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1 Introduction

Dissatisfaction with the stringent rationality requirements of the standard equilibrium ap-
proach to behavior in strategic environments has fueled the growth of a large literature on

1" The focus of this literature has been

the dynamics of evolution and learning in games.
on questions such as whether trajectories converge to Nash equilibria, whether dominated
actions are eliminated along convergent or nonconvergent trajectories, and whether dynamic
stability can provide an effective equilibrium selection criterion. The unifying theme in this
otherwise diverse body of work is that individuals are assumed to have only a limited un-
derstanding of the strategic setting in which they participate, and to adjust their behavior
in accordance with some adaptive process. This process is typically assumed to be payoff
monotonic: more successful actions are more likely to be adopted with greater frequency
than are less successful ones.

An entirely different approach to the modeling of bounded rationality has been devel-
oped recently by Osborne and Rubinstein (1998). The approach is static and equilibrium
based, but relies on less stringent assumptions regarding the knowledge and understanding of
players than does the standard theory of Nash equilibrium. Their equilibrium concept, S(1)
equilibrium, is based on an explicit process of reasoning on the part of players and there-
fore corresponds to procedural rather than substantive rationality in the sense of Simon
(1978). Although S(1) equilibrium is a static concept, Osborne and Rubinstein interpret it
as a steady state of a dynamic process of sampling. This paper formalizes their informal
description of the dynamic process and thereby facilitates a comparison of this approach
with the explicitly dynamic approach of evolutionary game theory. It turns out that the
two approaches give rise to radically different static and dynamic predictions. For instance,
dynamically stable S(1) equilibria can involve the playing of strictly dominated actions, and
equilibria in which strictly dominant actions are played with probability 1 can be unstable.
The criterion of dynamic stability also yields a refinement of S(1) equilibrium that is both
intuitively appealing and effective in application. For instance, although it is the case that
all strict Nash equilibria are also S(1) equilibria, some strict Nash equilibria may be unsta-

ble with respect to the dynamics. This provides a simple basis for selection among strict

'Recent books which survey and extend the main results in this literature include Weibull (1995), Vega-

Redondo (1996), Fudenberg and Levine (1997), Samuelson (1997) and Young (1998).



Nash equilibria in certain coordination games which, unlike the commonly used criterion of
stochastic stability, relies neither on the ultra-long run nor on the presence of rare mutations.

The paper is organized as follows. Osborne and Rubinstein’s informal dynamic inter-
pretation of S(1) equilibrium is formalized in Section 2. The use of dynamic stability as a
method of selection among alternative S(1) (and alternative strict Nash) equilibria is devel-
oped in Section 3. It is shown in Section 4 that strictly dominated actions may be played
with positive probability in stable S(1) equilibria, and that equilibria in which only dom-
inant actions are played can be unstable. This can occur in symmetric games only if the
number of players plus and the number of actions is at least five. Sufficient conditions for
the instability of strict Nash equilibria is provided in Section 5 for symmetric games. These
conditions are easy to verify and are satisfied in many commonly studied games. The case of
asymmetric games with multiple player populations is examined in Section 6, and sufficient
conditions for the instability of strict Nash equilibria are provided also for this case. Section

7 concludes.

2 Equilibrium and Dynamics

Consider first the case of symmetric n-player games.? As in Osborne and Rubinstein, let
A ={ay,...,a,} represent the finite set of actions available to each player, and let u(a;,b)
denote the payoff to a player of choosing the action a; € A when the remaining n — 1 players
choose the action profile b € A" !. This payoff function represents each player’s ordinal
preferences over the set of outcomes. Let a = (ay, ..., auy,) be a probability distribution on
A, and let v(a;, ), i = 1,...,m, be the random variables yielding wu(a;,b) with probability
Pr(b) for each b € A", Here Pr(b) is the probability that the action profile chosen by the
remaining n— 1 players is b, assuming that each action is chosen independently subject to the
distribution o on A. Finally, let w(a;, &) be the probability that, when each random variable
v(z,a) is drawn independently and exactly once, the action a; yields the best outcome. In
the case of realizations in which a; is not unique in yielding the best outcome, the probability

is weighted by the reciprocal of the total number of tied alternatives. An S(1) equilibrium

2 Just as the concept of S(1) equilibrium generalizes in a straightforward manner to the case of asymmetric
games, so too does the disequilibrium dynamic process introduced below. The case of asymmetric games is

treated separately in Section 6 below.



is defined as a probability distribution « on the set of actions A with the property that
w(a;, o) = o for every action a; € A.

The concept of S(1) equilibrium is based on the idea that players sample each action exactly
once and select the action which yields the highest payoff. In the case of ties, one of the
tied alternatives is picked at random, with each alternative having the same probability of
being chosen. The probability with which a given action is chosen under this procedure
will depend, of course, on the (mixed) strategies chosen by the remaining players during
each of the sampling periods. An S(1) equilibrium is a mixed strategy a with the following
property: if all other players adopt this strategy throughout the sampling procedure, then
the probability that action a; is best under the sampling procedure is precisely «;.

One interpretation of S(1) equilibria that is advanced by Osborne and Rubinstein is that
it is the steady state of a dynamic process involving a large population of individuals who
are randomly matched to play the game. Each member of the population adopts the same
action throughout her stay in the population, and the population composition changes as a
result of new entrants and departures. When entering, a player samples each action once
and selects that which yields the best outcome according the procedure described above. In
this case, an S(1) equilibrium is a distribution of actions in the incumbent population which
induces the same distribution of actions in the flow of entrants.

