of Representatives take 600 

pages to describe. Riker (1980, p. 443) states that I... the particular structure of an 

institution is at least as likely to be predictive of socially enforced values as are the 

preferences of the citizen body’. Given that the particular structure of institutions 

is important to players, and given that institutions are just rules under players’ con- 

trol, players will try to change institutions to advance their own interests. This is 

clearly seen by Riker (1980, p. 445): 

One can expect that losers on a series of decisions under a particular set of rules will attempt (often 

successfully) to change institutions and hence the kind of decisions produced under them. In that sense 

rules or institutions are just more alternatives in the policy space and the status quo of one set of rules 

can be supplanted with another set of rules. 

In other words, players will try to influence the outcome of game g by choosing 

strategies in a larger game F(g): the strategies of F(g) are (proposed) rules of 

behavior in g. But now, the outcome of game F(g) is at stake, and players will try 

to influence it by proposing rules of behavior in F(g), i.e. by choosing strategies in 

F*(g). To capture all the opportunities of the players to propose rules, we must be 

able to show that the infinite regress g,F(g),F*(g), . . . can be resolved, i.e. that F 

has a fixed point. 

Lack of uniqueness of equilibria in a game g also provides incentives for ‘institu- 

tions to evolve’. For example, if g is a ‘split-the-dollar’ bargaining game with two 

players who announce simultaneously their claims on the dollar, then any division 

of the dollar is a (Nash) equilibrium. The multiplicity creates a coordination prob- 

lem; if one player expects the (l/2, l/2) equilibrium to prevail, he plays l/2; if the 

other player expects the (l/3, 213) equilibrium to prevail, she plays 2/3. But then 

(l/2, 2/3) is not an equilibrium and both players get their disagreement payoff 

(zero). Hence, there is an incentive for each player to propose a particular institution 

(for example, a variant of Rubinstein’s bargaining game) that, to the extent it is ac- 

cepted, will select an equilibrium and resolve the coordination problem. To capture 
the ability of players to make such proposals, we construct a larger game F(g) in 

which these proposals are points in players’ strategy spaces. Given that the choice 

of institution matters (Kreps, 1990, ch. 15), players will try to influence the choice 

of strategies in F(g) by proposing institutions in F*(g), etc. Hence the need to 

resolve infinite regress. I should emphasize at this point that Crawford (1985, 
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p. 825), and no doubt others, saw this problem but considered the infinite regress 

intractable. 

Lack of efficiency of an equilibrium in a game g will also provide incentives for 

institution formation. For example, the Cournot equilibrium in an oligopoly game 

is inefficient from the point of view of the players (firms), and each firm has some 

incentive to propose an institution that facilitates collusion. Another example, cited 

by Ordeshook (1980), is a prisoner’s dilemma type game that has a unique ineffi- 

cient equilibrium, and so provides incentives for players to propose institutions (in 

this case, government) that break the dilemma. As in the previous cases, the pro- 

posed institutions will be points in the strategy spaces of a larger game F(g), and 

the by now familiar argument will generate an infinite regress. 

I will now sketch informally the construction that resolves the infinite regress. I 

start with a game g and a ‘map’ F that takes games into games, and I construct a 

game X(g) that satisfies two properties: 

(a) X(g) is a fixed point of F. 

(b) Each F’(g), t=O, 1,2, . . . , is a ‘subgame’ of X(g). 

X(g) is then the universal game generated by g, and captures all the opportunities 

available to the players in the environment described by g. 

The game g = (A, U) will be a normal form, complete information game, where 

A = (Ai,Az) is a pair of strategy spaces and u = (u,, u2) a pair of payoff functions. 

Generalizations to n-player and/or incomplete information games are immediate 

once the constructions are understood in this simple case. Each Ai is a complete 

partial order (cpo), namely a poset with the following properties: 

l Ai contains a least element I ; 

l if x,<x2<... is an increasing sequence in Ai, then the least upper bound UE 1 xi 

of the sequence belongs to Ai. 

Each payoff function Ui : A 1 X A2 + R is a Scott-continuous function, i.e. it 

preserves least upper bounds of increasing sequences: 

Uj ii,Xi =iglU,(Xi)9 ifxl<x2<..., ( > 
where Xi E A 1 x A2 and A I x A2 is ordered componentwise. 

The meaning of the order relation on each Ai will become clear once we see how 

to transform any game (B, u) into a game (A, u) with the required properties. One 

way would be to define 

. 

. 

A;=BiU{ J-3, where I $Bi; 

Q;<CZ,! iff Ui= I or a;=al; 

ui(a) = 
-03, if Ui= I, some i, 

ui(a)9 otherwise. 

That is, to add an element I to each Bi and define the order on each Ai to be the 
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least restrictive one that has I as its least element. The payoff functions are then 
defined to agree with ui on B, x B, and to ensure that J_ is never played. Another 
way would be to define 
l Ai = all closed subsets of Bi; 

l ai~a,’ iff at/ is a subset of ai; 
l ui = the unique extension of ui that is continuous with respect to the Hausforff 

topology on Ai. 
One could also define Ai as a subfamily of the closed sets of Bi. In all cases the 
elements of Ai are properties of strategies and the order relation is a precision, or 
information-content, relation: ai<<a! means that GJi is a less precise property than 
aI. The least element is the totally non-informative property. Scott continuity 
means that the utility of a property of strategies equals the least upper bound of 
utilities of properties that approximate it. How restrictive is Scott continuity? This 
depends on the order on Ai. Under the first definition of < , Scott continuity is SO 

weak it is almost vacuous. Under the second definition, though, it is quite strong. 
Intermediate degrees of strength can be achieved if one restricts the subsets of Bi 

that can be compared by the order relation. 
The fact that we call the functions that preserve least upper bounds of increasing 

sequences Scott-continuous suggests there is a topology on each Ai such that the 
continuous functions with respect to this topology are precisely the Scott-continuous 
functions. The open sets U of this topology are defined by two properties: 
0 U is an upper set: XE 0; x<y implies y E U. 
l U is inaccessible by least upper bounds of increasing sequences: if x1 <x2 < . . . 

and UT=, XiE U, then, for some i, XiE U. 

For example, if Ai= [0, 11, then the Scott open sets are the open half-says (t, 11, 
o<t<1. 

The crucial step in the construction is the definition of the map F that assigns to 
each game g the game Fg whose strategy spaces include the institutions that players 
can propose to coordinate actions in g. By the revelation principle (Kreps, 1990, 
Ch. 18) institutions can be modelled, without loss of generality, as direct 
mechanisms on g. 

A (direct) mechanism on g is a probability measure p on the aggregate strategy 
space A, xA, of g;p(E) is the probability that mechanism p will recommend to 
players an action in E c A, XII,. Let d(A, xA,) be the set of all Bore1 probability 
measures on A, xA, with respect to the Scott topology; it can be ordered as 
follows: p<q iff p(U) <q(U) for all Scott-opens U. With this order, d(A, xA,) is 
a cpo; its least element is the measure that assigns probability 1 to the least element 
(I, I ) of Al xAZ.. The space d&4, xAZ) is interpreted as the set of all institutions 
that each agent can choose from to coordinate his actions in g. 

Given that all agents can propose a mechanism, each agent i will receive two 
recommended actions, i.e. a point in A?. The response of i to these recommenda- 
tions is determined by a Scott-continuous function 6i : A; -+/Ii, that is chosen by 
agent i. For example, if agent 1 chooses to obey the recommendations of agent 2, 
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then 1 chooses a function 6, : A: -+ Al defined by 6t(at, CZ;) = CZ; for all (at, a;). The 
fact that agents can choose such functions is the formal expression of the fact that 
agents do not have to obey recommendations unless it is in their interest to do so. 
The space [A: --f Ai] of Scott-continuous functions, when ordered pointwise, is a 
cpo. 

We can now define F(g) as a game (B, 0); its strategy spaces are given by 
9 B;=d(A, xA,)x [A+A;]. 

