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Abstract

Uniform-price auctions of a divisible good in fixed supply admit underpricing equilibria,

where bidders submit high inframarginal bids to prevent competition on prices. The seller

can obstruct this behavior by tilting her supply schedule and making the amount of divisible

good on offer change endogenously with its (uniform) price. Precommitting to an increasing

supply curve is a strategic instrument to reward aggressive bidding and enhance expected

revenue. A fixed supply may not be optimal even when accounting for the cost to the seller

of issuing a quantity different from her target supply.

JEL Classification Numbers: D44, E58.

Keywords: uniform-price auction, divisible good, strategic role of the seller, endogenous

supply, Treasury and IPO auctions.



1 Introduction

In the last few years, uniform-price auctions have become a popular mechanism to allocate

divisible goods. For instance, since September 1998, the U.S. Department of Treasury has

switched from a traditional discriminatory format to the uniform-price auction to issue all its

securities1. Similarly, uniform-price auctions are now commonly used to run on-line initial

public offerings of unseasoned shares (Open IPOs), as well as in electricity markets and in

markets for emission permits.

In a uniform-price auction, bidders compete by simultaneously submitting their demand

schedules for the divisible good on offer. The seller compares the aggregate demand with her

aggregate supply and computes a clearing (stop-out) price. Demand above the stop-out price

is awarded in full, while marginal demand at the stop-out price is prorated. Since all buyers

pay the same price, the uniform auction is analogous to a Walrasian market, with the only

difference that demand schedules are submitted strategically; see Nyborg (2002).

This difference makes uniform auctions susceptible to substantial underpricing, because

bidders can submit high inframarginal demands that prevent competition on prices and sup-

port equilibria where the stop-out price is lower than its Walrasian equivalent. The possibility

of underpricing equilibria was first proven in Wilson (1979), Maxwell (1983) and Back and

Zender (1993). This result has been shown robust to different model specifications by Ausubel

and Crampton (1998), Biais and Faugeron-Crouzet (2000), Engelbrecht and Kahn (1998),

Noussair (1994), and Wang and Zender (2002).

A common assumption across these papers is that the supply of the auctioned good is fixed

in advance. This seemingly innocuous assumption implies a strategic asymmetry between the

bidders and the seller: the former can use their demand schedules to inhibit price competition,

but the latter cannot alter her supply schedule to enhance it. It is plausible to expect that

the introduction of an adjustable supply should prevent at least some underpricing equilibria.

Intuitively, while the steepness of the competitors’ demand curves has a price effect which

increases the marginal cost of a higher bid, an increasing supply function induces a quantity

effect that raises its marginal revenue. Making the quantity effect greater than the price

effect inhibits coordination on low prices.

Only a few papers have studied the equilibria of a uniform-price auction with a variable
1 The decision to extend the uniform price format to all Treasury securities was taken at the completion

of a period of nine years in which this format had been limited to two-years, five-years and inflation-adjusted

bonds.
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supply. Back and Zender (2001) shows that, if the seller reserves the right to decrease her

supply after receiving the bids, underpricing — while still possible — is severely curtailed.

McAdams (2000) derives a similar result and then shows that underpricing is eliminated if the

seller reserves the right to increase or arbitrarily adjust her supply. Lengwiler (1999) assumes

that the seller produces the good at a constant marginal cost which is private information to

her and studies how the right to restrict supply affects the bidders’ demand schedules.

These papers share the assumption that the supply is adjustable after the seller has

observed the bid schedules. However, there are situations where it may be necessary to

precommit and declare the supply schedule before observing the bid schedules. For instance,

declaring the supply schedule ex ante increases transparency in IPOs of unseasoned shares

and thus should reduce the winner’s curse. In electricity markets2 near peak capacity, there

may simply be no time to allow for ex post adjustments.

This paper studies the existence of underpricing equilibria when the seller precommits

to an increasing supply schedule, as suggested in Pavan (1996). We find that underpric-

ing is still possible, although to a lesser extent than in the case of an ex post decreasable

supply. Committing ex ante to an increasing supply attaches a positive quantity effect to

price competition. This effect more than compensates the flexibility lost by giving up ex post

reductions. On the other hand, note that precommitment entails the risk of losing control

on the quantity sold. Therefore, we show also that a fixed supply is in general suboptimal

even if the seller faces increasing costs for selling a quantity diverging from her supply target.

The expected gain from reducing underpricing may offset the expected loss from selling a

quantity potentially different from the target.

A variable supply is not the only means for the seller to obstruct underpricing in uni-

form auctions. Kremer (1998) and Nyborg (2002) suggest adopting different rationing rules.

McAdams (2000) proposes to offer discounts to marginal bidders. Some fine-grained insti-

tutional details also hamper underpricing: Nyborg (2002) considers allowing only a finite

number of bids, or imposing a tick size for price or quantities; Back and Zender (1993)

considers the uncertainty about supply induced by the presence of noncompetitive bidders.

Some of these factors may go towards explaining why, in spite of their theoretical ubiq-

uity, the degree in which underpricing equilibria occur is still controversial. The empirical

literature has concentrated mostly on the question whether more revenue is raised by a dis-

criminatory or by a uniform auction; see Binmore and Swierzbinski (2001) for a critical
2 In these markets, the auctioned good is the right to service the exogenous demand for electricity.
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review. However, the experimental evidence reported in Goswami et alii (1996) shows that

bidders manage to coordinate on underpricing, at least in environments where nonbinding

preplay communication is possible. Evidence of underpricing is reported by Tenorio (1997)

for foreign currency auctions in Zambia, by Kandel et alii (1999) for IPO auctions in Israel,

and by Bjonnes (2001) for Treasury auctions in Norway. Keloharju et alii (2001) confirms

the underpricing in Treasury auctions in Finland, but argues that it is not due to strategic

manipulation.

The rest of the paper is organized as follows. Section 2 describes the model, which is a

straightforward variation on the setup in Back and Zender (1993). Section 3 characterizes

a large class of symmetric equilibria under fixed supply, which contains as special cases all

the symmetric underpricing equilibria studied in the literature. Section 4 studies the effects

of an increasing supply schedule and generalizes the equilibria of Section 3 to the case of

an increasing and concave supply schedule. Section 5 analyzes the symmetric underpricing

equilibria under a linear supply schedule. Section 6 studies the seller’s ex ante choice of a

linear supply schedule that maximizes her expected profit and provides an example with an

explicit derivation. Finally, Section 7 rounds up the paper with a few comments. All proofs

are in the Appendix.

2 The model

A single (female) seller wishes to auction a homogenous and perfectly divisible good using

a uniform-price format. She can offer a fixed supply Q or, more generally, she can post a

(weakly) increasing3 and right-continuous (aggregate) supply schedule S(p). She can also set

a reserve price pL ≥ 0, under which no sale occurs.

There are n ≥ 2 (male) risk-neutral bidders. The per unit value of the good to each

bidder is v. This value is commonly known4 to the bidders (or, equivalently, is the expected

value of a commonly known distribution), while the seller knows only that v is distributed

over some nonempty interval [vL, vH ], with c.d.f. F (v). Each bidder i competes by simul-

taneously submitting a decreasing and left-continuous demand schedule di(p), representing
3 In the following, this and similar qualifiers always hold in the weak sense, unless otherwise noted.
4 A natural generalization of this assumption is to endow bidders with proprietary information stemming

from private signals. This is carried out in Wilson (1979) and in Back and Zender (1993), but — like us

— they study equilibria which do not depend on the signals received; therefore the generalization would be

inconsequential. Signal-dependent symmetric equilibria are studied in Wang and Zender (2002).
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his cumulative demand for the good at a price not greater than p. The resulting aggregate

demand schedule D(p) =
∑n

i=1 di(p) is also decreasing and left-continuous.

