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Abstract

In this paper we use a non cooperative equilibrium selection approach as a notion of stability

in link formation games. Specifically, we follow the global games approach first introduced

by Carlsson and van Damme (1993), to study the robustness of the set of Nash equilibria

for a class of link formation games in strategic form with supermodular payoff functions.

Interestingly, the equilibrium selected is in conflict with those predicted by the traditional

cooperative refinements. Moreover, we get a conflict between stability and efficiency even

when no such conflict exists with the cooperative refinements. We discuss some practical

issues that these different theoretical approaches raise in reality. The paper also provides

an extension of the global game theory that can be applied beyond network literature.
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1 Introduction

The way that different agents interact has an important role in the outcome of many

problems in economics and other social sciences. Recently, these interactions have

been modeled using network structures or graphs, where the agents are represented by

nodes and the arcs between nodes represent some specific kind of relation between the

corresponding agents. This approach has proved to be successful in the study of many

specific problems,1 however, we do not have a unique and accepted theory to explain

how the networks form, which properties they have in terms of social welfare and how

robust are some results in specific environments when some of the assumptions are

slightly modified. It is well known in the literature that, in general, a link formation

game in strategic form can lead to the formation of multiple networks supported

by multiple Nash equilibria. Even more, under some particular circumstances, any

network can be supported by a Nash equilibrium of the game.2 The use of traditional

refinements is limited and depends on the details of the game, consequently, some

stability notions have been used in order to refine the set of equilibria.

The stability notions used so far to refine the set of Nash equilibria in a link

formation game have been based on cooperative game theory. The most prominent of

them, from the strongest to the weakest, have been Strong Nash Equilibrium (SNE),

Coalition Proof Nash Equilibrium (CPNE) and Pairwise Stability (PS). However,

the applicability of these refinements lies critically on the feasibility of cooperation

among agents. This assumptions may be too strong for a link formation game when,

by definition, the network has not been formed.3

1For an excelent review of the main issues in network theory see Dutta and Jackson (2001) and
Jackson (2001).

2See, for example, Slikker and van den Nouweland (2000).
3The feasibility of cooperation seems more appealing once the network has been formed and the

agents interact among them.

2



In this paper we use a non cooperative4 equilibrium selection approach as a no-

tion of stability in link formation games. Specifically, we follow the Global Games

approach pioneered by Carlsson and van Damme (1993),5 to study the robustness

of the set of Nash equilibria for a class of link formation games with supermodular

payoff functions. In order to ilustrate this approach, let us suppose that Gx is a

standard game of complete information where the payoffs depend on a parameter

x ∈ IR, and also suppose that for some subset of the parameter x, Gx has a strict

Nash equilibrium. Rather than observing the parameter x, suppose instead that each

player observes a private signal xi = x+ σεi where σ > 0 is an scale factor and εi is

a random variable with density φ. Denote this “perturbed game” by Gx(σ), and

let NE(Gx) and BNE(Gx(σ)) denote the sets of Nash and Bayesian Nash equilibria

of the unperturbed and perturbed games, respectively. Equilibrium selection is ob-

tained when limσ→0BNE(Gx(σ)) is smaller than NE(Gx). Carlsson and van Damme

(1993) show, in fact, that for two-player, two-action games, this limit comprises a

single equilibrium profile, and is obtained through iterated deletion of strictly domi-

nated strategies. Recently these results have been extended by Frankel, Morris and

Pauzner (2002) for games with many players and many actions, but it is limited to

the case of games with strategic complementarities.

This paper extends the global game results to games with vector valued space of

actions, such that each component of a player´s vector strategy represents a binary

decision. Even though the application to a link formation game is very natural, our

extension can be applied to other problems beyond the network literature. Therefore,

in particular, this binary decision can be seen as player’s intention of establishing a

4The non cooperative formation of networks has been studied in the literature by Bala and Goyal
(2000), however, their approach is very different from ours, because the non cooperative notion in
that paper is related with the possibility to establish links unilaterally, whithout the agreement of
the partner. On the contrary, our model is in the tradition that the existence of a link requires both
parties to agree.

5For an excellent desciption and survey of the ensuing literature see Morris and Shin (2002)
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link with other player. A link will be formed if and only if both players want to form

the link. Any Nash equilibria of this game will support a different network.

We study a general class of games where the link formation process follows the

strategic form of Dutta, van den Noweland, and Tijs (1998),6 such that if the payoff

is parametrized by x, our main assumptions are: 1. Increasing Differences: player

i’s incentive to choose a higher action is non decreasing in the others players’ action

profile. 2. Link Symmetry: player i’s incentive to choose an action depends on

the number of links requested by each player and on the structure of the resulting

network, but not on the identities of the players. 3. Existence of upper and lower

dominance regions: for sufficiently low (high) values of the parameter, the action

vector such that shows link intention with nobody (everybody) is strictly dominant.

Under these assumptions, and some technical requirements, we prove that there

exists a unique equilibrium profile surviving iterated elimination of strictly dominated

strategies. The profile selected is independent of the noise size. The equilibrium

strategy defines a unique k∗ such that ∀xi < k∗ each player chooses the action vector

showing link intention with nobody, and ∀xi > k∗ each player chooses the action

vector showing link intention with everybody.

The selected Bayesian Nash profile is in conflict with those arising from the appli-

cation of traditional cooperative refinements of the network literature: SNE, CPNE

and PS. This difference shows that the cooperative notions of stability are not robust

to incomplete information. Moreover, we show that the stability notions based on co-

operative refinements do not conflict with efficiency in our class of payoff functions,

however, the equilibrium selected under the global game approach does conflict. These

differences raise some practical questions about which criteria should be satisfied by

6The strategic form approach of the link formation game was first proposed by Myerson (1991).
The idea is that each player select a list of the other players he wants to form a link with. Then the
lists are put together and if the link ij is required by both parts then it is formed.
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networks that form in reality.

From an applied point of view, the paper highlights the importance of two stan-

dard assumptions in the link formation literature. First, the assumption of complete

information can be the origin of the multiplicity of networks supported by Nash

Equilibria in link formation games. This multiplicity disappears when we perturb

the game introducing incomplete information. Second, the cooperative refinements

have been used symmetrically to refine the multiplicity of equilibria in a link for-

mation game and to argue that an existing network is stable to some cooperative

deviations. However, the possibility of cooperation among coalitions of agents seems

to be a more demanding assumption when the network is in formation than when the

agents are maintaining or modifying an existing network. These observations raise

some doubts about which is the pertinent equilibrium selection criteria in reality for

a link formation game.

The paper is organized as follows. In section 2 we provide a simple example where

we can show intuitively the main findings of the paper. Section 3 presents some

basic background and notation in network theory which will be useful throughout the

paper. In section 4 we describe our link formation game and we introduce the general

class of supermodular payoff functions under study. Sections 5 introduces the most

commonly used cooperative refinements and their application to our game. In section

6 we develop the alternative approach to equilibrium selection using the global game

theory. In section 7 we specialized our payoff function in order to get some intuition

about the results. The main conclusions are contained in sections 8. Finally, proofs

of propositions are relegated to the appendix.
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2 An Illustrative Example

The idea of this section is to provide a simple example and an intuitive explanation of

the main results developed in the paper. We are not going to be formal and technical

details are postponed to next sections.