In other words, in F(g) each agent i chooses the mechanism pi E d(A, x A,) he pro- 
poses and the ‘deviation function’ 6;~ [A: +Ai] that he uses to respond to recom- 
mendations. What happens if each agent i chooses a particular strategy (piSi)? 
Agent j will receive recommendations from agent i with probability law pij, namely 
the marginal of pi on Aj. Hence, agent j will receive a pair of recommendations 
with probability law P,j XP2j. He is going to respond to these recommendations ac- 
cording to his deviation function Sj. The probability, therefore, that agent j will 
take an action in a set E c Aj equals 

We can interpret the measure qj = (Pij XP,) 0 SJT’ as j’s induced mixed strategy 
on Aj, and the measure q = q1 x q2 as the probability distribution on A 1 x A2 in- 
duced by (pi, Si), i = 1,2. Hence, define 

. Vi(P1, 61,P2T ‘2)= 
s 

ui dq* 

The definition of F(g) is now complete. 
We can embed g into F(g) by a pair of Scott-continuous function, CZi : Ai - Bi, 

defined by ai( (I 9 ii), where I is the bottom element of A(A, x A,) and 
cii : A: + Ai is defined by cii(bt, b2) =Ui 9 for all bt, b2 in Ai. It is easy to see that 

i.e. that Ui is an extension of Ui. In the same way, we can embed F’(g) into F’+‘(g) 

for all t>O. Denoting F’(g)=(A(t), u(t)>, we get a nested sequence of strategy 
spaces 

A(l)+A(2)dA(3)+... 

and a sequence of payoff functions such that Ui(~+ 1) extends Ui(t), for all i and t 
(see Fig. 1). 

Fig. 1. Payoff functions of higher-order games extend those of lower-order games. 
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A ,(O) + A (1) c A (2) - ” 

Fig. 2. No junk requirement. 

To capture all the opportunities open to the players, we want to construct a game 
X(g) = (K w> that is a ‘limit’ of these sequences and a fixed point of F. To see how 
r; should be defined, recall that every strategy in Ai has to be a strategy in x, 
otherwise I$ under-represents the opportunities open to the players. It is tempting 
to define q as the union U,“= 1 A,(t); recall, though, that each Ai is embedded in- 
to Ai(t+ l), and that this implies that this union contains many different names for 
the same strategy. We want all these different names of the same strategy to be 
embedded in q as a single strategy. Hence the 

No junk requirement. For each i = 1,2 and t = 0, 1,2, . . . there is a Scott-continuous 
embedding A,(t) : A,(t) --f q such that Fig. 2 commutes. 

A cpo q that satisfies the no junk requirement might be too large, i.e. contain 
strategies not available to the agents in the environment described by g. To make 
x the smallest cpo that satisfies no junk we impose the 

No exaggeration requirement. If there is another cpo q’ and Scott-continuous 
embeddings A:(t) : Ai -+ q’ that also satisfy no junk, then there is a unique Scott- 
continuous embedding f: q-t 5’ such that Fig. 3 commutes. 

Fig. 3. No exaggeration requirement. 



180 S. Vassilakis / Economic applications of Scott domains 

Fig. 4. Payoff function of the universal game. 

It turns out that our assumptions are exactly right to guarantee that such yi exists 
and is unique up to isomorphism. We write 

Y = colimit Ai( 
t 

TO construct the payoff functions Wi : q x Y2 --*R, we use the no exaggeration re- 
quirement and the fact that each ui(t+ 1) extends ui(t). It then follows that there 
is a unique Scott-continuous function Wi such that Fig. 4 commutes. 

This completes the construction of the universal game X(g). We write concisely 

X(g) = colimit F’(g). 

It turns out that the map F preserves colimits of chains, i.e. F(col- 
imit, gl) =colimit, F(g,). The universal game X(g), then, is a fixed point of F, 

because 
F(X(g)) = F(colimit F’(g)) = colimit F’+‘(g) = colimit F’(g) =X(g). 

We now come to the ‘computability’ of universal games. Clearly, the fact that 
strategy spaces are not necessarily subsets of the natural numbers means that to 
define ‘computable’ strategy spaces we must find a way to extend the definitions of 
recursive function theory to cpos. At the very least, then, the cpos we single out as 
‘computable’ must have a countable basis, and this basis must be computable in the 
usual sense. 

How exactly should we define a basis of a cpo? We first look at an example. Let 
D be the set of all subsets of N, ordered by set inclusion, and let E be the set of 
all finite subsets of N similarly ordered. Clearly, E is countable while D is not. Each 
X in D can be obtained as the least upper bound (union) of elements of E contained 
in X: 

(a) X=U{YeE: YGX}. 

Furthermore, the set of elements of E below X is directed, in the sense that if 
Y<X, GEE, then YiU Y2eE and x<Y,lJ Y2<X. Hence, for each X 
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(b) { YEE: Y<X} is directed. 
Finally, the basis E itself consists of elements with a ‘compactness’ property 
(c) If YEE and if Y<Uui,,Xi: where {Xi: ill} is a directed set, then there is 

some i in Z such that Y,<Xi. 
We can now abstract these three properties to define the basis of compact 

elements of a cpo. An element x of a cpo D is compact if it satisfies 
(c) if x<Udi, (di) directed, then x<dj for some i. 

Let K(D) be the set of compact elements of D, and let 1 d = {XC D : x<d}. We say 
K(D) is a basis of D if for all d in D: 

(b) K(D) f7 ld is directed, and 
(a) d=U(K(D)n Id). 

Note that not every cpo will satisfy these properties: for example, the real interval 
[O, l] will not. Those cpos that do satisfy them are called algebraic. 

The first computability requirement we impose is very natural: K(D) has to be 
countable, and the order relation restricted to K(D) has to be decidable, i.e. a 
Turing machine must be able to decide whether or not two basis elements are related 
by the order relation. Hence 

Condition A. There is a surjection d: N-t K(D) such that the set {(m, n) EN’ : 
d,,, <d,,} is effectively decidable. 

The second computability requirement is also a natural consequence of the ap- 
proximation properties a and b; given that we approximate each element of D by 
directed subsets of its basis K(D), we want to be able to decide effectively whether 
a finite subset F of K(D) ‘approximates’ K(D). To formalize this, we say that a 
subset F of K(D) is a normal substructure if for each x in K(D), the set Ft7 lx is 
directed. The computability requirement is 

Condition B. For any finite subset T of N, it is decidable whether { df : t E T } is a 
normal substructure of K(D). 

We define an effective presented domain as a pair (0, d) with properties A and B. 
If (E, e) are effectively presented domains, and if f: D -+ E is Scott-continuous we 
say that 

Condition C. f is computable if for each n in N the set {(n, m) EN* : e,,, <f(d,,)} is 
recursively enumerable. 

Note that Scott-continuity off and Conditions A and B imply that knowledge of 
the values off on the basis elements d,, suffices to determine the value off on all 
elements of D. Hence, roughly speaking, the meaning of Conditions A, B and C 
is that a domain D contains both ‘computable’ and ‘noncomputable’ elements, but 
the noncomputable ones can be obtained as ‘limits’ of computable ones; and that 
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the value of a computable function on a computable element d, can be effectively 

approximated by computable elements in its range, while the values of such a func- 

tion on noncomputable elements are limits of its values on computable ones. 

Recall that, unless our notion of computability is preserved by the map F, X(g) 

will not be a ‘computable’ game even if g is. If D is effectively presentable, d(D) 

and [D +D] are not necessarily so, and unfortunately, F is a composite of d, --t 

and x. Can we build on Conditions A and B to find the right notion? We will be 

guided by the fact that the definition of a computable cpo has to include the real 

interval I= [O, 11, for otherwise n(D) will not be computable even if D is. For each 

TV TI, let Z(t) be the smallest integer larger than t. 

Define f,, : I+ I by 

fnW= 
Z(lO”f- 1) 

1o” . 

The f,,‘s are Scott-continuous and satisfy: 

(i) fr <f2 < . . . . 
(ii) f,(Z) is a finite set, for all n. 

(iii) t = U,“= 1 f,(t), for all t e [O, 11. 

Note that U,“=, f,(Z) behaves very much like a countable basis of I. If a cpo D ad- 

mits a sequence of Scott-continuous functions f,, : D -+ D that satisfy properties (i), 

(ii) and (iii), it is called a finitely continuous cpo. Abusing notation let 

K(D) = U,“=, f,(D). If this K(D) satisfies Conditions A and B, D is a computable 

finitely continuous cpo. It turns out that this notion of computability is preserved 

byA, 4, x and by the operation of taking colimits. Hence, each strategy space K 

is a computable finitely continuous cpo if each Ai is. More information can be 

found in Kanda (1979), Kamimura and Tang (1984, 1986), Graham (1988) and 

Gunter and Scott (1989). A more recent approach to computability on cpos is 

developed, under the name of modest sets, in Barr and Wells (1990, p. 333), Rosolini 

(1990), and Freyd et al. (1990). As of this writing, I do not know whether the payoff 

functions of each F’(g) are computable, because their definition involves in- 

tegration. 