Following Back and Zender (1993), we define the stop-out price by

P = sup { p ≥ pL | D(p) ≥ S(p)}

when the set {p : D(p) ≥ S(p)} is not empty, and otherwise we let P = pL. When possible,

this definition ensures that the stop-out price P clears the market. Moreover, if there are

multiple clearing prices, it selects the highest one; if there is no clearing price because of a

discontinuity, it selects the price at the discontinuity point; if there is not sufficient demand

at pL, it forces the stop-out price to be pL and the good is not auctioned in full.

The rest of the allocation rule is as follows. If P clears the market, each bidder i is awarded

a quantity d̂i(P ) = di(P ). Otherwise, there is an excess demand5 E(P ) = D(P )− S(P ) > 0,

which is rationed pro rata at the margin. Let ∆di(P ) = di(P ) − limp↓P di(p) and ∆D(P ) =∑n
i=1 ∆di(P ). Then bidder i receives

d̂i(P ) = di(P ) − ∆di(P )
∆D(P )

E(P ).

3 Underpricing equilibria under fixed supply

Throughout this section, we assume that the divisible good is in fixed supply at a level

Q. Except for her early choice of the uniform-price format and the reserve price pL, the

seller plays no strategic role and we restrict attention to the (sub)game among the n bidders

engaged in the auction. The payoff to bidder i is πi = (v − P )d̂i(P ), where P now depends

only on the bidders’ choice of their demand schedules. If v < pL, participating in the auction

is not profitable. We focus on the case where v ≥ pL. Since bid schedules at prices p < pL

are immaterial, we omit them for simplicity.

The natural benchmark case is the competitive equilibrium, where each bidder submits a

constant demand schedule d(p) = v and the market clears at the Walrasian price P = v. The

next proposition establishes the existence of a wide class of symmetric underpricing equilibria

in pure strategies. For any price p∗ between pL and v, bidders inhibit price competition by

submitting steep demand curves and split symmetrically the fixed supply of the divisible

good. This behavior is self-enforcing because players’ inframarginal bids (made costless in
5 Without loss of generality, our continuity assumptions rule out the possibility of a strictly positive excess

supply.
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equilibrium by the uniform price format) ensure that each bidder’s marginal cost is higher

than p∗. This rules out any incentive to raise the price in order to acquire higher quantities.

Proposition 1 Assume v ≥ pL and a fixed supply S(p) = Q for all p ≥ pL. For any price p∗

in [pL, v], there exists a symmetric Nash equilibrium in pure strategies such that the stop-out

price is P = p∗. The equilibrium demand schedule for bidder i is

d∗i (p) =



0 if p > v,

y(p) if p∗ < p ≤ v,

z(p) if pL ≤ p ≤ p∗,

(1)

where y(p) is any positive, decreasing and convex (and hence continuous) function on (p∗, v]

such that

lim
p↓p∗

y(p) =
Q

n
and (v − p∗) ·

[
− lim

p↓p∗
y′+(p)

]
≤ Q

n(n− 1)
(2)

and z(p) is any positive, decreasing, convex and continuous function on [pL, p
∗] such that

z(p∗) ≥ max
[
Q

n
,

Q

n− 1
+ (v − p∗) · z′−(p∗)

]
. (3)

There are a few good reasons for our exhibiting this class. First, the equilibria of Proposi-

tion 1 encompass the notable cases of symmetric underpricing equilibria when v is commonly

known, as listed in Nyborg (2002). These include the linear equilibria of Wilson (1979), and

both the linear equilibria of Theorem 1 and the nonlinear equilibria of Theorem 4 in Back

and Zender (1993). Notwithstanding this, we note that the assumptions of convexity on y(p)

and z(p) can be relaxed and thus there exist other symmetric equilibria outside of this class.

Second, when the supply schedule is increasing and concave, the equilibria in this class

can be generalized to provide a natural mapping between the cases of fixed and increasing

(concave) supply. This is carried out in Section 4. Third, in Section 6 we derive the choice of

y(p) and z(p) that is most conducive to underpricing for an arbitrary increasing supply. We

prove that the resulting profile of demand schedules supports the largest set of symmetric

equilibrium prices (both within and without the class of equilibria in Proposition 1). There-

fore, this class contains the symmetric equilibrium which is most conducive to underpricing

under an increasing supply.

Proposition 1 shows that, once the seller has announced a fixed supply Q and set a

reserve price pL, any stop-out price between pL and the expected value v can be sustained

5



in equilibrium. Since the interval [pL, v] exhausts the set of feasible and individually rational

stop-out prices, Proposition 1 is akin to a “folk theorem” for uniform-price auctions in fixed

supply. In particular, for pL ≤ vL bidders can always induce prices below the minimum resale

value and thus earn positive profits with certainty. For those Treasury auctions which set the

reserve price to zero, this makes the possibility of an underpricing equilibrium far from rare.

Proposition 1 allows for a continuum of equilibrium prices. However, under a fixed supply,

all bidders prefer a lower price. Thus, the most reasonable prediction is that the stop-out

price should be P = pL, which is the only Pareto efficient outcome for the bidders. This idea

is formally captured by applying the coalition-proofness refinement proposed in Bernheim et

alii (1987). Since P = pL is the worst outcome from the seller’s viewpoint, its prominence

makes it important for her to enhance price competition. The next section suggests a possible

route.

4 Underpricing equilibria under increasing supply

Under a fixed supply Q of the divisible good, Proposition 1 shows that the n bidders can

sustain an underpricing equilibrium at a stop-out price p∗ in [pL, v) and split symmetrically

the quantity Q by posting the profile of demand schedules {d∗j (p)}n
j=1.

Suppose from now on that the seller commmits ex ante to an increasing supply schedule

S(p). Given p∗, assume that S(p∗) = Q so that coordination on p∗ is still feasible. The next

proposition establishes that, if S(p) is sufficiently elastic at p∗, the profile {d∗j (p)}n
j=1 is no

longer self-enforcing.

Let δ(p) = −[pd′+(p)]/[d(p)] be the (right-hand) price elasticity of the demand schedules

{d∗j (p)}n
j=1 at a price p in [pL, v) and set δ(p∗) = limp↓p∗ δ(p). Similarly, let σ(p) and σ(p∗)

be the corresponding price elasticities for the supply schedule S(p).

Proposition 2 Assume v > pL and an increasing, absolutely continuous supply schedule.

Given p∗ in [pL, v), let

α(p∗, v, n) =
1
n

[
p∗

(v − p∗)
− (n− 1)δ(p∗)

]
> 0. (4)

If σ(p∗) > α(p∗, v, n), then coordination on p∗ by submitting the profile of demand schedules

{d∗j (p)}n
j=1 is no longer an equilibrium for the n bidders.