Consider a link formation game of complete informationG with three players, where

the set of strategies for each player i is given by Ai = {0, 1}2 . A strategy for player i
is a two component column vector of zeros and ones which identifies the set of players

he wants to form links with. A link between two players will be formed if and only if

both players want to form the link. For example, if the strategies of the players are

ai = (aij = 1, aik = 1)
t, aj = (aji = 0, ajk = 1)

t, ak = (aki = 0, akj = 1)t, then only

the link jk is created.7 The payoff function for player i is defined by:

πi = aijaji (x+ ajkakjβx) + (αx− c)aij + aikaki (x+ akjajkβx) + (αx− c)aik (1)

The variable x defines a level of profits which is assumed to be non negative, and

c is a fixed parameter that represents a level of investment incurred by agent i for

each link he wants to form. This investment is quasi specific to the partners, in the

sense that if agent i incurs an investment to agent j, then even if j does not perform

the reciprocal investment, and consequently the link ij is not formed, agent i receives

a return (αx− c). The source of benefits αx is independent of other players’ actions,

in the sense that it can be obtained no matter the strategies the other players are

following. On the other hand, if j also performs the quasi specific investment to i

then the return to agent i increases to (x+αx− c). In other words, there is an extra

direct benefit x from connection with each potential partner. Finally, agent i profits

7Note that the superscript t stands for transpose.
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from the relation between j and k when they are connected and provided that i is

connected with at least one of them. Note that if i is connected with both of them,

this indirect benefit is duplicated. For example, in the complete network the total

payoff for player i is given by πi = 2[x (1 + α+ β) − c]. In this sense, βx represent

an indirect benefit or spillover that agent i is able to extract from the connection

between his partners and their partners. It seems natural to assume that 1 > α > 0,

1 > β > 0, because we are scaling the benefits in relation to those obtained from

reciprocity (x).

One case where this kind of payoff function can be justified is in investment in

R&D to reduce variable costs. In such a case, it has been empirically documented (see

Goyal and Moraga-Gonzalez (2001)) that the firms tend to form alliances in pairs,

represented by the links, but any reduction in cost obtained by i’s partners can be

imitated by i, no matter if such reduction was obtained due to R&D of i’s partner or

by a partner of i’s partners. We can assume that these firms are not competitors in

any final market, so no negative externalities from R&D will arise.

2.1 The Nash Equilibria

Given the symmetry of the problem we are going to consider the best response cor-

respondence for player 1. This correspondence, and the Nash equilibria arising, are

different depending on the values of x. Figure 1 provides a summary of the different

network structures supported by Nash equilibria, NE(G), for different values of x.

Consider the following cases:

Case (a): Suppose that:

c

1 + α
< x <

c

α

then the best response correspondence is given by:
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BR1(a−1) =



a12 = 1, a13 = 1 if a21 = a31 = 1

a12 = 1, a13 = 0 if a21 = 1, a31 = 0

a12 = 0, a13 = 1 if a21 = 0, a31 = 1

a12 = 0, a13 = 0 if a21 = 0, a31 = 0

Note that, in this region, the strategies of agents 2 and 3 in relation to their

connection does not affect the best response correspondence of agent 1. The intuition

is that direct connections are enough to guarantee profitability. This characteristic

leads to a multiplicity of Nash equilibria and, even more, it is possible to prove that all

the feasible networks among the three agents can be supported by a Nash equilibrium.

Case (b): Suppose that:

c

1 + α+ β
< x <

c

1 + α

then the best response correspondence is given by:

BR1(a−1) =



a12 = 1, a13 = 1 if a21 = a31 = a23 = a32 = 1

a12 = 1, a13 = 0 if a21 = a23 = a32 = 1, a31 = 0

a12 = 0, a13 = 1 if a21 = 0, a31 = a23 = a32 = 1

a12 = 0, a13 = 0 otherwise

Note that, in this case, the best response correspondence of player 1 is affected

by the existence of the link between players 2 and 3. It is possible to prove that

in this case only the empty and the complete network can be supported as a Nash

equilibrium of the game.

Case (c): Finally, when x < x = c/(1+α+β) a dominant strategy for any player
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Figure 1: Network Structures supported by Nash Equilibria

i is to play ai = (0, 0)
t ≡ 0. Analogously, when x > x = c/α a dominant strategy

is to form links with all the other players ai = (1, 1)t ≡ 1, leading to the complete
network.

2.2 Equilibrium Selection using Cooperative Refinements

A strategy profile is called a Strong Nash Equilibrium (SNE) if it is a Nash equilib-

rium and there is no coalition of players that can strictly increase the payoffs of all

its members using a joint deviation (Aumann (1959)). On the other hand, a strategy

profile is called a Coalition Proof Nash Equilibrium (CPNE) if, as in an SNE, no

coalition can deviate to a profile that strictly improves the payoffs of all the players

in the coalition. However, in the CPNE the set of admissible deviations is smaller,

because the deviation has to be stable with respect to further deviations by subcoali-

tions. Finally, a network is Pairwise Stable (PS) if no pair of agents has incentives

to form or sever one link. A more formal treatment of this concepts is postponed to

section 5.

The application of these cooperative refinements to our three players game G

is very direct and a summary of results for the network supported by SNE(G),

CPNE(G) and PS(G) is given in figure 2.
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First, it is possible to prove that, in this particular example, SNE(G) coincides

with CPNE(G). Second, the analysis has to be performed in separated areas. It

is easy to see that the strategy profile a = (0,0,0) ≡ [0] is a SNE(G) when x <

c/(1 + α + β), because for this range of values each agent plays 0 as a dominant

strategy and, consequently, no coalition of agents can improve upon.8 On the other

hand, a = (1,1,1) ≡ [1] is a SNE(G) when c/(1 + α + β) < x. The intuition is

that the grand coalition playing ai = aj = ak = 1 (which is a Nash equilibrium)

can improve upon any other strategy profile (Nash equilibrium or not) given the

complementarities involved in the payoff functions and the fact that a positive payoff

is guaranteed.

We have to be more careful in the analysis of pairwise stability. If c/(1+α+β) <

x < c/(1 + α) then the empty and the complete networks are pairwise stable and

consequently, pairwise stability does not refine the set of Nash equilibria. This result

is a consequence that for these low values of x the indirect connections are needed to

make any connection profitable so, if nobody is making links, an agreement of two

players to form a link is not enough to obtain a profitable relationship. On the other

hand, if everybody is making links then no pair of agents benefits from severing a link.

When c/(1+α) < x < c/α any pair of agents which are not connected can profitably

make a link and, consequently, only the complete network is pairwise stable. Finally,

if x < c/(1 + α + β) then action ai = 0 is a dominant strategy for player i and the

unique pairwise stable network is the empty one. Analogously, if x > c/α then action

ai = 1 is a dominant strategy and the unique pairwise stable network is the complete

one.
8In what follows [0] and [1] represents a matrix full of zeros or ones respectively. The dimension-

ality is given by the profile they are representing. For example, in this three players case, a = [0] is
a 2x3 matrix of zeros representing a complete strategy profile and a−i = [0] is a 2x2 matrix of zeros
representing a strategy profile, which excludes player i’s strategy.
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Figure 2: Network structures supported by Strong Nash Equilibrium (SNE), Coalition
Proof Nash Equilibrium (CPNE) and Pairwise Stability (PS)

2.3 Equilibrium Selection using the Global Game Approach

Suppose now we allow some arbitrary amount of incomplete information in the payoff

structure such that instead of observing the actual value of the level of profits x,

each player just observes a private signal xi, which contains diffuse information about

x. The signal has the following structure: xi = x+ σεi, where σ > 0 is a scale factor,

x is drawn from
£
X,X

¤
with uniform density and εi is an independent realization of

the density φ with support in [−1
2
, 1
2
]. We assume εi is i.i.d. across the individuals.9

In this context of incomplete information, a Bayesian pure strategy for player i is

a function si : [X − σ
2
,X + σ

2
] → Ai, and s = (s1, s2, s3) is a pure strategy profile,

where si ∈ Si. Calling this game of incomplete information G(σ), let us define as

BNE(G(σ)) the set of Bayesian Nash equilibria of G(σ).

Proposition 1: ∀ σ > 0 there exists a unique strategy profile s∗, that survives

iterated elimination of strictly dominated strategies, where:

s∗i (xi) =

 1 if xi > k∗

0 if xi < k∗
∀i and k∗ =

4c

2 + 4α+ β

9Note that φ need not be symmetric around the mean nor even have zero mean.

11



Since the noise structure is xi = x + σεi, as σ → 0 xi → x, thus the unique

equilibrium selected implies that ∀ x < k∗ all agents play the action 0, so the empty

network is formed, and ∀ x > k∗ all the agents playing action 1 and, consequently, the

complete network is formed. Conditional on the signal, figure 3 shows the networks

supported by this equilibrium as the noise goes to zero.