2. Categorical preliminaries 

The ‘map’ F is defined on all games g; the collection of all games is not a set but 

a proper class. Hence the need to consider categories. 

Definition 1. A category X consists of 

(i) a class of objects = A;B;... ; 
(ii) for any two objects A,B, a set of morphisms from A to B: a typical mor- 

phism is denoted by f : A -+ B; 
(iii) an associative operation on morphisms called composition: if f : A -+ B and 
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g: B-+ C, then there is a morphism &:A + C; for any three morphisms f, g, h for 

which composition is defined, (gf)h =g(fh); 
(iv) for each object A, an identity morphism 

id,: A +A that satisfies 

fid, =f 

id,g=g 

for any f and g for which the compositions are defined (see Table 1). 

In all cases, the definitions of composition and identity are the obvious ones; some 
standard references are MacLane (1971), Arbib and Manes (19754, or Adamek et 
al. (1990). 

Maps between categories that preserve composition and identities are called 
functors. 

Definition 2. A function F from category Xto category Y F: X+ Y, assigns to each 
object A in X an object F(A) in Y, and to each morphism F: A --) B in X a morphism 
F(f) : F(A) -+ F(B)) in E in addition, 

FW) = F(g)F(f), F(id,) = id,,, . 

Examples of functors. 

The forgetful functor U: Top + Set assigns to each topological space (A, r) its 
underlying set A (where T is the topology on A), and to each continuous function 
f the function f itself. 

The powerset functor P: Set -+ Set assigns to each set A its powerset P(A) and to 
each function f: A -+ B the ‘direct image’ function P(f) : P(A) -+ P(B) defined by 

P(f)(E) =f (-9, E c A. 

Table 1 

Examples of categories 

Category Objects Morphisms 

Set 

Top 
Comphaus 

Poset 

w 

WOP 

Any set A 
Any poset A 

all sets 

all topological spaces 

all compact Hausdorff spaces 

all partially ordered sets 

all natural numbers 

all natural numbers 

elements of A 
Elements of A 

all functions 

all continuous functions 

all continuous functions 

all monotonic functions 

m-m iff n75n 

m-n iff mzn 
a-b iff a=b 
a-b iff a5b 
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The probability functor d : Comp Haus --) Comp Haus assigns to each compact 
Hausdorff space A the set of all Bore1 regular probability measures d(A) equipped 
with the weak-star topology, and to each continuous function f: A -+ B the function 
A(f):d(A)-+d(B) defined by A(f)(P)(E)=P(f-l(E)), PEA(A), E Bore1 subset 
of B. 

Functors can be composed in the obvious way. Morphisms between functors are 
called natural transformations. 

Definition 3. Let F, G : X+ Y be functors from X to Y. A natural transformation 
A : F-t G from F to G is a collection of Y-morphisms (,12, : F(A) + G(A)), EX such 
that if f :A -+ B is a morphism in X, G(f)A, =n,F(f), i.e. Fig. 5 commutes. 

Examples of natural transformations. 

The sample mean: Let S c R be the set of all possible outcomes of some experi- 
ment; let zero be in S. Define the functors F, G : co + Set as follows: 

F(n) = S”; F(n+n+l)=f,, 

G(n)=R; G(n+n+l)=g,, 

where f,,:Sn+Sni’ is defined by f,(x) =(x, 0), and g, : R -+ R by 

The sample mean 

Then, J. : F+ G is a natural transformation. In general, a natural transformation A 
can be thought of as a rule for transforming elements of F(A) into elements of 
G(A): the commutativity conditions imply that this rule is the same for all A in the 
category X; in the example, the rule for forming the sample mean is the same for 
all sample sizes. 

We can now formulate the conditions under which a functor F has a fixed point 

A 
A 

A WA) * G(A) 

B F(B) 
h 

- G(B) 

Fig. 5. Naturality square. 
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L =F(L) such that all the iterations F’(A), t>O, are faithfully embedded in L 

(recall points (a) and (b) on p. 176). These are essentially continuity conditions, i.e. 
we require that F preserves some sort of ‘limit’. 

Definition 4. f: A --) B is an isomorphism in the category X if there exists g : B--t A 

in X such that gf=idA, fg=idg. 

Definition 5. L is a fixed point of the functor F: X+ X if there is an isomorphism 
f:F(L)+L. We write L=F(L). 

Definition 6. The constant functor at A,K, : X-t X, is defined by 

&(B) =A, KA(f)=idA. 

We can now formulate exactly the notion of ‘limit’ that we need. 

Definition 7. Let T: J-t X be a functor. A colimit of T is an object L of X and a 
natural transformation 1: T+K, such that if 2’: T+Kc is any other natural 
transformation from T to a functor constant at any other object L’, there is a unique 
X-morphism f: L +L’ such that Fig. 6 commutes for all objects j in J. 

We interpret the naturality of A as ‘consistent’ embedding of each T(j) into L, 

i.e. embedding according to some rule. The defining property of L means that L 

is the smallest object in X into which each T(j) is consistently embedded. 

Examples of colimits. 

If J is a set, i.e. the only morphisms are the identity morphisms and T: J-+ Set, 
then the colimit L of T is the disjoint union of the T(j)‘s: 

L = u (T(j) x (A) 
jeJ 

and 3Lj: T(j)-+L is defined by Aj(X)=(x,j), ~EJ, XE T(j). 

If J= o and X is a poset, the colimit L of T: J-t X is the least upper bound of 
the sequence T(j). 

h 
I 

TO’) bL 

\\“\I f 
h 

J 

L’ 

Fig. 6. Definition of limits. 
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If J= o and X is one of Set, Top, Comphaus, then the colimit of T: J+ X is the 

‘inductive or direct limit’ of the T(j)‘s; its explicit construction is described in 

Adamek et al. (1990, p. 187). An economic application is in Aliprantis et al. (1984, 

pp. 239-240). 

Theorem 1. Colimits are unique up to isomorphism (Adamek et al., 1990, p. 187, 

Proposition 11.29). 

Definition 8. Let T: J+X be a functor with colimit (L,lz). The functor F:X-+ Y 
preserves the colimit of T if (F(L), F(A)) is a colimit of the composite functor FT. 
We write F(colimit T) = colimit (FT). 

Definition 9. The functor F: X+ Y is J-continuous if it preserves colimits of all 

functors T: J-X. 

Examples of continuous and discontinuous functors. 

The forgetful functor U: Top -+ Set preserves all colimits. 

The powerset functor P : Set + Set does not preserve any colimits. 

Constant and identity functors preserve all colimits. 

See Adamek et al. (1990, p. 207); more interesting examples will be provided in 

the next section. To formulate the fixed point theorem, we need the concept of the 

functor of iterations of a functor F. 

Definition 10. Let F: X-t X be a functor, and f: A -+ F(A) a morphism in X. The 

functor of iterations of F with respect to f is qf: o -+ X, defined by qf(n) = F”(A), 
qf(n + n + 1) = F”(f). 

Theorem 2. Let F: X+X be a functor such that 
(a) There is a morphism f: A + F(A) for some A in X. 
(b) The colimit of the functor of iterations of F w.r. t. f exists (call it (L, A)) and 

is preserved by F. 
Then, L is a fixed point of F. 

For a proof see Adamek and Koubek (1979, p. 106), Smyth and Plotkin (1982, 

p. 765), or Manes and Arbib (1986, p. 270). If X is a poset, Theorem 2 reduces to 

the Kleene fixed point theorem, while if Xis a complete lattice, it reduces to Tarski’s 

fixed point theorem. Note that the theorem provides both an existence result and 

a construction of the fixed point as a colimit; the theorem holds, in particular, for 

o-continuous functors F defined on a category X where all o-colimits exist. 
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3. Which category? 

3.1. Motivation 

The categories we are going to consider will have partially ordered sets as objects; 

hence, the games we can handle in the theory must have strategy spaces that are 

posets. The next paragraph shows that this is without loss of generality. 