Intuitively, when the elasticity of the supply schedule is sufficiently high, the negative price

effect on bidder i’s profits due to the increase in his purchase price is more than compensated
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by the positive quantity effect induced by the increase in the quantity he wins. This makes i’s

payoff (locally) increasing to the right of p∗ and induces him to bid more aggressively, raising

the stop-out price above p∗. Note that α(p∗, v, n) is decreasing in the number of bidders. As

n increases, the price effect sustaining p∗ has less bite and the quantity effect necessary to

countervail it can be achieved with a lower elasticity of the supply schedule.

It is important to clarify the scope of Proposition 2. We do not assume that the seller

knows v. She cannot compute α and she cannot directly use it to undermine an underpricing

equilibrium. Proposition 2 shows only that bidders’ coordination on p∗ is not enforceable

when the bidders’ common value v is such that

v − p∗

p∗
>

[
nσ(p∗) + (n− 1)δ(p∗)

]−1
. (5)

However, as it stands, Proposition 2 suggests that the seller may have an incentive to strate-

gically precommit to an elastic supply schedule. In Section 6 we show that this is indeed

correct.

We point out the analogy with the oligopoly game discussed in Klemperer and Meyer

(1989). Here, the role of the firms is played by the intermediaries, usually primary dealers,

who buy in the auction at a uniform price p∗ and resale at a common price v. Similarly, the

role of the demand function is played by the supply curve adopted by the seller; in particular,

note that the expression on the left hand side of (5) is the analog of the Lerner’s index. When

the stop-out price is p∗, bidder i’s profit is πi(p∗) = (v−p∗)xi(p∗), where xi(p∗) is the residual

supply for bidder i. A necessary condition for p∗ to be an equilibrium price is ∂πi/∂p|p=p∗ ≤ 0

for all i. This is equivalent to (v − p∗)/p∗ ≤ γ−1(p∗), where γ(p) is the price elasticity of the

residual supply. In the case of symmetric equilibria, γ−1(p∗) reduces to the expression on the

right hand side of (5).

Proposition 2 does not rule out the possibility of underpricing equilibria under an in-

creasing supply schedule. The next proposition is an existence result that characterizes a

large class of underpricing equilibria. It is a natural generalization of Proposition 1, which is

precisely recovered for a fixed supply S(p) = Q.

Proposition 3 Assume v ≥ pL and an increasing, concave, continuous supply S(p) for all

p ≥ pL. Given a price p∗ in [pL, v], suppose that there exist a positive, decreasing and convex

(hence, continuous) function y(p) on (p∗, v] such that

lim
p↓p∗

y(p) =
S(p∗)
n

and (v − p∗) ·
[
S′

+(p∗)
n− 1

− lim
p↓p∗

y′+(p)
]
≤ S(p∗)

n(n− 1)
(6)
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and a positive, decreasing, convex and continuous function z(p) on [pL, p
∗] such that

z(p∗) ≥ max
{
S(p∗)
n

,
S(p∗)
n− 1

+ (v − p∗) ·
[
z′−(p∗) − S′

+(p∗)
n− 1

]}
. (7)

Then there exists a symmetric Nash equilibrium in pure strategies such that the stop-out price

is P = p∗. The equilibrium demand schedule for bidder i is

d∗i (p) =



0 if p > v,

y(p) if p∗ < p ≤ v,

z(p) if pL ≤ p ≤ p∗.

(8)

Note that, consistently with Proposition 2, if for a given v the slope S′
+(p∗) of the sup-

ply function is sufficiently high, these profiles of demand schedules no longer support an

underpricing equilibrium at p = p∗.

5 Underpricing equilibria under linear supply

Proposition 2 suggests how the seller might be able to induce more aggressive bidding by

posting an increasing supply schedule. In essence, what she has to accomplish is making

the quantity effect sufficiently high to compensate for the highest possible price effect that

bidders’ strategies can achieve. On the other hand, bidders submit their demand schedules

only after the supply curve has been announced. Thus, it seems reasonable to assume that

they can try to contrast the quantity effect induced by an increasing supply and sustain low

prices by resorting to steeper demand schedules.

The next proposition characterizes the set of all prices that can be supported as a sym-

metric equilibrium in a uniform price auction when the supply increases endogenously with

its price. It turns out that adopting perfectly inelastic demand schedules (with a flat at the

equilibrium price) is the best way for bidders to sustain low stop-out prices when they face

an increasing supply curve.

The intuition is the following. When the supply of the divisible good increases with its

(uniform) price, there is an incentive to bid more aggressively and win a higher amount of

securities. To sustain a low price, bidders need to compensate this positive quantity effect

by reducing the residual supply available to their competitors. This is most effectively done

by submitting perfectly inelastic demand schedules.
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Proposition 4 Assume v ≥ pL and an increasing, continuous supply schedule S(p). Let

T be the set of all stop-out prices that can be supported by a symmetric equilibrium where

players submit decreasing demand schedules. Consider the set T 0 of all stop-out prices p∗

than are supported by the following profile of (symmetric) demand schedules:

d∗i (p) =



0 if p > v,

S(p∗)
n

if p∗ < p ≤ v,

S(p∗)
n− 1

if pL ≤ p ≤ p∗,

(9)

for i = 1, . . . , n. Then T = T 0.

The equilibria of Proposition 4 are again a special case of Proposition 1. However, the

power of the result lies elsewhere: for any supply schedule announced by the seller, the

inelastic schedules described in (9) represent the best chance for the bidders to sustain an

underpricing equilibrium at price p∗. Thus, there is no loss of generality in restrict attention

to this profile of bids. We apply this result to the analysis of the strategic choice of a supply

schedule by the seller.

We postpone the analysis of the full game to the next section and consider here the second

stage, in which bidders compete after the seller has announced her choice of the supply

schedule. For tractability, we make the assumption that the seller has posted a reserve price

pL ≥ 0 and an increasing (piecewise) linear supply function

S(p) =

{
r + s(p− pL) if p ≥ pL

0 otherwise
(10)

with r, s ≥ 0. The triple {pL, r, s} defines the linear supply mechanism chosen by the seller.

The special case of a fixed supply corresponds to a choice of s = 0.

Given the supply mechanism {pL, r, s}, for v < pL there is no trade. If v ≥ pL, we

know from Proposition 4 that without loss of generality we can assume that bidders post the

demand schedules given in (9). Hence, substituting δ(p∗) = 0 in (5), we find that bidders can

coordinate only on prices such that

v − p∗

p∗
≤ [nσ(p∗)]−1 . (11)
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Substituting for

σ(p∗) =
sp∗

r + s(p∗ − pL)
,

the set of possible equilibrium stop-out prices turns out to be the interval [pc, v], where

pc = max
{
pL,

nv + pL

n + 1
− r

(n + 1)s

}
. (12)

The lower bound on underpricing is pc, which is properly defined for s > 0. (For s = 0,

the supply is fixed and thus pc = pL.) This bound is increasing in the number of bidders.

Therefore, when the supply is strictly increasing, attracting bidders works to the advantage of

the seller. Moreover, as the number n of bidders increases, pc tends to v and thus the stop-out

price must converge to the competitive benchmark. With a strictly increasing supply and an

infinite number of players, the seller could extract all the surplus from the bidders. Contrast

this with the case of a fixed supply in Proposition 1, where the number of bidders does not

affect the set of underpricing equilibria.