This proposition is a particular case of proposition 4 (many players case), so we

are not going to give a formal proof here. Instead, we are going to discuss the intuition

behind the proposition. Consider players 2 and 3 using any strategy. It is common

knowledge of the game that these strategies must consider playing the actions 0 and

1 in the previously identified dominance regions. It is possible to prove that agent 1’s

best response to such strategies is a strategy that considers playing 0 when x1 < x1

and playing 1 when x1 > x1 where x < x1 and x > x1. In other words, in equilibrium,

the regions where 0 and 1 are played has been extended. Given the symmetry of the

problem, all the agents perform the same analysis and consequently the regions where

0 and 1 are played are extended symmetrically for all the players. Iterating with this

argument, it is possible to generate increasing and decreasing sequences {xn}∞n=1 and
{xn}∞n=1, respectively, such that they have the same limit value, i.e., x∞ = x∞ ≡ k∗.

Finally, it is important to notice that the equilibrium profile selected in G(σ) does

not depend on the size of the noise. In this sense, we say that s∗ is the unique

equilibrium of the link formation game G, which is stable to incomplete information

in the parameter x.

2.4 Efficient Allocation of the Game

The efficient allocation of the game E(G), is defined for each x as the strategy profile

that maximizes the sum of the payoffs for the players. It is easy to check that:
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Figure 3: Equilibrium Selected using the Global Game Approach

E(G) =

 {[0]} if x < c/(1 + α+ β)

{[1]} if x > c/(1 + α+ β)

and as a result, the networks supported by efficient allocation E(G) coincide with

those supported by the sets SNE(G) and CPNE(G) described in figure 2.

2.5 Discussion

The example developed illustrate the main results of the paper. First, the traditional

cooperative refinements do not conflict with the efficient allocation for each level of

x. However, the equilibrium selected using the global game approach clearly conflicts

with efficiency when c
1+α+β

< x < 4c
2+4α+β

. Second, in the interval c
1+α

< x <

4c
2+4α+β

all the cooperative refinements predict the formation of the complete network,

however, our selected equilibrium predicts the empty network. This means that, for

these values of x, it is impossible to satisfy the two stability conditions simultaneously.

Giving that each stability notion leads to the selection of a different equilibrium, we

have two implications. First, the cooperative refinements are not robust to incomplete

information. Second, the feasibility of the equilibrium selected by each approach

depends critically on the feasibility of the deviations considered in each stability
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condition. For example, if the agents are not able to cooperate in a link formation

game, then it does not seem reasonable to select the equilibrium using a cooperative

refinement and the global game approach could be more adequate.

In what follows we are going to show that these findings hold in a much more gen-

eral setting defined by a family of payoff functions that satisfies a set of assumptions.

3 Some Preliminaries in Network Theory

The goal of this section is to provide some basic concepts and notation in network

theory so that we will be able to discuss the insights of the paper in relation to the

existing literature and using the standard language in the field.

3.1 Basic Background in Network Theory

Several authors have studied the theoretical foundations of network formation and its

properties. Particular emphasis has been given to study the link formation process

and the conflict between stability and efficiency in networks. The link formation

literature precedes the stability/efficiency literature, however, the insights from the

latter area have interacted and motivated more research in the former.

In the link formation literature, an important starting point is Myerson (1977)

who departs from the traditional cooperative game theory imposing networks con-

straints to the role of the different agents in a coalition. Aumann and Myerson (1988)

studied a particular link formation game in extensive form where the agents itera-

tively decide to offer or sever links to the others. This sequence of decisions proceeds

in different rounds until no one wants to modify the selection of the previous round.

They characterize the resulting networks as the subgame perfect Nash equilibria of

the game. Most recently, Dutta, van den Noweland and Tijs (1998) studied a link

formation game in strategic form and showed that the resulting networks differ from
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those of Aumann and Myerson (1988). The strategic form approach of the link forma-

tion game was first proposed by Myerson (1991). The idea is that each player select a

list of the other players he wants to form a link with. Then the lists are put together

and if the link ij is required by both parts then it is formed. Given the nature of the

game, subgame perfection does not apply. Dutta, van den Noweland and Tijs (1998)

used cooperative refinements to select among the multiplicity of Nash Equilibria of

the game. Slikker and van den Noweland (2000) introduced a cost to establish links

and showed that, in the game in extensive form of Aumann and Myerson, a decrease

in this cost does not necessarily increase the number of links in equilibrium.

The study of the conflict between stability and efficiency of networks began with

the paper of Jackson and Wolinsky (1996). This is a very important paper because

they are the first to assign value directly to the network rather than to the coalition.

This fact allows us to have different values for the same coalition depending on how

the agents are connected.10 In particular, this approach encompasses the case studied

by Slikker and van den Noweland (2000). The focus of their paper is not on link

formation but the conflict between stability and efficiency, where the stability notion

they introduce is pairwise stability (PS)11 and the efficiency notion is strong efficiency.

Under PS they consider only the incentives of each pair of agents to form or sever

one link and under strong efficiency the value of the network is maximized.12 Their

main result is that an anonymous and component balanced allocation rule does not

exist13 such that at least one strongly efficient graph is pairwise stable for every value

function over the network. Dutta and Mutuswami (1997) adopt a mechanism design

10Technically, if the network is denoted by g, then the value function is denoted by v(g).
11As Jackson and Wolinsky (1996) say, this concept is a weak notion of stability and it has been

considered as a necessary condition.
12Jackson (2001) shows that the concept of efficiency could vary across problems depending on

the degree of transferability of the value generated by the network.
13The allocation rule describes how the value of each network is distributed to the players. For

a formal definition of the anonymity and component balance properties see Jackson and Wolinsky
(1996).
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approach to deal with the conflict between efficiency and stability. They show that, in

some particular environments, it is possible to reconcile stability and efficiency with

an adequate design of the allocation rule.

It is important to note how the discussion about the conflict between efficiency

and stability has affected the modeling of the link formation game, which is the

focus of this paper. The main relation is through the concept of stability. When

we specify a game that model how the network forms, we can say that the Nash

equilibria of the game satisfy, by definition, a stability condition; no one wants to

unilaterally deviate from the equilibrium. However, this notion usually generates a

multiplicity of equilibria supporting a multiplicity of networks structures, which lead

us to consider some refinements. The pertinent kind of refinement depends on how

we specify the game. For example, Aumann and Myerson (1988) used the subgame

perfect equilibrium concept for their link formation game in extensive form. On the

other hand, Dutta, van den Noweland and Tijs (1998) consider two kind of refinements

for their strategic form game, the Strong Nash Equilibrium (SNE) and the Coalition

Proof Nash Equilibrium (CPNE). Both of them are indeed stability concepts where

the idea is to select the equilibria that survives against the possibility of deviations

by coalitions. The first concept, however, is too demanding and it could be the case

that the set of SNE is empty. Consequently, they use the CPNE as the concept of

stability in networks and, therefore, as the relevant refinement in the link formation

game. The pairwise stability notion of Jackson and Wolinsky (1996) has been argued

to have an advantage because it is independent of the way that the link formation

game is modeled. Although this is a weak notion of stability, it is enough to generate

conflict between efficiency and stability and even more, there are situations where no

pairwise stable network exists.14

14However, if the allocation rule is given by the Myerson value, there always exist a pairwise stable
network.
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In this paper we focus on the link formation game in strategic form of Dutta,

van den Noweland and Tijs (1998) but we introduce a different, non cooperative,

equilibrium selection approach. Our approach is in fact based on a different stability

notion and consequently, we can analyze the properties of the selected equilibria and

compare them with those from the cooperative results. We also discuss the traditional

stability/efficiency conflict when our stability notion is being used.

3.2 Basic Notation in Network Theory

Following Jackson and Wolinsky (1996), we establish some basic notation concerning

graphs.

Let N = {1, ..., N + 1} be a finite set of players. The complete graph, denoted
by gN+1, is the set of all subsets of N of size 2. The set of all possible graphs on N
is {g/g ⊆ gN+1}. Let the link ij denotes the subset of N containing only i and j.