Let g = (A, U) be an (ordinary) game, where A = (A, . . . A,) is an n-tuple of com- 

pact Hausdorff spaces and u = (ul . . . u,) an n-tuple of continuous real-valued 

payoff functions defined on the product fl (A) of the strategy spaces. Note that 

there is no order whatsoever on each Ai. Take T(Ai) to be the set of closed subsets 

of Ai ordered by inverse set inclusion: if X and Y are two closed subsets of Ai, then 

X< Y means that Y c X, i.e. that X and Y are consistent properties of the strategies 

in Ai and Y refines X, or X approximates Y, or, finally, Y implies X. Furthermore, 

the map f: Ai-tT(Ai), fx= {x}, x in Ai, embeds Ai into T(Ai). The next two 

theorems describe some properties of this embedding. 

Theorem 3. If S is compact Hausdorff, then so is T(S) in the Vietoris topology; 
furthermore, the ‘inclusion’ map f is continuous. 

Proof. Gierz (1980, pp. 284-285). 

Theorem 4. If S is compact Hausdorff and g : S + R is continuous, then there is a 

continuous extension g : T(S) -+ R of g. 

Proof. This is a consequence of Tietze’s extension theorem (Kuratowski, 1968, 

Theorem I’, p. 161 and Theorem 4, p. 191). If S is a set of alternatives and g a utility 

function on S, its extension g is a utility function on properties of the alternatives 

in S; the fact that g extends g means that the ranking of alternatives does not change 

when they are embedded into T(S) as singleton sets. 

Theorem 5. Each ordinary game can be faithfully embedded into a game whose 
strategy spaces are posets. 

Proof. If g = (A, U) let g’= (B, U) be defined by Bi = T(Ai), while Ui : n(B) -+ R is a 

continuous extension of Ui. 

It should be emphasized that the interpretation of the partial order on the strategy 

spaces, namely a precision ordering, is entirely different from the interpretation of 

orders in games with strategic complementarities, studied by Milgrom and Roberts 

(1989); in particular a precision ordering can be defined on all games, whether there 

are complementarities or not. We are now ready to consider the relevant categories. 
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3.2. Complete partial orders 

In this subsection the category that fits our needs is defined, not in one scoop but 

by successive approximations. To motivate complete partial orders, recall that if S 

is compact Hausdorff, A = T(S) is ordered by inverse set inclusion. If Xi a X2 > . . . 

is a nested sequence of closed sets in S, their least upper bound nF=, Xi is also 

closed in S: a sequence of ‘finer and finer’ properties in A has a minimal common 

refinement in A. Furthermore, A contains S itself, the least informative property 

in A. 

Definition 11. A poset A is a cpo if 

(a) every increasing sequence xl C x2 C . . . in A has a least upper bound U Xi in A. 
(b) A has a least element I. 

If x,y are in A and xc y, we say that y refines x, or that y implies x, or that x 

approximates y. 

Examples of cpos. 

If S is compact Hausdorff, T(S) is a cpo; if D is any subset of T(S), then 

uo=n{X:XED}. 

Compact real intervals and the extended real line R*= [-CO, CO] with the usual 

ordering are cpos; they are still cpos if the usual ordering is inverted. 

Open real intervals are not cpos. 

We now define a topology on cpos induced by the order; then we define, and in- 

terpret, continuous functions in this topology. 

Definition 12. A subset U of a cpo A is Scott-open if 

(a) U is an upper set: if x is a property in U and y refines x, xc y, then y is also 

in U. 

(b) U is inaccessible by increasing sequences: if (xi> is an increasing sequence 

and its least upper bound IJx; belongs to U, then some element xi of the sequence 

belongs to U. 

In other words, (a) means that U is a collection of properties closed under refine- 

ment and (b) says that if U contains the least common refinement of a sequence of 

‘finer and finer’ properties, it also contains one of these properties. 

Examples of Scott-open sets. 

A subset U of the real interval [a, b] is Scott-open iff it is of the form (x, 61, where 

--03 <a, b < 00. A subset U of [a, b]” is Scott-open if it is an upper set open in the 

ordinary metric topology. If X is compact Hausdorff and V is open in X, N(V) = 

{KEY: KG V) is Scott-open in T(X). 
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These examples are on p. 100 of Gierz (1980). 

Theorem 6. The collection of all Scott-open sets in a cpo A is a topology. 

Proof. Gierz (1980, p. 100). 

Definition 13. A function f: A + B between cpos is Scott-continuous if it is con- 
tinuous in the Scott topologies of A and B. 

The next theorem characterizes Scott-continuous functions. 

Theorem 7. A function f : A -+ B is Scott-continuous if and only if it preserves least 
upper bounds of increasing sequences: f (U Xi) = U f (Xi). 

To see what this means, think off as a scientific theory (or a computer program) 
that transforms input data in A into output data in B. Let Tot(A) be the set of total 
(maximal) elements of A. To fix ideas, let Tot(A) c R: be a compact set of initial 
endowment vectors and Tot(B) be the price simplex in R’; f is a theory, say 
Arrow-Debreu, which, given the preferences, assigns to each endowment vector in 
Tot(A) a price vector in Tot(B). In practice, we can never be sure that we have 
observed exactly the values of the inputs and the outputs of the theory. This means 
that, to have a testable theory, we must extend f to a function from A to B, i.e. a 
function that predicts a property of prices for each property of endowments. The 
theory is reliable only if, when fed better and better approximations to the true value 
of initial endowments, it produces better and better approximations to the true value 
of prices: if x1 Cx, C . . . and Uxn=x, then f(xl)cf(x2)c . . . and Uf(x,,)=f(x). 
This interpretation of continuity is due to Scott (1970) for programs and to Laymon 
(1987) for scientific theories. 

Definition 14. cpo is a category with objects all cpos and morphisms all Scott- 
continuous functions. 

Definition 15. cpo” is a category with objects all n-tuples (A,, . . . , A,) of cpos and 
morphisms all n-tuples of Scott-continuous functions. 

Definition 16. If A, B are cpos, then [A + B] is the set of Scott-continuous functions 
from A to B, ordered pointwise: f c g iff f (x) C g(x) for all x in A. The product A x B 
is ordered by (x, y) C_ (x’, y’) if x C_ x’ and y C_ y’. 

Theorem 8. If A, B are cpos, then so are A x B and [A -+ B]. 

Proof. Gierz (1980, p. 115, Lemma 2.4, and p. 199, Exercise 2.19). 
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To apply the fixed-point theorem 2, we define the ‘map’ --f (which assigns to any 

two cpos A, B their function space [A + B]), on morphisms as well, in such a way 

that it becomes an w-continuous functor. This is not possible on cpos (see Manes 

and Arbib, 1986, p. 307), but it can be done in a subcategory of cpos obtained by 

restricting the morphisms to be embeddings. 

Definition 17. Let A,B be cpos. A Scott-continuous mapf: A -+ B is an embedding 

if there is a monotonic map g : B + A (its adjoint) such that 

g(f(x))=x, XE-4, 

f(W)) <Y, Y E B. 

(See Fig. 7.) 

Theorem 9. 

(a) Each Scott-continuous f has at most one adjoint. 
(b) If f has an adjoint g, then f is injective, g is surjective and Scott-continuous, 

and both f and g preserve least elements. 
(c) If f is an isomorphism, its adjoint is its inverse. 
(d) The composition of two embeddings is an embedding. 

Proof. Manes and Arbib (1986, p. 308). 

Given this theorem, we denote the adjoint off by f *: (f, f *) is sometimes called 

an embedding-projection pair. To interpret the meaning of such a pair, let A again 

be a set of properties of initial endowment vectors and B a set of properties of price 

vectors, and interpret f as a theory that predicts a property of price vectors for each 

property of initial endowments. The fact that f is injective means that two different 

properties of initial endowments will generate two different predictions about 

prices; the fact that f preserves least elements means that if there is no information 

about initial endowments the theory will provide no information about prices. The 

adjoint f * is the ‘best possible’ inverse of theory f: given a property of prices, f * 
predicts the property of initial endowments that could have generated it. If this 

@operty y of prices is in the range of the theory f, say y =f (x), f * will correctly 

Fig. 7. Adjoint maps 
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predict the property of initial endowments x that generated f(x) : f *(f(x)) =x. And 
if a property of prices y is not in the range of theoryf, f*(r) is a property of initial 
endowments that approximately generates y, in the sense that if theoryfis fed data 
f*(y), it will generate a prediction f(f*(~)) that approximates y : f(f*(y)) c y. 