Using pc, we can compare the extent of the possible underpricing when the seller commits

ex ante to an increasing supply schedule or reserves the right to decrease ex post a fixed

supply. Assuming pL = 0 for simplicity, Back and Zender (2001) shows that the set of

possible equilibrium stop-out prices is the interval [pz, v], with

pz =
n− 1
n

v.

Since pc ≥ pz for r/s ≤ v/n, neither procedure is a priori more effective in restricting the risk

of underpricing. However, since the support of v is the interval [vL, vH ], by choosing r and s

with r/s < vL/n the seller can ensure that her ex ante commitment is strictly less conducive

to underpricing for any v. Tilting the supply schedule ex ante provides more flexibility than

the right to shift it backwards ex post.

The case of supply uncertainty

When pc > pL, the use of an increasing supply schedule genuinely reduces the scope for

underpricing with respect to the mere introduction of a reserve price pL. This occurs for

v > pL +(r/ns), when the negative price effect on bidder i’s profits due to the increase in the

purchase price cannot be made sufficiently strong — even assuming perfectly inelastic demand

schedules — to overturn the positive quantity effect due to the increasing supply. Roughly

speaking, then, an increasing supply really makes a difference only when v > pL + (r/ns). It
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is a natural question to ask whether this would remain true under different specifications of

the bidding environment.

We consider the important case when there is supply uncertainty or, more generally,

when the bidders have private information6 about the exact amount of the good on offer.

The leading example is the case of Treasury auctions, where noncompetitive bidders are

allowed to submit demands to be filled at the stop-out price before the (remaining) quantity

is awarded to the competitive bidders. When the amount of noncompetitive demand is not

known to the competitive bidders, they face supply uncertainty. Another example arises in

electricity markets, when additional power may unexpectedly become available.

Under supply uncertainty, Back and Zender (1993) has derived a class of symmetric

equilibria7 which on average leads to strictly less underpricing than in the standard case.

Under a mild assumption on the support of the noncompetitive demand, Nyborg (2002) has

proved that these are essentially the only symmetric equilibria robust to supply uncertainty.

Therefore, the presence of this form of uncertainty among the bidders reduces (but does not

necessarily rule out) the extent of the expected underpricing.

The next proposition derives the analog of these symmetric equilibria in the case of

an increasing linear supply schedule as given in (10). The analysis confirms that supply

uncertainty reduces but does not eliminate the expected underpricing with respect to the

case without uncertainty. Moreover, the linearity of the supply schedule makes it possible

to separate the effects of an increasing supply schedule and of supply uncertainty: as in the

standard case, the introduction of an increasing supply genuinely makes a difference exactly

when v > pL + (r/ns). And, when it makes a difference, it eliminates the (symmetric)

underpricing equilibria.

To model supply uncertainty, we follow Back and Zender (1993) and add to the basic

model the assumption that the supply available to the competitive bidders at price p is

max{S(p) − η, 0}, where η ≥ 0 is the random reduction due to noncompetitive demand.

We assume that the support of η is the interval [0, limp↑+∞ S(p)] and that each competitive

bidder is allowed to demand as much as he wishes. As a function of S(p) − η, the stop-out

price is now a random variable. We say that underpricing occurs if the realized stop-out price
6 In equilibrium, each bidder submits a demand schedule which is optimal for all realizations of the un-

certainty over the supply. Therefore, it is not necessary that bidders agree on the probability distribution,

provided that the support is the same. We assume for simplicity that the distribution is unique.
7 These equilibria are a special case of Proposition 1. They can be read off Proposition 5 by substituting

S(p) = Q and s = 0.
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is strictly lower than v for some value8 of η.

Proposition 5 Assume v ≥ pL and an increasing linear supply schedule S(p) as in (10).

If n ≥ 3, the only equilibria of Proposition 3 which can survive supply uncertainty have

y(p) = α

(
v − p

v − pL

) 1
n−1

− s
(v − p)
n− 2

(13)

for p∗ < p ≤ v, where α is a positive constant such that y(p∗) = [S(p∗)/n].

If n = 2, the only equilibria of Proposition 3 which can survive supply uncertainty have

y(p) = α

(
v − p

v − pL

)
− s(v − p) ln

(
v − p

v − pL

)
(14)

for p∗ < p ≤ v, where α is any positive constant such that y(p∗) = [S(p∗)/2].

The remaining specification of the equilibrium demand schedule d∗i (p) is identical to (8)

in Proposition 3. For s = 0, we obtain the equilibria under fixed supply given in Back and

Zender (1993). For p∗ ↑ v, letting α ↑ +∞ recovers the competitive benchmark, where P = v

and no underpricing occurs. Note that, when the function y(p) in (13) or (14) is not decreasing

over the interval (p∗, v], supply uncertainty destroys all the equilibria of Proposition 3.

The realized stop-out price is defined implicitly by the equation

nd∗(p) = max{S(p) − η, 0} (15)

as a function of η. When the noncompetitive demand is η = 0, the stop-out price is p∗. If we

parameterize the equilibria of Proposition 5 by p∗ in [pL, v), we can view the stop-out price

P (η; p∗) as a function of η and the parameter p∗. Since y(p) in the corresponding equilibrium

is uniformly higher for higher values of p∗, it follows that p∗1 < p∗2 implies P (η; p∗1) ≤ P (η; p∗2)

for all η. Roughly speaking, the equilibrium associated with a lower p∗ generates a higher

level of underpricing. In particular, the most severe underpricing occurs when p∗ = pL and

y(pL) = r/n.

Note that (15) implies also that the stop-out price P (η; p∗) is increasing in η for any

p∗. Hence, P (0; p∗) provides an immediate bound for the underpricing which can occur at

the equilibrium associated with p∗. Moreover, since the support of η is a nondegenerate

interval, the expected underpricing is strictly less than implied by P (0; p∗) confirming Back
8 This is equivalent to the milder requirement that underpricing occurs with positive probability because

the equilibrium demand schedules are decreasing and convex.
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and Zender’s (1993) result. The exact computation of the expected underpricing depends on

the distribution of η and is in general long and tedious: even in the simpler case of a fixed

supply, Back and Zender (1993) works out only the special case n = 2. However, the point

that an increasing supply genuinely makes a difference exactly when v > pL + (r/ns) can be

proved directly.

Suppose n = 2. (The argument for n ≥ 3 is analogous.) For any p∗ in [pL, v), substituting

for α in (14) implies that the only possible (symmetric) equilibrium demand schedule over

[pL, v] is

y(p) =
(

v − p

v − p∗

)
S(p∗)

2
− s(v − p) ln

(
v − p

v − p∗

)
.

But y(p) can be a piece of the equilibrium demand schedule only if it is decreasing or,

equivalently, if its derivative is strictly negative. Computing the derivative, this occurs if

s

[
1 + ln

(
v − p

v − p∗

)]
<

S(p∗)
2(v − p∗)

.

The left-hand side is bounded above by s because p∗ < p ≤ v. The right-hand side is bounded

below by (r/2) · [1/(v − pL)] because S(p∗) ≥ r and p∗ ≥ pL. Therefore, an underpricing

equilibrium can occur only if v ≤ pL + (r/2s).

Finally, note that the profile of strategies in Proposition 4 is no longer an equilibrium.

Intuitively, the difficulty is that supply uncertainty requires that bidders’ demand curves

must be ex post optimal for the stop-out price associated with any realization of η, while the

schedules of Proposition 4 are optimal only at p∗. This situation is the analog of Klemperer

and Meyer’s (1989) analysis of supply function equilibria in oligopoly, where uncertainty

about the market demand narrows down the set of symmetric equilibria.