We understand that ij ∈ g if and only if the nodes i and j are directly connected.

Moreover, we denote g + ij = g ∪ {ij} and g − ij = g\{ij}.
Let N(g) = {i/∃j s.t ij ∈ g} be the set of non isolated nodes and n(g) be the

cardinality of N(g). A path in g connecting i1 and in is a set of distinct nodes

{i1, ..., in} ⊆ N(g) such that {i1i2, i2i3..., in−1in} ⊆ g.

The graph g0 ⊂ g is a component of g, if for all i ∈ N(g0) and j ∈ N(g0), with

i 6= j, there exist a path in g0 connecting i and j, and for any i ∈ N(g0) and j ∈ N(g),

ij ∈ g implies ij ∈ g0.

The value of a graph is represented by the function v : {g/g ⊆ gN+1}→ IR. The

set of all such functions is denoted by V . In some applications the value function is

naturally defined as an aggregation of individual payoffs functions, v(g) =
P

i πi(g),

where πi : {g/g ⊆ gN+1}→ IR is player i’s payoff.

A graph g ∈ {g/g ⊆ gN+1} is strongly efficient if v(g) ≥ v(g0) ∀g0 ∈ {g/g ⊆ gN+1}
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An allocation rule Y : {g/g ⊆ gN+1}×V → IRN+1 is a rule that describes how the

value of a graph is distributed to the individual players. Yi(g, v) is the payoff to player

i from graph g under the value function v. In some specific contexts, as the one studied

in this paper, the allocation rule fails to redistribute wealth, so Yi(g, v) = πi(g).

With this concepts in mind we will be able to interpret our assumptions and results

using the standard language of network theory.

4 The Link Formation Game

Consider the following general setup for an N +1 person game G. There exists N +1

players indexed by i, each player has a set of strategies Ai = {0, 1}N . A strategy
for player i is a column vector of zeros and ones which identify the set of players he

wants to form links with. A link between two players will be formed if and only if

both players want to form the link. For example, if players’ strategies are such that

ai = (..., aij = 1, aik = 1, ...)
t, aj = (..., aji = 0, ajk = 1, ...)

t, ak = (..., aki = 0, akj =

1, ...)t, then the link jk is created. More generally, a strategy profile a ∈ A =
N+1×
i=1

Ai

defines the graph g formed according to:

g(a) = {ij ⊆ gN+1 / aij = 1, aji = 1} (2)

With this notation, we are allowing the case that two or more different strategy

profiles can define the same network. For example, it could be the case that g(a) =

g(a0) with a 6= a0, and these profiles generate different values for the individual’s

payoff functions. For this reason we consider the payoff function πi : A→ IR and we

will refer to the total value generated by a network g supported by a strategy profile

a as: v(a) =
P

i πi(a).

For simplicity we will assume symmetric players with a payoff function given by
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π(ai, a−i, x) where ai ∈ Ai, a−i ∈ A−i = ×j 6=iAj,
15 and x ∈ [X,X] ⊂ IR is an

exogenous variable. We define ∆π(ai, a
0
i; a−i, x) = π(ai, a−i, x)−π(a0i, a−i, x) as agent

i’s payoff difference when he changes from action a0i to action ai.

Define An
i ⊂ Ai such that, if ai ∈ An

i then ai isN-dimensional vector which contain

n components 1 and N−n components 0. In fact, the family of sets {An
i }Nn=0 defines a

partition of Ai because Ai =
N∪
n=0

An
i and A

n
i ∩An0

i = ∅ for all n and n0 ∈ {0...N} with
n 6= n0. Additionally, it is easy to see that AN

i and A0i are singleton, therefore if ai ∈
AN
i then ai = (1, 1, 1, ..., 1)t ≡ 1, and it is defined as the highest action vector. If

ai ∈ A0i then ai = (0, 0, 0, ..., 0)
t ≡ 0 is the lowest action vector. If ai ∈ {1,0} ⊂ Ai,

then ai is an homogenous action vector, and Ah
i ≡ A0i ∪ AN

i = {1,0} is defined as
players i’ set of homogenous actions.

Similarly consider Ah
−i = ×j 6=iAh

j and define A
h,n
−i such that if Mn is an element

of Ah,n
−i , then Mn is N × N matrix containing n columns 1 and N − n columns 0.

As we consider above, the family of sets
n
Ah,n
−i
oN
n=0

is a partition of Ah
−i because

Ah
−i =

N∪
n=0

Ah,n
−i and Ah,n

−i ∩ Ah,n0
−i = ∅ for all n and n0 ∈ {0...N} with n 6= n0. In

particular MN = [1] is a N ×N matrix of ones, and M0 = [0] is a N ×N matrix of

zeros.

Let us consider the following assumptions in the payoff structure:

(A1). Increasing Differences (ID). Conditional on the value of the exogenous

parameter x, the greater the other players’ action profile the greater is player i’s

incentive to choose a higher action:

∀ai ∈ Ai and ∀a−i ∈ A−i
15Ai is a partially ordered set:
ai ≥ a0i if ∀j 6= i aij ≥ a0ij
ai > a0i if ∀j 6= i aij ≥ a0ij and aij >a0ij for some j
In the same way A−i is a partially ordered set:
a−i ≥ a0−i if ∀j 6= i aj ≥ a0j
a−i > a0−i if ∀j 6= i aj ≥ a0j and aj >a0j for some j
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If ai ≥ a0i and a−i ≥ a0−i, ∆π(ai, a
0
i; a−i, x) ≥ ∆π(ai, a

0
i; a

0
−i, x) ∀x

and in particular:

a. ∀ai 6= 0, ∃ k 6= i with aik = 1. So if aki = 0 then:

∆π(ai,0; a−i, x) < ∆π(ai,0; a
0
−i, x) ∀x

where a0−i ≥ a−i+eki, and eki is a N ×N matrix of 0, except the ki element which

is 1.

b. ∀ai 6= 1, ∃ k 6= i with aik = 0. So if aki = 1 then:

∆π(1, ai; a−i, x) > ∆π(1, ai; a
0
−i, x) ∀x

where a0−i ≤ a−i − eki

(A2). Continuity (C).

π(ai, a−i, x) is a continuous function in x

(A3). Monotonicity (M). The greater the value of the exogenous parameter

x, the greater is player i’s incentive to choose a higher action:

∃ c > 0 s.t. ∀ ai > a0i ∀ a−i and x, x0 ∈ [X,X] x > x0

∆π(ai, a
0
i; a−i, x)−∆π(ai, a

0
i; a−i, x

0) > c kai − a0ik (x− x0)

(A4). Links Symmetry (LS). Player i’s incentive to deviate from an homoge-

nous action depends on the number of links requested by each player and on the

structure of the resulting network, rather than on the identities of the players:

a. ∀ ai ∈ An0
i and ∀a0i ∈ An0

iP
a−i∈ Ah,n−i

∆π(ai,0; a−i, x) =
P

a−i∈ Ah,n
−i

∆π(a0i,0; a−i, x)P
a−i∈ Ah,n−i

∆π(1, ai; a−i, x) =
P

a−i∈ Ah,n
−i

∆π(1, a0i; a−i, x) ∀n, n0 = 0, ..., N
It is important to notice that the role of network structure is incorporated through

the summation over a−i ∈ Ah,n
−i .

b. Moreover, the value of the incentive to deviate from the homogenous action 0 to

any other action ai varies proportionally with the elemental deviation that establishes
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just one link intention:

∃ λ : Ai → [0,∞) satisfying λ(0) = 0 and λ(ai) = 1 ∀ai ∈ A1i , s.t. if ai ∈ An
i

and a0i ∈ An0
i , then:

λ(ai) > λ(a0i) ⇔ n > n0,

λ(ai) = λ(a0i) ⇔ n = n0

And ∀ai ∈ AiP
a−i∈ Ah,n−i

∆π(ai,0; a−i, x) = λ(ai)
P

a−i∈ Ah,n
−i

∆π(a0i,0; a−i, x) ∀n = 0, ..., N ∀a0i
∈ A1i

(A5). Upper and Lower Indifference Signals (IS). If all other players are

choosing the highest (lowest) action, there exists a unique value of x such that player

i is indifferent between the lowest (highest) action and any other action.