Definition 18. The category cpoE has the same objects as cpo, but its morphisms 
are restricted to be embeddings. 

We can now investigate what kind of construction can be done in cpo,. 

Definition 19. An o colimit in the category X is the colimit of a functor T: o -+X 

(see Table 1 for 0). 

Theorem 10. Cpo and cpo, have all w-colimits. If T: w --t cpoE, the co/knit (L, A) 
of Tin cpoE is also a colimit in cpo. (L, A) is a colimit of T iff the natural transfor- 
mation A : T--f K, satisfies: 

(a) r~j~~ : j E o} is an increasing sequence in [L + L]; 
(b) U AjAT = id,. 

Proof. Smyth and Plotkin (1982, p. 768, Theorem 2, p. 773, Example 2, and p. 775, 
the discussion above Fact 1.a); or Gierz (1980, ch. 4.3). 

Theorem 11. Cpo and cpoE all have small products, i.e. products defined on a set. 

Proof. Smyth and Plotkin (1982, p. 774) or Manes and Arbib (1986, p. 297 and 
p. 311). 

Definition 20. The product functor fl : cpog-t cpo, assigns to each n-tuple 
A =(Ar,& . ..) A,) its product n (A), and to each n-tuple f: A -+ B its product 

JI (f) : II (A) --* II (B), defined by II (f)(a) = (f,(a,), . . . ,f,(a,)). 

Theorem 12. fl preserves all wcolimits. 

Proof. MacLane (1971, p. 115 and p. 69 (products)). 

Definition 21. The function space functor -+ : cpoE X CpoE -+ cpo, is defined as 
follows: 

On objects: + (A, B) = [A -+ B] = all Scott-continuous maps from A to B (not onfy 
embeddings). 

On morphisms: if f: A --) A’ and g : B -+ B’ are two embeddings, then + (A g) : 
[A + B] + [A’-+ B’] is an embedding defined by --t (A g)(h) = ghf * (see Fig. 8). 

Theorem 13. + preserves all o-colimits. 
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h 

A ;-B 

-_t (f&(h) 

Fig. 8. The function-space functor on morphisms. 

Proof. Manes and Arbib (1986, pp. 311-317); Gierz (1980, ch. 4.3); Gunter (1989, 

p. 84, Theorem 6.5). 

3.3. Finitely continuous complete partial orders 

The category cpo, would be adequate for the construction of universal games if 

it were not for the fact that the Lawson topology on a cpo is not necessarily compact 

Hausdorff (Section 4). This topology is fine enough (has so many open sets) that 

requiring payoff functions to be continuous with respect to it is not more restrictive 

than the continuity conditions imposed as a matter of course in economics (Section 

4). Unless the Lawson topology is compact, though, solutions to optimization prob- 

lems involving Lawson continuous functions will not always exist. We could restrict 

ourselves to the category of continuous lattices studied in Gierz (1980), but this 

category is not closed under the probability functor: see the example on p. 225 of 

Graham (1988). Nonetheless, by imposing a restriction on cpos we can generate a 

category that satisfies the following properties: 

(a) it is closed under all functors involved in the construction of universal games; 

(b) its objects are compact Hausdorff in the Lawson topology; 

(c) it has all o colimits; 

(d) the functors in (a) preserve all such colimits. 

Definition 22. A cpo A is finitely continuous if there is a sequence <fi> of Scott- 

continuous functions fi : A --f A that satisfies 

(a) fiQ2r...; 
(b) the range of each A is finite, for all i; 
(c) Ufi=idA. 

Examples. 

Compact real intervals are finitely continuous cpos; see Graham (1988, p. 222, 

Lemma 2.3). 

If S is a separable compact Hausdorff space, T(S) is a finitely continuous cpo; 

see Lawson (1989, p. 150). 
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Definition 23. The category fcpo has all finitely continuous cpos as objects and all 
Scott-continuous functions as morphisms; fcpoE has the same objects but its mor- 
phisms are embeddings. 

Theorem 14. FcpoE has finite products, and o colimits. Hence, if T: o --f fcpoE is 
a functor, the natural transformation A : T-t KL is a colimit of Tiff conditions (a) 
and (b) of Theorem 10 are satisfied and L. is finitely continuous. 

Proof. This follows from the existence of o colimits in cpo, and the definition of 
a finitely continuous cpo; see Graham (1988, p. 221). 

Definition 24. If A is a finitely continuous cpo, /l(A) is the set of Bore1 probability 
measures on A with respect to the Scott topology. 

Definition 25. The stochastic dominance order on d(A) is defined by p c q iff 
p(U) <q(U) for all Scott-open sets U. 

Example. 

If A = [O, 11, then each Scott-open U is of the form (a, 11; hence the name of the 
order on d(A). 

Theorem 15. Zf A is a finitely continuous cpo, then so is A(A) with the stochastic 
dominance order. 

Proof. Graham (1988, p. 224, Theorem 2.4). 

Definition 26. The probability functor A : fcpoa -+ fcpo, is defined on objects as in 
Definition 24 and on morphisms f: A --f B as follows: A(f) : A(A) + A(B), 

A(f)(p)(E) =p(f-l(E)), PEA(A), with E a Bore1 subset of B. 

Theorem 17. A preserves all w colimits. 

Proof. Vassilakis (1990, Appendix 2); see also the related Lemmas 3.1 and 3.2 on 
p. 228 of Graham (1988). 

Theorem 18. The product (see Definition 20) andfunction space (see Definition 21) 
functors map into fcpoE when restricted on fcpoE. 

Proof. Lawson (1989, p. 150). 

Theorem 19. The product and function space functors on fcpoE preserve o 
colimits. 
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Proof. They do so in cpo,, and fcpoE is closed under cc) colimits. 

3.4. The Lawson topology 

Recall that in Theorem 5 we extended the payoff function ui from the aggregate 
strategy space A, x ... xA, of the original game to the aggregate strategy space 
T(A,) x -1. x T(A,) of an extended game. Each T(Ai) is compact and Hausdorff in 
the Vietoris topology, and the extension Di of Ui is continuous in this topology. To 
do the same thing on cpos, we need the counterpart of the Vietoris topology on 
cpos: this is the Lawson topology. 

Definition 27. If L is a cpo and x is in L, then lx= { y E L : xc y} is the set of all 
the properties that refine x. 

Definition 28. The Lawson topology on a cpo L is generated by a sub-basis con- 
sisting of the Scott-open sets and the sets of the form L\ TX, x in L. 

Examples. 

If L= [0, ilk, the Lawson and the usual metric topology are identical. If 
L = T(S), where S is compact Hausdorff, the Lawson and the Vietoris topologies 
are identical. 

Theorem 20. If L is a finitely continuous cpo, its Lawson topology is compact 
Hausdorff and has a countable base. 

Proof. Lawson (1989, pp. 152-154); for the countable base, see Gierz (1980, 
p. 170). 

Our ultimate objective in the rest of this section is to show that Lawson-open sets 
are measurable in the o-algebra generated by Scott-open sets. To this end, we define 
continuous cpos and continuous lattices. 

Definition 29. Let A be a cpo, x, y elements of A: x is way below y, x~y, if for 
any directed subset D of A, y c U D implies XC d for some d in D: any pairwise con- 
sistent collection D of properties that implies y contains a property that implies x. 

Examples. 

If A = (0, 11, xey iff x<y in the usual order. If A =T(S), where S is a compact 
Hausdorff space, then for K, L in A, K<L iff L c int(K). 

Definition 30. A cpo A is continuous if for any y E A: 
(a) {x E A : x@y} is directed. 
(b) y=U{x~A:x~y}. 
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In words, every element of A can be approximated by the elements way below it. 

Examples. 

Compact real intervals [a, b], --oo <a & b < 03 are continuous cpos. T(S) is a con- 
tinuous cpo for every compact Hausdorff space S; see Gierz (1980, p. 284); Lawson 
(1989, p. 138). 

Definition 31. A continuous cpo A is countably based if there is a countable subset 
B of A such that for any element y of A 

(a) (XE B : x&y} is directed. 
(b) y=U{x~B:xey). 