6 The choice of a supply schedule

In this section we let the seller explicitly use her supply schedule as a strategic variable.

We consider a two-stage game where the seller first publicly commits to an increasing linear

supply curve and then bidders compete simultaneously on demand schedules within a uniform

price auction.

We assume that the seller’s payoff πs is the difference between the revenue she collects

when selling a quantity Q at a uniform price of P and a cost function C(Q); that is, πs =

P · Q − C(Q). In the standard case where the supply is fixed and C(Q) = 0, maximizing

πs is consistent with avoiding underpricing equilibria. More generally, this formulation takes

13



into account also the costs of auctioning different quantities. Besides the obvious costs of

running the auction, this may incorporate institutional considerations about the effects of

issuing debt in the case of Treasury auctions or of diluting control in the case of IPO auctions

or of risking a blackout in the electricity market.

For tractability, we make the following assumptions. The seller’s cost function for selling

a quantity Q is C(Q) = α+ β(Q− Q̄)2, with α ≥ 0 and β > 0; here, Q̄ represents her target

quantity. Thus, Q̄ could be the number of securities that the Treasury would ideally like to

auction, the target quantity of shares to be issued through an IPO or the current demand for

power in an electricity market. The seller sets a linear supply schedule by choosing a triple

{pL, r, s} of positive reals. There is no supply uncertainty.

We know from Section 5 that bidders can coordinate on any stop-out price in [pc, v] and

therefore the second stage allows for multiple equilibria. However, bidder i’s payoff in the

symmetric equilibrium with stop-out price p is

πi(p) = (v − p)d̂i(p) = (v − p)
[
r + s(p− pL)

n

]
. (16)

This quadratic function attains its maximum at p̂ = (1/2)[v + pL − (r/s)] < pc. Assuming

that the bidders select the only Pareto efficient (and coalition-proof) equilibrium, we refine

the set of possible stop-out prices arising in the second-stage to the singleton pc in (12).

Although a stop-out price lower than v cannot be ruled out, increasing the elasticity

of the supply schedule enhances price competition among bidders and may lead to a higher

equilibrium price. On the other hand, making the supply schedule more elastic contrasts with

the objective of maintaining control on the total quantity auctioned, which is better served by

a fixed supply. There is an obvious trade-off between price competition and quantity control.

The next proposition states that the best trade-off is not struck at either extreme.

Proposition 6 Suppose that the seller believes v to be uniformly distributed on [0, 1]. The

optimal linear supply mechanism exists and it is strictly increasing for p ≥ pL, with 0 < s∗ <

+∞.

Note that, if the simple assumption of a linear supply mechanism suffices to rule out the

optimality of a constant supply, this is true a fortiori for more general supply mechanisms.

Therefore, the restriction to linear supply mechanisms does not detract from the result. A

second advantage of this restriction is that one can explicitly solve the game and derive the

optimal supply mechanism, making comparative statics possible.
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For an example, the next proposition characterizes the optimal linear supply mechanism

with two bidders and a target quantity Q̄ = 0.

Proposition 7 Suppose that the seller believes v to be uniformly distributed on [0, 1]. Assume

n = 2 and a cost function C(Q) = a + bQ2 with a ≥ 0 and b > 0. The optimal linear supply

mechanism has pL = 2/5, r = 0 and s = 5/(4b) and the supply schedule is

S(p) = max
{

5
4b
p− 1

2b
, 0

}
.

We briefly comment on this example. Under the optimal linear supply mechanism, the

seller’s profit is E(πs) = 1/(20b) − a. The cost function has two parameters: a may be

interpreted as the fixed (and unavoidable) cost of running the auction; instead, b is positively

related to the marginal cost of expanding the quantity issued. Not surprisingly, the seller’s

profit increases as either parameter decreases. Note that the reserve price is set below the

bidders’ expected value (that is, E(v) = 1/2): when the supply is not constrained to be fixed,

the seller gets higher profits by reducing the risk of not selling the good while inhibiting

bidders’ coordination on low prices.

Finally, the slope of the supply schedule decreases as b increases: as the cost of expanding

Q increases, the supply becomes more inelastic. In particular, a fixed supply would become

optimal for b → +∞. On the other hand, as b → 0, the optimal linear supply mechanism

would fix the reserve price at pL = 2/5 and let the supply be perfectly elastic. This would

make infinite both the quantity auctioned and the seller’s profit. However, these extreme cases

must be taken with a grain of salt because they depend heavily on the implicit assumption

that the valuation of the buyers does not depend on the quantity issued. We find it more

plausible to assume that our model holds only over an intermediate range of parameters.

7 Concluding remarks

We close the paper with some remarks on the implications of our analysis for the two promi-

nent examples of Treasury auctions and initial public offerings.

The market for Treasury securities is by far the most relevant example of a widespread

use of uniform-price auctions for divisible goods. This paper suggests that, for uniform-price

auctions, the practice to combine a fixed supply with a reserve price below market values

can be suboptimal for the Treasury. The adoption of an elastic supply with an appropriate

reserve price may allow the Treasury to enhance price competition and raise higher expected
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revenues. Moreover, the use of an elastic supply would enable the Treasury to exploit a

positive correlation between the supply of securities in the primary market and the stop-out

price. Successful auctions with high stop-out prices (and low yields) would be associated to

higher issuances, while unsuccessful auctions would turn out in a lower issuance. Hence, the

introduction of uniform-price auctions with an elastic supply would go toward a reduction of

the overall cost of public debt.

There is an obvious trade-off between controlling the interest rates and the supply of se-

curities to the market. Therefore, while selecting an increasing supply schedule, the Treasury

must compromise between different objectives. A fixed supply may be adequate when the

prime objective of the Treasury is the amount of debt rather than its unit cost. Instead, a

perfectly elastic supply may be appropriate when the cost of issuing debt in a variable supply

is small compared to the benefit of controlling the interest rate in the primary market. This

latter choice, used for example in Italy up to 1962, lets the monetary authorities know in

advance the cost of issuing new debt. However, it also implies that the Treasury loses control

on the amount of securities9 supplied to the market.

Our analysis suggests that an optimal way to share the control on yields and quantities

between the market and the monetary authorities is to post an increasing (but not perfectly

elastic) supply schedule and a reserve price close to the expected resale value in the secondary

market. The frequently observed choice of a zero reserve price adopted in several primary

markets seems inadequate. Moreover, this may work to the advantage of the Treasury and

encourage participation: increasing the number of dealers in the primary market leads to

stronger price competition and reduces the need for an elastic supply schedule, leading to a

tighter control on the liquidity of the market.

Another prominent example of using uniform-price auctions for divisible goods concerns

the initial public offerings (IPOs) of unseasoned shares; see Sherman (2001) for a review

of the different methods used. Although book-building has been the dominant mechanism

for most of the ’90s, in the last few years an increasing number of companies have decided

to issue stocks on-line using Internet-based uniform-price auctions; see for example the site

http://www.openipo.com. Also, Israel frequently conducts its IPOs using uniform-price

auctions.