∀ai ∈ Ai

∃! x > X s.t. ∆π(ai,0; a−i = [1] , x) = 0, and

∃! x s.t. X > x > x s.t. ∆π(1, ai; a−i = [0] , x) = 0

Assumptions A1 (ID) parts a) and b) are required because we will need increasing

differences being satisfied strictly under some circumstances. In A1 (ID) a, player i

has link intention with player k but it is not reciprocal (aik = 1 but aki = 0). Then

if k changes his strategy to request now a link with i and all the agents others than

i are playing higher strategies (a0−i ≥ a−i + eki), then player i’s incentive to choose

the original ai is strictly higher. Intuitively,16 in terms of our network notation, we

are roughly saying that ∆π(g(a)) < ∆π(g(a) + ik) ≤ ∆π(g0), where g(a) + ik ⊆ g0.

The intuition for A1 (ID) b is analogous.

Another important remark is that assumptions A1 (ID), A3 (M) and A5 (IS)

16This interpretation is not precise, because the same network can be supported by different
strategy profiles generating different payoffs. However, the intuition is the same.
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provide sufficient conditions for the existence of dominance regions, along which each

action is strictly dominant, providing this setup with the necessary global game struc-

ture. i.e.

∀x < x, ∆π(ai,0; a−i, x) < 0 ∀a ∈ A, and

∀x > x, ∆π(1, ai; a−i, x) > 0 ∀a ∈ A

Finally, the following lemmas will be useful in the characterization of the equilib-

rium.

Lemma 1: For all ai ∈ Ai and for all x ∈ [X,X] we have

X
a−i∈ Ah

−i

∆π(ai,0; a−i, x) = λ(ai)
X

a−i∈ Ah
−i

∆π(a0i,0; a−i, x) ∀a0i ∈ A1i

proof : It follows directly fromA4 (LS) b. and because
P

a−i∈ Ah
−i
=
PN

n=0

P
a−i∈ Ah,n

−i
.

Lemma 2: The values of x and x are independent of ai.

proof : It is a direct application of assumption A4 (LS) b.

5 Equilibrium Selection using Cooperative Refinements

In this section we are interested in applying some of the most commonly used sta-

bility concepts to our problem in order to refine the multiplicity of Nash equilibria

that can arise in our game. Three concepts have been proposed: Pairwise Stabil-

ity (PS), Coalition Proof Nash Equilibrium (CPNE) and Strong Nash Equilibrium

(SNE). These refinements are based in cooperative game theory, mainly because in

the application to networks when we consider deviations from the Nash equilibrium,

we must include the possibility of adding links, which requires the agreement of both

parties. In what follows we provide a formal definition of each concept and we apply

them to our problem.
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5.1 Definitions

The graph g is pairwise stable with respect to the value function v and the allocation

rule Y if:

(i) For all ij ∈ g, Yi(g, v) ≥ Yi(g − ij, v) and Yj(g, v) ≥ Yj(g − ij, v)

and

(ii) For all ij /∈ g, if Yi(g, v) < Yi(g + ij, v) then Yj(g, v) > Yj(g + ij, v)

The concept of pairwise stability is due to Jackson and Wolinsky (1996) and it

is directly defined over the networks, independently of the link formation process. It

says that the network will be pairwise stable when each pair of agents do not have

incentives to add or sever a link. It is clear from the definition that adding a link

requires both parties to agree, but any agent can sever a link unilaterally.

Jackson and Wolinsky (1996) claimed that pairwise stability has the advantage

that it is independent of the formation process of the network, so no matter how the

network is formed, pairwise stability will be meaningful. On the other hand, it has

the disadvantage that it can be understood as a necessary condition for stability, but

it is not sufficient because the concept does not consider either deviations of a bigger

coalition of players or deviations where one player would want to add or sever more

than one link. This inconvenience has motivated the introduction of stronger notions.

A strategy profile is called a Strong Nash Equilibrium (SNE) if it is a Nash equi-

librium and there is no coalition of players that can strictly increase the payoffs of all

its members using a joint deviation (Aumann (1959)). We are going to talk about

Strong Stability to refer the case where the network g is formed by a SNE of the game.

Formally, let Γ = (N , {Ai}i∈N , {ui}i∈N ) be a game in strategic form. A strategy
profile a∗ ∈ A =

N+1×
i=1

Ai is a Strong Nash Equilibrium (SNE) of Γ if there is no T ⊆ N
and a ∈ A such that:
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(i) ai = a∗i ∀i /∈ T

(ii) ui(a) > ui(a
∗) ∀i ∈ T

The claimed advantage of this concept is that it can be understood as the strongest

stability notion. Consequently when a network g is strongly stable it is virtually

impossible to destabilize. The disadvantage, unfortunately is that an SNE does not

always exist (see Slikker and van den Noweland (2000)). As a result, a weaker notion

of stability is required.

In order to define the coalition proof Nash equilibrium (CPNE) we need some extra

notation. Consider the game in strategic form Γ = (N , {Ai}i∈N , {ui}i∈N ) as above.
For every subset of players T ⊂ N and a fixed strategy profile âN\T ∈ AN\T for the

players who do not belong to T , let Γ(âN\T ) be the game induced on the players of

T by the strategies âN\T , that is:

Γ(âN\T ) = (T, {Ai}i∈T , {u∗i}i∈T )

where for all i ∈ T , u∗i : A
T → IR is given by u∗i (a

T ) ≡ ui(a
T , âN\T ) for all

aT ∈ AT .

Now coalition proof Nash equilibria is defined inductively. In a one player game

with player set N = {i}, âi ∈ Ai = A is a CPNE of the game Γ = ({i} , Ai, ui) if

âi maximizes ui over Ai. Consider now a game Γ with n > 1 players. By induction,

the CPNE has been defined for games with less than n players. Using this induction

hypothesis, we say that a strategy profile â ∈ AN is self enforcing if for all T ⊂ N , âT
is a CPNE of Γ(âN\T ). Then, the strategy vector â is a CPNE of Γ if â is self enforcing

and there is no other self enforcing strategy profile a ∈ AN with ui(a) > ui(â) for all

i ∈ N .
As in SNE, the CPNE demands that no coalition can deviate to a profile that

strictly improves the payoffs of all the players in the coalition. However, in the CPNE
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the set of admissible deviations is smaller, because the deviation has to be stable with

respect to further deviations by subcoalitions.

The advantage of this notion is that it is easier to satisfy than SNE. Even more,

Slikker and van den Noweland (2000) have proved that in a three players game a

CPNE always exists. The disadvantage is that a CPNE could be very difficult to find

depending on the particular game.

It has been proved that,17 for a general link formation game Γ under complete

information, 18:

SNE(Γ) ⊆ PS(Γ) ⊆ NE(Γ) (3)

SNE(Γ) ⊆ CPNE(Γ) ⊆ NE(Γ)

Finally, the set of Efficient Allocations of a game Γ, E(Γ), is defined as:

E(Γ) = {a∗ ∈ A, such that a∗ ∈ argmax
a

X
i∈N

ui(a)} (4)

It is clear that any a∗ ∈ E(Γ) defines a strongly efficient graph g(a∗) ∈ G through-

out (2). An important implication of the theoretical conflict between efficiency and

stability is that, in general, E(Γ) * PS(Γ) and E(Γ) * CPNE(Γ).19 We are going

to show that this is not the case in our game.

17See Jackson and Wolinsky (1996) and Dutta and Mutuswami (1997)
18Even when Pairwise Stability has been defined over graphs, we can talk about the set PS(Γ) as

the subset of Nash Equilibria leading to pairwise stable graphs through (2).
19See Jackson and Wolinsky (1996) and Dutta and Mutuswami (1997), respectively.
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5.2 The Cooperative Refinements

Consider the link formation game in strategic form defined in section 4 and satisfying

the assumptions A1 to A5. In addition, we introduce the following assumption:

(A6). Status Quo Payoff (SQP)

π(0, a−i, x) = 0 ∀a−i ∈ A−i , ∀x ∈ [X,X]

This assumption is very natural in the sense that if agent i does not require any

link, then he has neither benefits nor costs. The role of assumption A6 (SQP) is to

permit us to write ∆π(ai,0; a−i, x) = π(ai, a−i, x) so that all the assumptions over

∆π can be directly interpreted in terms of π.