Theorem 21. Finitely continuous cpos are countably based continuous cpos. 

Proof. Gunther (1989), Theorem 22 and the preceding discussion. 

Theorem 22. If L is a finitely continuous cpo, every Lawson-open set is measurable 
with respect to the Bore/ o-algebra determined by the Scott topology. 

. 

Proof. It suffices to show that the sub-basic elements of the Lawson topology are 
Bore1 measurable (with respect to the Scott topology). The Scott-open sets certainly 
are. The sets of the form L\ TX also are (recall that TX= { y E L : xc y}. To see this, 
let lx= {YE L : xey}. Sets of this form are Scott-open (Lawson, 1989, p. 145). In 
addition, if B is a countable basis of L, then L\fx=U{L\fb:bdx, beB}. 
Hence, L\ TX is measurable, as a countable union of Scott-closed sets. 0 

Corollary. If L is a finitely continuous cpo, PEA(L) (see Definition 24), and 
u : L --t R* is Lawson continuous, then the integral jL u dp exists. 

Proof. Rudin (1974, p. 20, Definition 1.23). 

We are finally ready for the construction of universal games. We conclude this 
section with a crucial result of Gierz (1980, Theorem 4.7, p. 129). 

Theorem 23. If X is a compact space and L a continuous lattice endowed with the 
Scott topology, the set [X, L] of continuous functions from X to L ordered point- 
wise is a continuous lattice. In particular, this holds when L is the unit interval [0, 11. 

4. Universal games 

Motivation for the constructions in this section was provided in Section 2 and in 
the Introduction. 
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4.1. The category G of games 

Let Z= [-1, l] be endowed with its natural order, and the Scott topology. 

Definition 32. A game g = (A, u) is an n-tuple A = (A,, . . . ,A,) of finitely con- 
tinuous posets and an n-tuple u = (u,, . . . , 24,) of Scott-continuous payoff functions 
uj : n (A) + z. 

Definition 33. A morphism L : g-r g’ of games is an n-tuple A = (Ar, . . . , An) of 
embeddings Ai: Ai-+Aj such that, for all i, uio n (A*) <uf and u;= u,!o n (A) (see 
Fig. 9). 

In words, I embeds the strategy spaces of g into those of g’ in such a way that 
ui is a restriction of Us! and if a’E n (A’), the payoff ui(n @*)(a’)) associated with 
the approximation n @*)(a’) of a’ in g is smaller than the payoff ui(a’) associated 
with a’ itself in g’. Note that there might be no morphisms between two given games 
g and g’. 

To see how colimits are formed in G, let T: w -+ G be a functor, denote 
T(t)=(A’,u’) and T(t+t+l)=f’,‘+‘, Vtew. Let g=(A,u) be a game, and 
A = (1, : t E co) a natural transformation from the functor A’ + A2 + A3 + . . . to the 
constant functor KA : co + fcpon. 

Theorem 24. (g,A) is a colimit of T iff 
(a) (A, A) is a colimit of the functor A1 --f A2 + A3.. . ; 
(b) Ui= U uf n (AJ”), Vi= 1, . . . . n. 

Proof. First, note that each Ui is Scott-continuous by Theorem 8. Secondly, the 
colimit in (a) exists, by Theorem 14. Thirdly A2, : T(t) + g is a morphism of games 
because for all i, n (AT)uf c Ui and of= UiO fl (Ai). The rest comes from Coquand, 
Gunther and Winskel (1989, p. 137). 

Corollary. G has all w colimits. 

WA’) 

Fig. 9. Morphism of games. 
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Fig. 10. Extension property. 

4.2. Extensions of preferences on probabilities 

Recall that the constructions in the Introduction required that agents have 
preferences over lotteries that extend their preferences on outcomes. To describe this 
extension, let X be a finitely continuous cpo and u : X-, Z a Scott-continuous func- 
tion. An extension of u to d(X) is a Scott-continuous r,(u) : d(X) + Z that makes 
Fig. 10 commute, where E assigns to each x in X the probability E(X) with unit mass 
on x; such an extension is given by expected utility: r,(u)(p) = 1 u dp, p ELI(X). 
This particular extension enjoys two properties that we want T to inherit. 

Definition 34. T = (t, : X in fcpo) is a collection of morphisms with the following 
properties: 

(a) for each X, r,: [X,Z] --t [d(X),Z] is Scott-continuous; 
(b) for each u E [X, I], for each X, r,(u) OE, = U; 
(c) for each measurable f: Y-+X and UE[X,Z], 7,(~4)o~l(f)=t,,(z40f), i.e. 

Fig. 11 commutes. 
Note that if rw is expected utility, property (a) is Lebesgue’s monotone con- 

vergence theorem and property (c) is the change of variable formula in p. 163 of 

Fig. 11. Change of variable property. 
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Holmos (1950). To see this, note that (c), in the case of expected utility, reduces to, 

for all qcd(Y), 

i 
u d(qof-‘) = 

x s 
&of) dq 

Y 

(see Definition 26 for d(f)). 

4.3. The game constructor F: G + G 

We now define precisely the game constructor F that first appeared in the In- 

troduction. 

Definition 35. The functor Ri: fcpoi + fcpoE is defined 

(i) on objects by R,(A) = A JJ (A) X [A; 4 Ai], 

(ii) on morphisms by R,(A) =A JJ (A) X (AiO - OAR), 

where A : A -+ A’. 

Definition 36. The functor R : fcpok-+ fcpog is defined by 

R(A)=(R,(A), . ...&(A)), 

R(~)=(R,(IZ),...,R,(L)). 

Theorem 25. R preserves w colimits. 

Proof. By Theorems 12, 13 and 17, the functors A, + , X preserve o colimits; R 
is a composite of these functors. 

R will define F on objects; to define F on morphisms we will need to compute 

the probability in A fl (A) induced by a vector of strategies (p, 6) in n R(A). By 

Definitions 32 and 35,p=(p, ,..., p,), a=(61 ,..., 6,),pi~dn(A), 6i:A~~Ai. Let 

Pije A(aj) be the marginal of Pi in Aj; the product measure P~jx ... x P,,j in d(Ay) 

indicates the probability with which agent j will receive recommendations on what 

to do from each of the n players; these recommendations are then fed into j’s devia- 

tion function Sj: A; +Aj to produce j’s action. Hence, the probability measure 

ti(P9~)=(pljx ... x Pnj)oa,” in d(Aj) computes the probability of each property 

of the actions open to agent j, given that (p,6) is played. Hence, the product 

measure 

<A(P, 6) = II rA:‘(p, 6) 

is the probability measure on the aggregate strategy space n (A) induced by (p, 6). 
It is easy to show that for each A, & : Jj R(A) -+ A n (A) is Scott-continuous and 

that < : n R + A n is a natural transformation. 

Definition 37. The game constructor F: G + G assigns to each game g = (A, U) a new 
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An(A) 

Fig. 12. Definition of game constructor. 

game F(g) = (R(A), v), where v is defined by Fig. 12, Vi. Also, F assigns to each 

morphism I : g + g’ in G the morphism F(A) = R(A). 

It can be shown that F(I) is a morphism in G (Vassilakis, 1990, p. 33), and that 

the following holds (pp. 34-38). 

Theorem 26. F preserves o colimits. 

This is one of the two crucial theorems that will allow us to apply Theorem 2 on 

the existence of fixed points. The next result is the other crucial ingredient. 

Theorem 27. For each game g, there is an embedding pg : g -+ F(g). Moreover, 
v, : Id + F is a natural transformation (Id : G--f G is the identity functor). 

Proof. If g= (A, u), then for each i, 9:: Ai -R,(A) is defined by ~~(ai)=(I,a~), 

where I Ed fl A is the probability measure that assigns unit mass to the least ele- 

ment of n (A) and a;: Al--t Ai is the constant function at ai. The rest is in 

Vassilakis (1990, p. 39). 0 

Theorem 28. For each game g, there is a universal game X(g), unique up to isomor- 
phism, defined as the colimit of the functor of iterations of F with respect to 
p’s : g + F(g) (see Definition 10); X(g) is then a fixed point of F (Theorem 2). 

X can be extended to morphisms ,U : g -+ g’ as well (Vassilakis, 1990, p. 40). The 

resulting functor, X: G -+ G, satisfies the following theorem. 