The participants in an IPO are usually a seller (the company which goes public), a financial

intermediary and the investors. As in Biais and Faugeron-Crouzet (2000), assume that the
9 A partial solution is offered by the possibility of reopening the auction; see Scalia (1997).
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seller seeks to maximize the proceeds from the IPO and the financial intermediary acts in the

seller’s best interest. Then a uniform-price IPO auction fits the simple model of Section 2

and our analysis implies that a fixed supply may lead to possibly large underpricing. This

theoretical result is confirmed in Biais and Faugeron-Crouzet (2000). Likewise, by analyzing

27 IPO uniform-price auctions held in Israel between 1993 and 1996, Kandel et alii (1998)

have found significant underpricing, with demand schedules that have a flat around the IPO

price and are very similar to those described in Proposition 1.

Our analysis shows that a company which goes public has a simple way to reduce the

possibility of large underpricing and raise more money. Instead of announcing a fixed supply,

the company should make the supply of shares a function of the stop-out price. This would

encourage investors to bid more aggressively in the hope of being awarded a higher amount

of shares. As suggested in Proposition 6, this mechanism is robust to the possibility the

company faces a cost in selling a number of shares different from a target supply.
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Appendix

Proof of Proposition 1. The proof is in three steps. First, we compute the residual

supply for bidder i when his competitors follow the equilibrium strategies. Second, we check

that, when the stop-out price is p∗, his best reply is to post a demand schedule such that

limp↓p∗ di(p) = Q/n and thus, in particular, the schedule described in (1). Third, we establish

that p∗ is his preferred stop-out price.

Consider first bidder i’s residual supply. Suppose that his competitors follow the equilib-

rium strategies. Their aggregate demand is D−i(p) =
∑

k �=i d
∗k(p) and therefore the residual

supply curve for i is

xi(p) = Q−D−i(p) =


Q if p > v,

Q− (n− 1)y(p) if p∗ < p ≤ v,

Q− (n− 1)z(p) if pL ≤ p < p∗,

with a possible flat at p = p∗ given by a closed interval [a,Q/n], for some positive a ≤ Q/n.

Consider now bidder i’s best reply when the stop-out price is p∗. Player i can win any

quantity Q∗ between a and Q/n by submitting an appropriate demand schedule di(p) such

that limp↓p∗ di(p) = Q∗. Rationing occurs only if limp↓p∗ di(p) < Q/n. Since bidder i’s

payoff at the stop-out price p∗ is πi = (v − p∗)xi(p∗), the best he can do is maximizing his

assigned quantity d̂i(p∗) by going for Q∗ = Q/n; that is, bidder i’s best reply must satisfy

limp↓p∗ di(p) = Q/n.

Finally, we check that the preferred stop-out price is indeed p∗. To avoid negative payoffs,

it cannot be greater than v. Thus, it suffices to show that, as a function of the stop-out price

P , πi is increasing over the interval [pL, p
∗] and decreasing over the interval [p∗, v].

Over the interval [pL, p
∗], xi(p) is continuous and concave. Thus, πi = (v−p)xi(p) is also a

continuous and concave function over [pL, p
∗]. Therefore, it is increasing over this interval if its

(left-hand) derivative ∂−πi(p∗) ≥ 0. Since ∂−πi(p∗) = (n−1)z(p∗)−Q−(n−1)(v−p∗)z′−(p∗),

this follows from (3).

Consider now the interval [p∗, v]. Similarly to the above, as the product of (v − p) and

xi(p), πi is concave and continuous over (p∗, v]. Moreover, bidder i has no incentive to

raise the aggregate demand above Q because only his demand would be rationed; hence, we

can assume that no rationing takes place above p∗. Thus πi is right-continuous (and hence

continuous) at p = p∗ as well. Therefore, it is decreasing over this interval if its (right-hand)

derivative ∂+πi(p∗) ≤ 0. Since ∂+πi(p∗) = (n − 1)y(p∗) − Q − (n − 1)(v − p∗)y′+(p∗), this

follows from (2). ✷
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Proof of Proposition 2. Note that α(p∗, v, n) > 0 by the second condition of (2). It

is obvious that the profile {d∗j (p)}n
j=1 described in (1) can still achieve the stop-out price

p∗ and a symmetric split of Q, giving each bidder a profit πi = (v − p∗)(Q/n). We claim

that, for σ(p∗) > α(p∗, v, n), {d∗j (p)}n
j=1 is no longer a Nash equilibrium because any bidder i

strictly prefers to deviate. More precisely, we show that i’s profits are increasing in a right

neighborhood of p∗ and thus he prefers to bid more aggressively, raising the stop-out price

above p∗.

Suppose that i’s competitors follow their part of the strategy profile {d∗j (p)}n
j=1. Substi-

tuting S(p) for Q in the proof of Proposition 1, the residual supply curve for bidder i in the

interval (p∗, v] is

xi(p) = S(p) − (n− 1)y(p).

Moreover (see Proof of Proposition 1), bidder i’s profit function πi(p) = (v− p)xi(p) is right-

continuous at p = p∗. Therefore, it suffices to show that its (right-hand) derivative is strictly

positive in a (right) neighborhood of p∗. Since S(p) is increasing with S(p∗) = Q and y(p) is

decreasing with limp↓p∗ y(p) = (Q/n), for p > p∗ we have

D+πi(p) = (v − p)
[
S′

+(p) − (n− 1)y′+(p)
]
− S(p) + (n− 1)y(p)

≥ (v − p)
[
S′

+(p) − (n− 1)y′+(p)
]
− (Q/n).

For ε > 0 sufficiently small, (4) and continuity imply that the last expression is strictly

positive in (p∗, p∗ + ε), which establishes the claim. ✷

Proof of Proposition 3. The proof is very similar to the one of Proposition 1. The

residual supply curve for bidder i is now

xi(p) =


S(p) if p > v,

S(p) − (n− 1)y(p) if p∗ < p ≤ v,

S(p) − (n− 1)z(p) if pL ≤ p < p∗,

with a possible flat at p = p∗ given by a closed interval [a, S(p∗)/n], for some positive

a ≤ S(p∗)/n. Consider bidder i’s best reply when the stop-out price is p∗. He can win any

quantity Q∗ between a and S(p∗)/n by submitting an appropriate demand schedule di(p)

with limp↓p∗ di(p) = Q∗. Since rationing occurs only if limp↓p∗ di(p) < S(p∗)/n, the best he

can do is going for Q∗ = S(p∗)/n. Hence, his best reply must satisfy limp↓p∗ di(p) = S(p∗)/n.
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To check that the preferred stop-out price is p∗, it suffices to show that πi is increasing over

the interval [pL, p
∗] and decreasing over the interval [p∗, v]. Over [pL, p

∗], πi = (v − p)xi(p)

is continuous and concave. Therefore, it is increasing over this interval if its (left-hand)

derivative ∂−πi(p∗) ≥ 0. This follows from (7). Over [p∗, v], πi is again continuous and

concave. Therefore, it is decreasing over this interval if its (right-hand) derivative ∂+πi(p∗) ≤
0. This follows from (6). ✷

Proof of Proposition 4. It is obvious that T 0 ⊆ T . We show that T ⊆ T 0. Suppose that

p∗ in T is supported by a symmetric equilibrium where each bidder i posts the same demand

schedule di(p) = d(p). By symmetry, each bidder wins a quantity S(p∗)/n of the divisible

good10 at the price p∗.