Under this general set of assumptions it is not easy to give a detailed description

of the set of Nash equilibria of the game. However, it is possible to show that some

particular profiles are indeed Nash Equilibria, and even more, we can show that these

equilibria are stable under the traditional cooperative refinements. In addition, we

will show that the set E(G) is always stable under the different cooperative notions.

Proposition 2: Consider the link formation game G. Under assumptions A1 to

A6 we have:

a. The set E(G), satisfies:

E(G) =

 {[0]} if x < x

{[1]} if x > x

b. If a ∈ E(G) then a is stable under all the cooperative refinements.

Proposition 2 shows that in the class of supermodular games defined in section 4

under assumptions A1 to A6 there is no conflict between efficiency and the cooperative

notions of stability.
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6 Equilibrium Selection using the Global Game Approach

Suppose now that the game is one of incomplete information in the payoff structure.

Instead of observing the actual value of x, each player just observes a private signal

xi, which contains diffuse information about x. We assume that this is a game of

private values, where each player gets utility directly from the signal rather than the

actual value of the variable.20

The signal has the following structure: xi = x+σεi ,where σ > 0 is a scale factor,

x is drawn from the interval [X,X] with uniform density, and εi is a random variable

distributed according to a continuous density φ with support in the interval [−1
2
, 1
2
].

We assume εi is i.i.d. across the individuals.

This general noise structure has been used in the global game literature, allowing

us to model in a simple way the conditional distribution of the opponents signal, i.e.

given a player’s own signal, the conditional distribution of an opponent’s signal xj

admits a continuous density fσ and a cdf Fσ with support in the interval [xi−σ, xi+σ].
Moreover this literature establishes a significant result: when the prior is uniform,

players’ posterior beliefs about the difference between their own observation and other

players’ observations are the same, i.e. Fσ(xi | xj) = 1− Fσ(xj | xi).21
In this context of incomplete information, a Bayesian pure strategy for a player

i is a function si : [X − σ
2
,X + σ

2
] → Ai, and s = (s1, s2, ..., sN) is a pure strategy

profile, where si ∈ Si. Equivalently we define s−i = (s1, s2, ..si−1, si+1, ...sN) ∈ S−i.

In particular, a switching strategy between the lowest and the highest action is a

Bayesian pure strategy satisfying : ∃ ki s.t.
20Even though we have not proven that our main result is robust to this assumption, it is simple

to model the private value case as a limit of the common values case (when players derive utilitity
from the actual value of the variable) as the noise goes to zero (σ → 0). This approach has been
used in the global game literature. (Carlsson and van Damme (1993), Morris and Shin (2000) and
Frankel, Morris and Pauzner (2002).)
21This property holds approximately when x is not distributed with uniform density but σ is

small, i.e. F (xi | xj) ≈ 1− F (xj | xi). See details in Lemma 4.1 Carlsson and van Damme (1993)
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si(xi) =

 1 if xi > ki

0 if xi < ki

Abusing notation, we write si(·; ki) to denote the switching strategy with threshold
ki.

Finally, if player i is observing a signal xi and facing a strategy s−i his expected

payoff can be written as

Πi(ai, s−i, xi | xi) =
Z
x−i

π(ai, s−i(x−i), xi)dFσ(−i)(x−i | xi)

Calling this game of incomplete information G(σ), let us define BNE(G(σ)) as

the set of Bayesian Nash equilibria of G(σ). In addition, we assume:

(A7). Single Crossing (SC). There exists a unique value k∗, of the exogenous

variable such that if player i receive a signal xi = k∗ and he believes that all other

players are using a switching strategy between 0 and 1 with threshold k∗, the expected

value of his payoffs when he chooses 0 or 1 are the same:

There exists a unique k∗ solving
NX
n=0

X
a−i∈ Ah,n

−i

{∆π(1,0; a−i, k∗)} = 0

One of the main results of the paper proves that G(σ) has a unique profile s∗,

played in equilibrium ∀σ > 0, and in this profile every player will play a switching

strategy si(·; k∗) with k∗ according A7 (SC).

Proposition 3: Consider the link formation game G(σ). Under assumptions A1

to A5 and A7:

∀ σ > 0 there exists a unique strategy profile s∗ surviving iterated elimination of

strictly dominated strategies, where:
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s∗i (xi; k
∗) =

 1 if xi > k∗

0 if xi < k∗
∀i and x < k∗ < x

The equilibrium strategy defines a unique k∗ satisfying that ∀xi < k∗ each player

chooses the action vector that shows link intention with nobody, and ∀xi > k∗ each

player choose the action vector that shows link intention with everybody. It is im-

portant to notice that the equilibrium profile selected does not depend on the size of

the noise σ, and it does not depend on the noise structure φ either.We have assumed

that the parameter x is distributed according to a flat prior, but it is possible to

prove that any prior can be treated as a flat prior when σ goes to zero. In this sense,

we say that s∗ is the unique equilibrium of the link formation game G, which is robust

to incomplete information in the parameter x.

Even though the proposition proves that when σ > 0 each player is using a

switching strategy s∗i , the network formed depends on the size of the noise. In

general, if some xi > k∗ + σ then every player receives a signal greater than k∗ and

therefore the complete network is formed. Equivalently if some xi < k∗−σ the empty
network is formed, but if some xi ∈ [k∗ − σ, k∗ + σ] any network can be formed de-

pending on the realization of every player’s signal. Following this analysis is easy to

see that as σ goes to zero just two possibilities remain, the complete and the empty

networks.

7 Application

As an example of the previous result, in this section we develop an application using

a particular payoff structure. We consider a N + 1 player link formation game, such

that each player has the same following payoff function:
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πi(ai, a−i, x) =
X
j 6=i

(
aijaji

Ã
x+

X
k 6=i6=j

ajkakjβx

!
+ (αx− c)aij

)
(5)

which is a generalization of the payoff function described in equation (1). The

interpretation of the different components of this function (independent, direct and

indirect benefits) is the same as in section 2, where we interpreted it as the investment

in R&D to reduce variable costs.

It is also clear that the game played is different depending on the values of x. In

particular, when x(1 + α + β) < c a dominant strategy for any agent i is to play

aij = 0 ∀i, j ∈ {1, ..., N +1}, i 6= j, forming the empty network. On the other hand,

when αx > c, then a dominant strategy is to play aij = 1 ∀i, j ∈ {1, ..., N + 1},
i 6= j, forming the complete network.

Assumption A6 (SQP) holds trivially, while assumptions A1 to A5 can be directly

checked as follows: the general statement for assumption A1 (ID) holds because the

payoff function is supermodular in a and then, in particular, increasing differences is

satisfied. (A1a) and (A1b) are satisfied due to the presence of a direct benefit x when

the link exists. Assumptions A2 (C) and A3 (M) follow because the payoff function is

“well behaved”.Assumption (A4a) follows directly by the symmetry of the problem,

while assumption (A4b) holds with λ(ai) =
P

j 6=i aij. Finally, assumption A5 (IS)

holds with x = c
(1+α+β)

and x = c
α
.

The problem of applying the different equilibrium selection approaches is reduced

to verify assumption A7 (SC), which is done in the following proposition.

Proposition 4: Consider the link formation game G when the payoff function

has been specialized according to (5). The Single Crossing assumption A7 is satisfied

with:
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k∗ =

Nc
PN

n=0

 N

n


PN

n=0

 N

n

Nα+

(1 + β)
PN

n=0


 N

n

n

−Nβ

 (6)

Proposition 4 permits us to apply the equilibrium selection by the global game

approach to the payoff function defined by (5). The equilibrium selected generalizes

the result discussed in section 2.