Theorem 29. X preserves o colimits. 

Proof. Lehmann and Smyth (1981, p. 119, Theorem 4.1). 

This theorem is useful when the universal game constructor X is used as an ingre- 

dient in the definition of other functors whose fixed points we seek. 
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5. The category Z of solution concepts 

5.1. Motivation 

A solution concept is an operation that assigns to each game a property of its ag- 

gregate strategy vectors. For example, the Nash solution concept is defined by the 

following operation: ‘For each game g, find the set of fixed points of its best-reply 

correspondence.’ There are two points worth abstracting from this example. First, 

to perform the operation, we always apply the same rule on each game. Secondly, 

from each player’s point of view, a solution concept predicts the behavior of the 

other players in each game; in other words, it is a theory about the behavior of 

others. If this view is accepted, each player must be allowed to choose his or her 

own theory; it follows that, in principle, two different players might choose two dif- 

ferent theories about the behavior of a third player; it is well known that this is not 

allowed by the Nash solution concept and its refinement. More importantly, we now 

have to model the choice of theories by agents. On the one hand, this sounds very 

attractive because it might lead to the development of new solution concepts. On 

the other hand, it generates modelling problems at least as difficult as those 

generated by infinite regress. For example, solution concepts have to be defined 

abstractly; the definition has to capture the fact that solution concepts are opera- 

tions that prescribe the same rule in each game; the ‘space’ of solution concepts has 

to have the kind of properties, say compactness, that we usually need when we 

model choice of a point from a space of points. But the ‘space’ of solution concepts 

might be too large to even be a set, let alone a compact set, given that the category 

of games is too large to be a set. 

It turns out that similar problems were faced by computer scientists trying to 

model abstractly ‘polymorphic operations’. The following example clarifies the 

meaning of such operations, draws an analogy between them and solution concepts, 

and motivates their abstract definition. 

Example. 

Consider the operation: ‘for each cpo X, and for each Scott-continuousf: X+ X, 

assign to f its least fixed point’. 

Intuitively, this is a polymorphic operation because for each X and f we apply 

the same rule to perform the operation, namely the rule m,(f) = U,“= , f”(_~), 

where I is the least element of X, and m,(f) is the least fixed point off. To represent 

the operation abstractly, note that m, belongs to the cpo H(X) = [[X-X] -+X1. 

A pair (X, k), k E H(X), is a fibration of (the functor) H. Let Fib(H) be the category 

of fibrations of H. Then the operation ‘take the least fixed point’ can be abstractly 

represented by a continuous fun&or 0 : cpoE + Fib(H), where a(X) = (X, m,). Such 

a functor is called a (continuous) section of H. The fact that performing the opera- 

tion 0 involves the application of the same rule to different cpos is captured by the 
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fact that o is both continuous and a functor (the appropriate diagrams commute). 
For more information, see Section 5.3 and Coquand, Gunter and Winskel (1989). 

By analogy, then, we will model solution concepts as continuous sections of the 
functor d fl PR, , that assigns to each game g = (A, U) the cpo d fl (A) of probabili- 
ty measures on its aggregate strategy space. This definition has an unexpected 
bonus: the ‘space’ Z of all solution concepts is (equivalent to) a cpo. To see why 
this is so, recall that the strategy spaces of each game are finitely continuous posets 
(Definition 22). A characterization theorem cited in Graham (1988, p. 221) and in 
Gunter (1989, ch. 22) shows that X is finitely continuous if and only if X is either 
a finite pose& or an 0 colimit in cpon of finite posets, or a project of such a co- 
limit (X is a project of D if there is an embedding-projection pair (f,f*), with 
f: X-+ D and f * : D + X; then, given that f * is onto, X=f*(D)). The same result 
holds for games (Section 5.1). Hence, if we assume that a solution concept, in addi- 
tion to preserving o colimits, also preserves projects, we conclude that each solution 
concept is completely determined by its values on finite games. The collection of 
finite games, though, is a set (by identifying isomorphic games); hence, the collec- 
tion of all possible solution concepts on finite games is a set, and therefore so is the 
collection of all solution concepts. This is basically the argument in Section 5.4. 
Modelling already existing solution concepts in the way sketched here is still an open 
problem, for reasons discussed in Sections 6 and 7. 

5.2. Obtaining games as projects of profinite games 

Motivated by the discussion in Section 5.1, we can now make precise the sense 
in which infinite games can be obtained by operations on finite games. 

Definition 38. A cpo X is a project of a cpo D if there is an embedding-projection 
pair f :X+D, f*:D-+X. 

Definition 39. A cpo D is profinite if it is an w colimit in cpo, of finite cpos. 

Theorem 30. A cpo X is finitely continuous if and only if it is a project of a pro- 
finite. 

Proof. Gunter (1989, Theorem 22). 
We now give a characterization of profinites that will be used when we define 

solution concepts. 

Definition 40. Let D be a cpo. A finitary projection p : D + D of D is a Scott- 
continuous map with finite range that satisfies p2 =p < id,. Let M(D) be the set of 
finitary projections of D. 
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Theorem 31. A cpo D is profinite if and only if M(D) is countable, directed, and 
u M(D) = idD ( recall that U denotes least upper bound). 

Proof. Gunter (1985, p.47). 

We can now extend Theorems 30 and 31 to games. 

Definition 41. A game g = (A, u) is a project of a game g’ = (A’, u’> if 
(a) each Ai is a project of A:, i.e. there are embedding-projection pairs 

J;-:A-+Ai,f;:*:Ai+A, for all i; 
(b) u,!=u;o n (f *), for all i. 

Definition 42. A game is profinite if it is the w colimit in GE of (a chain of) finite 

games. 

Theorem 32. Zf g is a game in the category GE, then g is either 
(a) finite; or 
(b) profinite; or 
(c) a project of profinite. 

Proof. Let g = (A, u). By Theorem 30, each Ai is either finite, profinite or a project 

of a profinite. If all Ai are finite, we are in case (a). If all Ai are profinite, then 

there are finite cpos A,(t) such that Ai=colimit, A;(t). Let ui(t) =restriction of Ui 

on ny=‘=, Ai( and let g(t)= (A(t), u(t)>. Then g=colimit, g(t), and we are in case 

(b). Finally, if all Ai are projects of profinites AI, these are embeddings& : Ai --f A:. 
Let u,! = Uio n (f*) and g’= (A’, u’). Then g is a project of the profinite g’. 

Finally, we define for future reference a more ‘symmetric’ relation between 

games. 

Definition 43. Two games g and g’ are adjoint if there are Scott-continuous func- 

tions A : A + A’ and p : A’ + A such that 

(a) piOli<idA,, Aiop<id,:; 

(b) uI=u~O n (~), Ui=UIo n (~). 

Note that I uniquely determines P, and vice versa. 

5.3. Fibrations and sections 

Motivated by the discussion in Section 5.1, we define solution concepts as con- 

tinuous, adjoint-preserving sections of the functor H=d fl PR,, that assigns to 

each game g = (A, u) the cpo H(g) = d n (A) of probability measures on its ag- 

gregate strategy space. 
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Definition 44. The category of fibrations (Fib(H)), of the functor N: G--t fcpo, 

has 

objects: all pairs (g,p), p~H(g); 
morphisms: A : (g,p) -+ (g’,p’) iff A : g + g’ is a morphism in G and H(A)(p) up’. 

Definition 45. A section of H is a functor o : G--t Fib(H) such that 

(a) o(g)=(g,p,), for all g in G; 
(b) o(A) = 1, for all morphisms ,l in G. 

For the purpose of the next definition, if o is a section of H, we write a(g) = (g,p), 

dg’) = (g’v P’). 

Definition 46. A section c of H preserves adjoints if, whenever @,p) : g + g’ is an 

adjunction, then p = H(p)(p’), p‘= H(A)(p). It is easy to see that if g and g’ have 

unique Nash equilibria and are adjoint, then these Nash equilibria satisfy the re- 

quirements of Definition 46, 

Definition 47. A solution concept is a section of H that preserves adjoints and 

countable directed colimits. 

Definition 48. A morphism of solution concepts is a natural transformation 

u : (T -+ 0’ such that for all games g, o(g) = id,. 