By the definition of stop-out price, limp↓p∗ [nd(p) − S(p)] ≤ 0. As d(p) is decreasing and

S(p) is continuous, this implies d(p) ≤ S(p∗)/n for p > p∗. Therefore, the residual supply to

bidder i for p > p∗ under the equilibrium profile {di(·)}n
i=1 is greater than under the profile

in (9).

Hence, if bidder i does not find profitable to increase the stop-out price above p∗ when

his competitors post d(p), this must remain true when they submit the demand schedules in

(9). Furthermore, bidder i cannot make the stop-out price go below p∗ because for p < p∗

the supply is entirely demanded by his competitors. It follows that the profile of demands in

(9) supports p∗ as a stop-out price. ✷

Proof of Proposition 5. As in the proof of Propositions 1 and 3, bidder i’s problem can

be reduced to the choice of the stop-out price that maximizes his payoff πi = (v−p)xi(p). The

assumptions of linearity for S(p) and convexity for d(p) ensure that the maximizing choice is

at the stationary point. However, since noncompetitive demand makes the stop-out price a

random variable, bidder i maximizes his expected value of π by making sure that his demand

schedule is optimal for almost all realizations of η. Given the support of η, the stop-out price

can span the interval [p∗, v]. Thus, the first-order condition

(v − p)
[
S′

+(p) − (n− 1)d′+(p)
]

= d(p)

must hold for almost all p in [p∗, v). By the assumed convexity of d(p), this differential

equation uniquely identifies d∗(p). For S′(p) = s, this is a linear differential equation whose

10 By pro-rata rationing, in a symmetric equilibrium each bidder is assigned a quantity d̂i(p
∗) = S(p∗)/n

even if there are flats at the stop-out price that make aggregate demand exceed supply.
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solutions for n ≥ 3 and n = 2 are respectively (13) and (14). The boundary condition follows

from the first equation of (6). ✷

Proof of Proposition 6. We need to show that there exists an optimal linear supply

mechanism and that it has s > 0. For convenience, rewrite the cost function C(Q) =

α+ β(Q− Q̄)2 as C(Q) = (α+ βQ̄2)− (2βQ̄)Q+ βQ2. Renaming the parameters, we study

the (seemingly) simpler cost function C(Q) = a− cQ+ bQ2 for a ≥ 0, b > 0 and c ≥ 0. This

cost function has a minimum in Q∗ = c/(2b), where its value is C(Q∗) = 4ab− c2; we assume

4ab− c2 ≥ 0 and make sure that the cost is never negative.

Consider the first stage of the game. Given the supply mechanism, the second stage leads

to a stop-out price

P (v; pL, r, s, n) = max
{
pL,

nv + pL

n + 1
− r

(n + 1)s

}
that determines the total quantity auctioned D̂(P ). The optimal linear supply mechanism

for the uniform-price auction is obtained by selecting the triple pL ≥ 0, r ≥ 0, and s ≥ 0 that

maximizes the expected profit for the seller, which is given by

E(πs) =
∫ 1

0
πs

[
P (v; ·), D̂(P (v; ·)

]
dv.

Depending on the parameters, we can distinguish three cases: i) if v < pL, there is no sale;

ii) if pL ≤ v ≤ pL +(r/ns), the stop-out price is pL and the quantity auctioned is D̂(pL) = r;

and iii) if pL + [r/(ns)] < v ≤ 1, the stop-out price is P (v) = (nsv − r + spL)/[(n + 1)s] and

the quantity auctioned is D̂(P (v)) = [n/(n + 1)](sv + r − spL).

Therefore, the expectation can be written as the sum of three integrals over the (possibly

empty) supports v < pL, pL ≤ v ≤ pL +[r/(ns)] and pL +[r/(ns)] < v ≤ 1. Writing p instead

of pL and f(p, r, s) instead of E(πs) for convenience, we have

f(p, r, s) =
∫ p

0
[−C(0)] dv +

∫ p+ r
ns

p
[pr − C(r)] dv

+
∫ 1

p+ r
ns

[
P (v) · D̂[P (v)] − C

(
D̂[P (v)]

)]
dv,

(17)

where integrals over empty supports are meant to be null. There are three possible cases:

A1) if p > 1, only the support of the first integral is not null; A2) if p ≤ 1 ≤ p+ (r/ns), only
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the support of the first two integrals are not null; and A3) if p + [r/(ns)] < 1, all the three

supports are not null.

The rest of the proof is in four steps. The first step shows that s = 0 can be part of an

optimal linear supply only if cases A1 or A2 hold. The second step determines the best triple

under case A2 and checks that it generates a strictly higher profit than any triple under case

A1; therefore, the optimal triple does not occur in case A1. The third step exhibits a triple

for case A3 which generates an even higher profit; therefore, the optimal triple does not occur

in case A2 either. It follows that the optimal triple (if it exists) must occur in case A3. The

fourth step establishes existence and concludes the proof.

Step 1. For r = 0 and s = 0 the supply is zero, which is obviously not optimal. If r > 0

and s = 0, we are in A2. Hence, s = 0 only if we are in A1 or A2.

Step 2. We begin by noting that A1 occurs for p ≥ 1, so the second and third integral in

(17) have an empty support. Since the reserve price is set too high and no one ever buys, the

seller’s profit is just E(πs) = −C(0) = −a.
Consider now A2, which occurs for p < 1 ≤ p + (r/ns): only the third integral has an

empty support. Computing the integral, we find that the seller’s expected profit is

f(p, r, s) = −a +
∫ 1

p

[
p · r + (cr − br2)

]
dv = −a + (1 − p)[(p + c)r − br2] (18)

This expression is a second-degree polynomial in p and r which does not explicitly depend

on s (provided that p + (r/2s) ≥ 1). Thus, we ignore s momentarily. We begin from the

boundary of the admissible region. Conditional on p = 0, the optimal choice is r = c/(2b)

which gives f(0, c/(2b), s) = −a + c2/(4b) ≥ −a. Any triple with p = 1 or r = 0 can be

discarded, because it fails the test of making f(p, r, s) greater than −a.
Moving to the interior of the admissible region, the only stationary point which survives

this test has p = (2 − c)/3 and r = (1 + c)/3b. As p ≥ 0, this is interesting only for c ≤ 2.

Substituting in (18), we obtain

f

(
2 − c

3
,
1 + c

3b
, s

)
= −a +

(1 + c)3

27b
≥ −a +

c2

4b
= f(0,

c

2b
, s), (19)

with equality holding at c = 2. Hence, the highest profit in A2 is attained for p = (2 − c)/3

and r = (1 + c)/3b if c ≤ 2 and for p = 0 and r = c/(2b) if c ≥ 2.

Reintroducing s in the picture, recall that this class requires p+ (r/ns) ≥ 1. This places

an upper bound on the admissible values of s. More precisely, the optimal supply mechanisms
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are: a) pL = (2 − c)/3, r = (1 + c)/3b and s ≤ 1/(nb) if c ≤ 2; and b) p = 0, r = c/(2b) and

s ≤ c/(2nb) if c ≥ 2. They include as special cases the possibility of setting s = 0. Finally,

(19) shows that the seller’s profit is higher than in A1.