The identity
PN

n=0

 N

n

 = 2N would permit us to simplify equation (6), how-

ever, the original formulation is more convenient to verify that c
1+α

< k∗ < c
α
. Noting

that x = c
(1+α+β)

then it is easy to see that the conflict between the equilibrium selec-

tion by cooperative concepts and the global game approach applies to this particular

payoff function.

8 Conclusion

The goal of this paper is to use a non cooperative equilibrium selection approach as

a notion of stability in link formation games. Specifically, we study the link forma-

tion game in strategic form of Dutta, Van den Noweland and Tijs (1998) where we

constrain the payoffs to a class of supermodular functions defined by assumptions

A1 to A5. Assumption A6 (SQP) is introduced to apply the traditional cooperative

refinements and assumption A7 (SC) is introduced to apply the global game approach.

Our methodology is based on the global game theory, where the equilibrium selec-

tion is obtained through perturbations by allowing some arbitrarily small uncertainty

in the payoff structure. Interestingly, the equilibrium selected with our stability con-

cept is not only different, but is also in conflict with those predicted by the traditional
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cooperative refinements. As a consequence, a first insight of this paper is to show

that the equilibria selected under the cooperative notions of stability are not robust

to incomplete information.

In Proposition 2 we show that the set of Efficient Allocations is contained in the set

of stable equilibria when the stability notions are cooperative. In other words, in our

link formation game when the payoff functions belong to our class of supermodular

functions, we do not have a conflict between stability and efficiency when cooperative

refinements are used. On the contrary, from Proposition 3, we have that the conflict

appears when our equilibrium selection technique is used.

From an applied point of view, the paper highlights the importance of two stan-

dard assumptions in the link formation literature. First, the assumption of complete

information can be the origin of the multiplicity of networks supported by Nash Equi-

libria in link formation games. This multiplicity disappears in our environment under

incomplete information because, from Proposition 3, there is a unique strategy profile

that survives the iterative elimination of strictly dominated strategies and then any

additional refinement is meaningless. Second, the possibility of cooperation among

coalitions of agents seems to be a strong assumption in a link formation game. This

observation, and the conflict between the equilibria selected under a cooperative and

a global game approach, raise some doubts about which criteria is satisfied by the

forming networks in reality.

In the three player example discussed in section 2, in the interval c
1+α

< x <

4c
2+4α+β

, all the cooperative refinements predict the formation of the complete network,

however, our approach predicts the formation of the empty network. In particular,

pairwise stability implies that a couple of agents can be strictly better off if they

cooperate, however the strategies required to support this behavior do not survive

the iterated elimination of strictly dominated strategies under any level of incomplete

information in the parameter x.
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Finally, the conflict between efficiency and stability in networks under our global

game approach could have some practical implications in the dynamic formation and

destruction of markets. For example, if x is a variable affecting the benefits of the firms

in a market under formation, then the firms would enter the market (or would form the

network) at inefficiently high value of x. In a related paper we are studying the entry-

exit decisions when the payoff function of the firm belongs to our supermodular class

and the possibilities of cooperation are constrained to the “insiders” of the market.

In such an environment we expect to have different trigger values of x affecting entry

and exit decisions in equilibrium.
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9 Appendix

Proof of Proposition 2

(b) First we have to prove that a = [0] and a = [1] are indeed Nash Equilibria of

the game when x < x and x > x respectively.

Consider first x > x and ai 6= 1. By A3 (M) we have:
∆π(ai,0; a−i = [1], x)−∆π(ai,0; a−i = [1], x) > c kai − 0k (x− x) > 0

and by A5 (IS) ∆π(ai,0; a−i = [1], x) = 0, so ∆π(ai,0; a−i = [1], x) > 0.

On the other hand, by A4 (LS) we have:

∆π(1,0; a−i = [1], x) =
λ(1)
λ(ai)

∆π(ai,0; a−i = [1], x) > ∆π(ai,0; a−i = [1], x)

Finally, using A6 (SQP) this means:

π(1; a−i = [1], x) > π(ai; a−i = [1], x) ∀ai 6= 1, x > x. (7)

In other words, when the others are playing a−i = [1], then play ai = 1 is a strict

best response. As a result, a = [1] is a strict NE of the game when x > x.

Now we are going to prove that a = [1] is a SNE of the game when x > x and then,

by relations in (3), it is an stable equilibria under all the cooperative refinements.

We are going to prove that:

π(1; [1], x) ≥ π(ai; a−i, x) ∀ x > x, ∀a ∈ A, a 6= [1]
which is a condition that implies that the strategy profile a = [1] is a Strong Nash

Equilibrium (SNE).

Consider any a ∈ A, a 6= [1] and any x > x. By A1 (ID) and A6 (SQP) we have:

π(ai; a−i, x) = ∆π(ai,0; a−i, x) ≤ ∆π(ai,0; [1], x) = π(ai; [1], x)

and using equation (7) we have:

π(ai; [1], x) ≤ π(1; [1], x)

which completes the proof that a = [1] is a SNE of the game when x > x.
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Now we analyze the case x < x. In this case, the strategy ai = 0 is a strictly

dominant strategy for player i because ∀ai 6= 0 and ∀a−i ∈ A−i, by A1 (ID), A3 (M)

and A5 (IS) we have:

∆π(ai,0; a−i, x) ≤ ∆π(ai,0; a−i = [1], x) < ∆π(ai,0; a−i = [1], x) = 0

and using A6 (SQP):

π(ai; a−i, x) < 0 = π(0; a−i, x)

In particular, considering a−i = [0], we obtain that a = [0] is a strict NE of the

game when x < x.

Moreover, given any strategy profile a 6= [0] (not necessarily a Nash equilibrium)
and any x < x we have:

π(0; a−i = [0], x) ≥ π(ai; a−i, x) and then a = [0] is a SNE of the game.

Finally, when x = x, the strategy profiles a = [0] and a = [1] lead to a payoff

zero (by assumptions A6 (SQP) and A5 (IS) respectively), and using A1 (ID) and A5

(IS), for any strategy profile a ∈ A:

π(ai; a−i, x) ≤ π(1; a−i = [1], x) = 0

As a consequence there is no profitable deviation for player i from a = [0] or

a = [1], so these profiles are Nash Equilibria. Using the same assumptions, there is

no other profile where all the players in a coalition can obtain a positive payoff and,

consequently, these profiles are also Strong Nash Equilibria. Moreover, if there exists

any other efficient strategy profile under x = x, the payoff for any player i would be

zero and then, it would also be a SNE of the game.

(a) By definition, the set of Efficient Allocations of the game G is given by the

strategy profiles that solves:

max
a∈A

N+1X
i=1

πi(ai; a−i, x)

From the proof of part (b), we know that, when x > x,.the strategy profile a = [1]
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is a Nash equilibrium satisfying:

πi(1; [1], x) ≥ πi(ai; a−i, x) ∀ x > x , a 6= [1], i = 1...N + 1

But if the strategy profile a 6= [1] then there exists j so that aj 6= 1 and for this
agent, using A6 (SQP), A1 (ID) and A4 (LS) we have:

πj(aj; a−j, x) ≤ πj(aj; [1], x) < πj(1; [1], x) ∀ x > x

and then the unique Efficient Allocation when x > x is given by the strategy

profile a = [1].

An analogous argument leads us to prove that the unique Efficient Allocation

when x < x is given by the strategy profile a = [0].¥

Proof of Proposition 3

Denoting Sn
i the player i’s set of strategies that survives n rounds of deletion of

interim strictly dominated strategies, the process of iterated elimination is defined

recursively as follows: set S0i ≡ Si and for all n > 0

Sn
i ≡

 si ∈ Sn−1
i : @s0i ∈ Sn−1

i s.t. Π(s
0
i(xi), s−i, xi | xi) ≥ Π(si(xi), s−i, xi | xi) ∀xi

and with strict inequality for somexi, ∀s−i ∈ Sn−1
−i


Consider a link formation game G(σ). Under assumptions A1 to A5 and A7, we

will argue by induction that set Sn
i satisfies:

Sn
i = {si : si(xi) = 0 if xi < xn and si(xi) = 1 if xi > xn} ,
where xi and xi are defined recursively as

xn=max {x : ∆Π(1,0; (sj(xj;x
n−1))j 6=i, x) = 0}

xn=min {x : ∆Π(1,0; (sj(xj;x
n−1))j 6=i, x) = 0}

The first round of elimination is described in the following lemma.