Unpacking the content of this definition, we can show that u : CT -+ CT’ if and only 

for each game g, p up’, where a(g) = (g,p), a’(g) = (g,p’). Hence, the category .X of 

solution concepts is a (possibly large) partial order. The next section shows that J5 

is in fact small, i.e. equivalent to a cpo. 

5.4. Zisacpo 

Motivated by the discussion in Section 5.1, we can now sketch the argument that 

shows that JC is a cpo. 

Let FG be the subcategory of G consisting of finite games and all morphisms be- 

tween them. Each strategy space of a game in FG can be identified with a finite 

subset of o; the number of partial orders on each subspace is also finite: hence the 

set of all such strategy spaces A is countable. On the one hand, for each A, the set 

of all payoff functions on n (A) has cardinality equal to I. On the other hand, for 

each of two finite games g and g’, there are finitely many morphisms from g to g’, 

and therefore the collection of all such morphisms has cardinality equal to I. This 

argument shows that the category FG is equivalent to a small subcategory S of FG, 
where in S all games have finite subsets of ICY as strategy spaces. The category zs 

of solution concepts on S is also small, because the set of all possible probability 

measures on each game in g is a subset of some finite dimensional space, and S is 

a set. We are now ready for the following result. 
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Theorem 33. Z is equivalent to Zs,, and Zs is a cpo. 

Proof. We define two functors, res : Z-+ Es and ext : _Z5 -+ Z, and show that they 
form an equivalence of categories. First, res(a) is simply CT restricted on S. Secondly, 
ext(a) is defined as follows: 
0 If g is in S, ext(a)(g) = a(g). 
l If g is a profinite, then by Theorem 31 each M(Ai) is countable, directed 

and idA, = UM(Ai). For each n-tuple f in M(A,) x .a. xM(An), let gf= 

(f(4&,+ E ac h gf is finite. Let a(gf) = (fr, P’), and let p = Uf H(A~)(P~), 

where $: gf -+ g embeds each gf into g. Then define ext(o)(g) = (g,p). 
l If (A, ,D) : g--r g’ is an adjunction and if ext(o)(g’) = (g’,p’), then define ext(a)(g) = 

(g,H(p)(@)). One can show, by mimicking the arguments in Coquand et al. 
(1989), that these definitions make sense, and that ext and res are ‘inverse’ to each 
other, i.e. 

res ext(a) = 0, o E &, 

ext res(a) = 0, 0 E Z; 

and that .Es is a cpo. 

It is not known yet whether & is a finitely continuous cpo. We can now use our 
knowledge about Z to solve equations whose variables are solution concepts. 

6. Coordination-proof solution concepts 

This section outlines one possible way to impose restrictions on solution concepts, 
namely that the prediction of a solution concept o on each game g should be im- 
mune to successful attempts to coordinate on g, where success is also defined by the 
solution concept cr. The prediction of IS on the universal game X(g) generated by 
g, call it q = pr,o(X(g)), defines (stochastically) the successful attempts to coor- 
dinate on g. When q is projected back on g, it yields a probability measure y(g)(q) 

that is interpreted as the (stochastic) actions undertaken in g as a result of (in com- 
pliance with) the successful attempts to coordinate on g. Given that these attempts 
are successful, the actions in g will be y(g)(q); but the actions in g are predicted by 
a(g). Hence, it should be true that for all g 

or 
o(g) = (g, y(g)(q)) 

or 

o(g) = (g, y(g)(prAX(g))) = V(o)(g) 

d = w(a). 

Note that o appears on both sides of the equation, i.e. CJ is defined as a fixed point 
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of the functor v/. Vassilakis (1990, p. 57) shows that w preserves o colimits and that 
for each solution concept Q there is a solution concept 8= v/(B) obtained as the co- 
limit of the functor o--, u/(o)+ ~~(a)--+ . . . . B is the coordination-proof solution 
concept generated by o. It can be computed pointwise by 

6(g)= fi WWW. 
t=o 

Unfortunately, we cannot take o to be the Nash solution concept: even if g has a 
unique Nash equilibrium, X(g) will in general have multiple Nash equilibria, while 
we restrict 0 to be single-valued. The extension of this construction to multivalued 
solution concepts is still an open problem. 

7. Open problems 

This section briefly indicates how one would build on the results and techniques 
in the main body of this paper. 

7. I. Solution concepts 

The main open problem of this research is the construction of solution concepts 
that are coordination-proof (Section 6); are determined by their values on finite 
games (Section 5); are allowed to be multivalued (as is Nash); are based on mutually 
consistent optimization (as is Nash); and are computable. The results of Lewis 
(1991) suggest that such solution concepts will sometimes have to sacrifice full op- 
timization to attain computability. The objective of the construction of such solu- 
tion concepts is to take the first steps towards a theory of equilibrium institutions. 

7.2. Equilibrium institutions 

Recall that for each game g, a universal game X(g) is a colimit of the functor of 
iterations g + F(g) -+ F2(g) + . Let A = (A,:F’(g) + X()> be a colimit natural 
transformation. Then, by the basic lemma on p. 765 of Smyth and Plotkin (1982), 
there is a unique f: X(g) +&Y(g)) that makes Fig. 13 diagram commute for all t 

F (g) 
h, 

) X(g) 

KW) 

Fig. 13. Isomorphism between the universal game and its image under the game constructor. 
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(and f is an isomorphism). This fact implies that if a solution concept predicts p on 

X(g), it predictsp’=d n PR,(f)(p) on F(X(g)). By the definition of F, p/contains 

a prediction about the kind of institutions that prevail in an environment described 

by g; their characterization, even for the simplest games, is an open problem. 

7.3. More restrictions on solution concepts 

The construction sketched below owes a lot to the ideas in the cheap-talk 

literature, and assumes that 2 is (equivalent to) a finitely continuous poset (see the 

conclusion of section 6). A solution concept o in 2 is now interpreted as a theory 

of agent i, predicting a property of the outcome of each game g: the idea borrowed 

from the cheap-talk literature is that theory (si should be immune to revisions caused 

by communication with other agents where the method is utilized to revise his 

theory, and the messages communicated by other agents are those predicted by oi 

itself. One way to formalize this is to assume that agents propose solution concepts 

to each other (‘this is how I will play’; ‘this is how I think others will play’). For 

each game g = (A, U) define a new game H(g) = (B, u), where Bj = Z x [C” -+ Z] and 

Lii : n (B) + I. Each agent i proposes a solution concept oi in Z, and adopts a devia- 

tion strategy 6;: .Z”-+ Z that maps each n-tuple of proposed solution concepts 

B = (ai. . . a,) to the solution concept a’(8) adopted by agent i. Each vector (8,6) 

in n (B) induces a probability measure p EA n (A), defined by p=pl x 1.. xp,, 
where pi is the marginal on Ai of 6,(6)(g); the payoff ui(s,ds) associated with a 

strategy (~?,a) in H(g) is equal to the payoff am, associated with p in the 

original game g. Finally, define a functor Qi : Z-+ 2 for each i that assigns to each 

solution concept cr; E 2 a solution concept Qi(o;); Q;(oi)(g) = prio;(H(g)) = the 

solution concept adopted by i in the game H(g), as predicted by Di. We say that 

oi is communication-proof if CJ~ = Qi(ai); the existence of such fixed points is an 

open problem. 

7.4. Working in simpler categories 

Finitely continuous posets are not easy to work with, because (a) they lack an in- 

trinsic characterization in terms of properties of their order relation, and (b) they 

are not complete lattices. Finitely continuous posets that are also complete lattices, 

though, are exactly the continuous lattices (with a countable base). The category of 

continuous lattices and embeddings has all the properties needed for the construc- 

tions (see Gierz, 1980) except one: if L is a continuous lattice, d(L) is not necessarily 

a continuous lattice. A standard way of resolving such problems is by completion, 

i.e. by ‘adding elements’ to d(L) until it becomes a continuous lattice A(L). Such 

completions have been studied in different contexts (i.e. not in the case of the prob- 

ability functor): see Hrbacek (1987, 1989). The construction of a completion d(L) 
of d(L) with the following properties is an open problem: 

(a) Li is continuous; 
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(b) there is an extension operation r, : [L, I] --$ [d(L), I] with the continuity and 
naturality properties described in Section 4.2; 

(c) d(L) is the minimal completion of d(L) that satisfies (a) and (b); 
(d) the elements in d”(L) \d(L) are economically meaningful. 
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