Step 3. Consider now A3, under which no integral has an empty support a priori. The

seller’s expected profit is

f(p, r, s) = −a +
r

ns
[(p + c)r − br2]

+
∫ 1

p+ r
ns

[
n[nsv − (r − sp)][sv + (r − sp)]

(n + 1)2s

+

(
c
nsv + n(r − sp)

n + 1
− b

[
nsv + n(r − sp)

n + 1

]2
)]

dv,

Carrying out the computation11 and rearranging, this gives

f(p, r, s) = −a +
1

6n(n + 1)

[ (
2bn3s2 + 3n2s + n3s

)
p3

−
(
6bn3rs + 9n2r − 3cn2s− 3cn3s + 6n2s + 3n3r + 6bn3s2

)
p2

+
1
s

(
6bn3s3 − 6cn3rs− 6cn2s2 − 3n3s2 + 6bn3r2s + 12bn3rs2

+12n2rs + 3nr2 − 6cn3s2 − 6cn2rs + 3r2 + 3n2s2 + 6n2r2
)
p

+
1
s2

(
3nr3 − 3n2rs2 − 6bn3s3r + 2n3s3 − 6bn3r2s2 + 3cn2s3

+3n3rs2 − 6n2r2s− 6bnr3s + 6cn3rs2 + 6cn2rs2 + 3cnr2s− 4br3s

+r3 − 2bn3s4 + 3cn3s3 + 3cr2s
) ]

.

(20)

Finding the maximizer of this expression is a hard task, but fortunately our argument

requires only to exhibit a triple (p, r, s) satisfying A3 and achieving a higher profit than A2.

Choosing the triple

p̂ = 0, r̂ = 0, ŝ =
2n + 3c(n + 1)

4bn
11 All computations from here on have been carried out using Maple V (Release 5).
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in A3, we obtain

f (p̂, r̂, ŝ) = −a +
2n + 3c(n + 1)

48b(n + 1)
,

which we compare against the values in (19). For c ≤ 2 (and n ≥ 2), it is easily checked that

−a +
2n + 3c(n + 1)

48b(n + 1)
≥ −a +

(1 + c)3

27b
;

similarly,

−a +
2n + 3c(n + 1)

48b(n + 1)
≥ −a +

c2

4b

for c > 2. Hence, (p̂, r̂, ŝ) — which we do not claim is optimal — does better than any triple

satisfying A1 or A2. Note in particular that ŝ > 0.

Step 4. It remains to be shown that there actually exists an optimal triple in A3. While

f(p, r, s) is a continuous function, the region defining A3 is not compact because s is un-

bounded from below; thus the maximization problem may not have a solution at all. Con-

sider what may happen for s → +∞. Since A3 imposes p + r/(sn) ≤ 1, either i) r = o(s)

and r → 0; or ii) r = O(s) and the ratio (r/s) stay bounded between 0 and (1 − p)n.

If r = o(s),

f(p, r, s) ∼ − 1
3n(n + 1)

[bn3(1 − p)3]s2

as s → +∞. As p < 1, this guarantees that eventually f(p, r, s) < −a. Therefore, by a

standard argument, the set of triples over which the maximum of f(p, r, s) should be searched

can be trimmed and made compact without loss of generality. Then Weierstrass’ Theorem

ensures that a maximum exists.

If r = O(s),

f(p, r, s) ∼ − 1
3n(n + 1)

[
bn3(1 − p)3s2 + 3bn3(1 − p)[r2 + (1 − p)rs] +

b(3nr3 + 2r3)
s

]
as s → +∞. Then p < 1 guarantees again that eventually f(p, r, s) < −a, and the argument

given above applies as well.

We conclude that the triple p∗, r∗, s∗ exists and belongs to A3, which in turn implies that

s∗ > 0. ✷
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Proof of Proposition 7. We know from Proposition 6 that the optimal linear mechanism

belongs to A3. Replacing n = 2 and c = 0 into (20) we have

E(πs) = −a +
1

108s2

(
33pr2s− 16br3s + 16s3 + 12rs2 − 12ps3 − 24r2s

+48prs2 − 24p2s3 − 48br2s2 + 48pbr2s2 − 48brs3

+96bprs3 − 48bp2rs3 − 16bs4 + 48bps4 − 48bp2s4

+16bp3s4 + 20p3s3 − 60p2rs2 + 7r3
)
.

To increase readability, apply an increasing linear transformation and let g(p, r, s) =

108[E(πs) + a]. Then g and E(πs) have the same maximizers. Collecting terms with respect

to p, note that g is a cubic (in p) and that the coefficient of its leading term is positive:

g(p, r, s) =
(
16bs2 + 20s

)
p3 −

(
48brs + 24s + 60r + 48bs2

)
p2

+
(

96brs3 − 12s3 + 48br2s2 + 48rs2 + 33r2s + 48bs4

s2

)
p +

−
(

16bs4 + 16br3s− 16s3 − 12rs2 + 48br2s2 + 24r2s− 7r3 + 48brs3

s2

)
.

We ignore momentarily r and s. Differentiating with respect to p, we find

∂g

∂p
=

(
48bs2 + 60s

)
p2 −

(
96brs + 48s + 120r + 96bs2

)
p

+
(

96brs3 − 12s3 + 48br2s2 + 48rs2 + 33r2s + 48bs4

s2

)
.

Hence, the two stationary points of g with respect to p are

p1 =
8brs + 4s + 8bs2 + 10r − 3

√
4br2s + 4s2 + 5r2

8bs2 + 10s

and

p2 =
8brs + 4s + 8bs2 + 10r + 3

√
4br2s + 4s2 + 5r2

8bs2 + 10s
.

The cubic g has a local maximum in p = p1 and a local minimum in p = p2. Since p2 ≥ 1 for

any pair (r, s) in the admissible set, this implies that the maximizers of g can only occur at

p = 0 or p = p1 depending on whether p1 < 0 or p1 ≥ 0, respectively. We check separately

the two subcases.

First, suppose p = 0. Then the function

g(0, r, s) = −
(

16bs4 + 16br3s− 16s3 − 12rs2 + 48br2s2 + 24r2s− 7r3 + 48brs3

s2

)
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has only two stationary points:(
r =

−3 − 2
√

2
b

, s =
3 +

√
2

2b

)
and

(
r =

−3 + 2
√

2
b

, s =
3 −

√
2

2b

)
.

Since both have r < 0, they fall outside of the admissible set and the maximizer (if it exists)

can only be a corner solution with r = 0. Substituting r = 0 and maximizing g(0, 0, s), we

find s = 1/(2b). However, p = 0, r = 0, and s = 1/(2b) imply

p1 =
8brs + 4s + 8bs2 + 10r − 3

√
4br2s + 4s2 + 5r2

8bs2 + 10s
=

1
7
> 0,

contradicting the initial assumption of p1 < 0.

Now, suppose p = p1. Then the function

g(p1, r, s) =
27(+8s3 − 28br2s2 − 16b2r2s3 − 10r2s +

√
(4br2s + 4s2 + 5r2)3)

s2(4bs + 5)2

has only three stationary points:(
r = 0, s =

5
4b

)
,

(
r =

1
3b
, s =

1
2b

)
and

(
r = − 1

3b
, s =

1
2b

)
.

We rule out the third one because it is not admissible and the second one because it yields

(∂2g/∂r2) > 0. The first candidate, instead, passes the second order conditions. Hence,

noting that p1 = 2/5 for r = 0 and s = 5/(4b), we conclude that the maximizer is at p = 2/5,

r = 0 and s = 5/(4b). This is the optimal linear supply mechanism we were after. ✷
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