Lemma 3: For all i ∃ x1 > x and x1 < x s.t.

si ∈ S1i iff si(xi) = {0 if xi < x1 and 1 if xi > x1}
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where

x1=max {x : ∆Π(1,0; (sj(xj;x))j 6=i, x) = 0}

x1=min {x : ∆Π(1,0; (sj(xj;x))j 6=i, x) = 0}

proof . Starting from the left: Player i (henceforth Pi) receive a signal xi = x, from

A1 (ID), if si is a best response to a profile where every player is choosing a switching

strategy sj(·;x) ∀j 6= i, it will be a best response to any s−i ∈ S0−i. Then player i’

expected payoff difference between choosing action ai rather than action 0 can be

written as

∆Π(ai,0; (sj(xj;x))j 6=i, x) =
Z
x−i

∆π(ai,0; sj(xj;x))j 6=i, x)dFσ(−i)(x−i | xi)

or equivalently by

∆Π(ai,0; (sj(xj;x))j 6=i, x) =
X

a−i∈ Ah−i

∆π(ai,0; a−i, x) Pr(a−i | (sj(xj;x))j 6=i, x)

where in general Pr(a−i | (s−i, x) represent player i’ beliefs about the action profile
a−i conditional on other players’ strategy s−i.

Now, since, ∀σ > 0, ∀a−i ∈ Ah
−i, Pr(a−i | (sj(xj;x))j 6=i, x) = 1

2N
> 0, then

∆Π(ai,0; (sj(xj;x))j 6=i, x) =
1

2N

X
a−i∈ Ah

−i

∆π(ai,0; a−i, x)

By assuimptions A1 (ID) and A5 (IS) ∀ai ∈ Ai, ∀a−i ∈ Ah
−i ∆π(ai,0; a−i, x) ≤

0. By assumption A1 (ID) part a, at least one element is strictly negative, then
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∆Π(ai,0; (sj(xj;x))j 6=i, x) < 0. Therefore Pi, upon receiving signal xi = x, will play

action ai = 0.

Now, if Pi receive a signal xi = x+ σ

∆Π(ai,0; (sj(xj;x))j 6=i, x+ σ) = ∆π(ai,0; s−i = [1] , xi = x+ σ)

By assumption A3 (M) ∆π(ai,0; [1] , x + σ) > ∆π(ai,0; [1] , xi = x), and by

assumptions A5 (IS) ∆π(ai,0; [1] , xi = x) = 0. Then ∆π(ai,0; [1] , xi = x+ σ) > 0.

Given continuity of the expected utility function and using the intermediate value

theorem:

∀ai and ∀σ > 0, ∃ x1 s.t x < x1 < x+σ, where x1 = min {x | equation (8) holds}

∆Π(ai,0; (sj(xj;x))j 6=i, x) =
X

a−i∈ Ah−i

∆π(ai,0; a−i, x) Pr(a−i | (sj(xj;x))j 6=i, x) = 0

(8)

and from Lemma 2, we know that x1 is independent of ai. Then in particular if

ai = 1

x1 = min {x | ∆Π(1,0; (sj(xj;x))j 6=i, x) = 0}

Starting from the right and using an equivalent argument we conclude that:

∀ai and ∀σ > 0, ∃ x1 s.t x > x1 > x−σ, where x1 = max {x | equation (9) holds}

∆Π(1, ai; (sj(xj;x))j 6=i, x) =
X

a−i∈ Ah−i

∆π(1, ai; a−i, x) Pr(a−i | (sj(xj;x))j 6=i, x) = 0

(9)

From Lemma 2, we know that x1 is independent of ai. Then in particular if
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ai = 0

x1 = max {x | ∆Π(1,0; (sj(xj;x))j 6=i, x) = 0}¥Lemma 3

Repeating the process described in lemma 3, it is easy to prove by induction that

∃ xn > xn−1 and xn < xn−1 s.t.

Sn
i = {si : si(xi) = 0 if xi < xn and si(xi) = 1 if xi > xn

where

xn=max
©
x : ∆Π(1,0; (sj(xj;x

n−1))j 6=i, x) = 0
ª

xn=min
©
x : ∆Π(1,0; (sj(xj;x

n−1))j 6=i, x) = 0
ª

This process generates an increasing sequence {xn} and a decreasing sequence
{xn} . Let us suppose there exists limit points x∞ and x∞, then from equation (8) ∀ai

X
a−i∈ Ah

−i

∆π(ai,0; a−i, x∞) Pr(a−i | (sj(xj;x∞))j 6=i, x∞) = 0

Since Pr(a−i | (sj(xj;x∞))j 6=i, x∞) = 1
2N
, then

∆Π(ai,0; (sj(xj;x
∞))j 6=i, x∞) =

1

2N

X
a−i∈ Ah

−i

∆π(ai,0; a−i, x∞) = 0

By assumption A5 (IS), in particular, this is true for ai = 1, then

X
a−i∈ Ah

−i

∆π(1,0; a−i, x∞) = 0 (10)

Equivalently from equation 9, for the limit point x∞ we get
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∆Π(1, ai; (sj(xj;x
∞))j 6=i, x∞) =

1

2N

X
a−i∈ Ah

−i

∆π(1, ai; a−i, x∞) = 0

By assumption A5 (IS) this is in particular true for ai = 0, then

X
a−i∈ Ah

−i

∆π(1,0; a−i, x∞) = 0 (11)

Finally, it is easy to see that equations (10) and (11) are the same, and from

assumption A7 (SC) x∞ = x∞ = k∗. Then S∞ =
∞∩
n=0

Sn =
©
(si(xi; k

∗))N+1i=1

ª
¥

Proof of Proposition 4

We must show that there exists a unique k∗ solving,22

X
a−i∈ Ah

−i

{∆π(1,0; a−i, k∗)} = 0 (12)

where ∆π(1,0; a−i, k∗) =
P

j 6=i aji
³
k∗ +

P
k 6=i6=j ajkakjβk

∗
´
+N(αk∗ − c).

Then, equation (12) can be written as

NX
n=0

X
a−i∈ Ah,n

−i

(X
j 6=i

Ã
k∗ +

X
k 6=j 6=i

ajkakjβk
∗
!
+N(αk∗ − c)

)
= 0

Now, for all n 6= 1 it is easy to check that
22RememberPN

n=0

P
a−i∈Ah,n−i {∆π(1,0; a−i, k∗)} =

P
a−i∈ Ah−i

{∆π(1,0; a−i, k∗)} = 0
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X
a−i∈ Ah,n

−i

(X
j 6=i

Ã
k∗ +

X
k 6=j 6=i

ajkakjβk
∗
!
+N(αk∗ − c)

)

=

 N

n

 (N(αk∗ − c) + n(k∗ + βk∗))

and for n = 1

X
a−i∈ Ah,n

−i

(X
j 6=i

Ã
k∗ +

X
k 6=j 6=i

ajkakjβk
∗
!
+N(αk∗ − c)

)
=

 N

1

 (N(αk∗ − c) + k∗)

then
PN

n=0

P
a−i∈ Ah,n

−i

nP
j 6=i
³
k∗ +

P
k 6=j 6=i ajkakjβk

∗
´
+N(αk∗ − c)

o
= 0 is given

by:

NX
n=0


 N

n

 (N(αk∗ − c) + n(k∗ + βk∗))

−Nβk∗ = 0

Then Nαk∗
PN

n=0

 N

n

 − Nαc
PN

n=0

 N

n

 + k∗(1 + β)
PN

n=0

 N

n

n −

Nβk∗ = 0

solving for k∗ we get

k∗ =

Nαc
PN

n=0

 N

n


Nα

PN
n=0

 N

n

+ (1 + β)
PN

n=0

 N

n

n−Nβ

¥
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