This dynamic process may be formalized as follows. Let «(t) represent the distribution
of actions in the population at time ¢. That is, the proportion of the population choosing
action a; € A is given by «;(t). Let &;(t) represent the rate of change of this proportion.
Under the dynamics of sampling described above, the representation in the population of
an action that is “best” with a higher (lower) probability than it is currently being played

should increase (decrease). This suggests the following dynamics:

where F is Lipschitz continuous and satisfies:?

w(a;, at)) > a;(t) & q(t) > 0,

a(ty) € Q™ = a(t) € Q™ for all t > o,

3Lipschitz continuity is required to ensure that trajectories are well-defined from all initial conditions.



where

Qm:{mem

x; > 0 and zm:mizl}

i=1

is the set of probability distributions on A. We shall refer to any system of differential
equations &;(t) = F(a(t)) which satisfies the above conditions as a sampling dynamic. The

simplest possible specification of a sampling dynamic is the following:
&;(t) = w(a;, a(t)) — ay(t). (1)

This specification will be used for illustrative purposes in the numerical examples which
follow, and, for convenience, will also be used in the statement and proof of all formal results.*
It is easy to verify, however, that all results will continue to hold without modification for
arbitrary sampling dynamics.

Clearly, a distribution « is a rest point of a sampling dynamic if and only if it is an S(1)
equilibrium. Not all rest points of the dynamics will be stable, however. In examining the

question of stability, the following standard definitions (see for instance, Hirsch and Smale,

1974) will be used below.

Definition. A rest point « is stable if, for every neighborhood U C R™ containing «, there

is a neighborhood V' C U such that if a(ty) € V N Q™, then a(t) € UN Q™ for all t > .

In other words, « is stable if, for every neighborhood of «, it is possible to find an open
set of initial conditions from which trajectories never leave this neighborhood. A rest point
a is unstable if it is not stable. A sufficient condition for instability is that one or more of

the eigenvalues of the Jacobean, when evaluated at the rest point, has positive real part.

Definition. A rest point « is asymptotically stable if it is stable and if there is some

neighborhood U C R™ such that all trajectories initially in U N Q™ converge to a.

A sufficient condition for asymptotic stability (and hence stability) is that all eigenvalues
of the Jacobean, when evaluated at the rest point, have negative real part. In the next section,
it is shown that stability (and asymptotic stability) can provide a method of selection among

S(1) equilibria.

1To see that (1) leaves Q™ invariant, note that by definition >, w(a;, a(tg)) = 1. Suppose a(tg) € Q™.
Then ), &;(to) = >, w(ai, to)) — Y-, aito) = 0s0 >, ai(t) =1 for all t > to. Hence we need only check
that «;(t) > 0 for all ¢t > ¢y. This follows form the fact that if a;(¢) = 0, then &;(t) = w(a;, a(t)) > 0.



3 Equilibrium Selection

Let S(1) equilibria which place probability 1 on some action be referred to as pure. Although
the set of Nash equilibria of a game will not generally coincide with the set of S(1) equilibria,
every strict symmetric Nash equilibrium corresponds to a pure S(1) equilibrium. Specifically,
if (ag, ..., aq) is a strict Nash equilibrium, then the mixed strategy that places probability 1
on the action q, is a pure S(1) equilibrium. Hence coordination games have multiple S(1)
equilibria. The following example shows that stability with respect to the dynamics (1) can

provide an equilibrium refinement that eliminates some equilibria in such games.

Example 1 (Coordination). Consider the symmetric game with the following payoff matrix
(payoffs correspond to the row player; by symmetry the column player’s payoff is given by

the transpose):

ay | az
a1 | 1| =
az | Yy

where y < 1 and x < 0. Both pure strategies correspond to strict Nash equilibria and hence
also to pure S(1) equilibria. If x < y, then all probability distributions on the action space
are S(1) equilibria (see Example 2 in Osborne and Rubinstein).” Suppose, however, that

x > 1. Then the probability that the first action is best under the sampling procedure is
w(ay,a) =a; + a1(l — ay).
Hence we have
= a(l—ap) >0,

with strict inequality holding whenever a; € (0,1). The equilibrium «; = 1 is therefore
the only stable equilibrium, and all trajectories except the one originating at the unstable

equilibrium converge to it. |

The above example is interesting because strict Nash equilibria are always stable with

respect to any deterministic payoff monotonic evolutionary selection dynamics, such as the

°In this case, all distributions are also stable S(1) equilibria, though none is asymptotically stable.



replicator dynamics (Weibull, 1995). Evolutionary approaches to the equilibrium selection
problem in coordination games has therefore focused on the criterion of stochastic stability
(Kandori, Mailath and Rob 1993, Young 1993). Stochastically stable states are states which
occur with positive probability in models which combine payoff monotonic selection dynamics
with rare mutations, as the mutation rate approaches zero.® The notion of stochastic stability
is appropriate only for the ultra-long run, since movements across basins of attraction can
become very infrequent as the mutation rate is decreased (Ellison, 1993). In contrast, the
use of the dynamics (1) to select among strict Nash equilibria provides a refinement that
depends neither on mutations, nor on the ultra-long run. In Section 5, easily verifiable
sufficient conditions are provided which can be applied directly to the equilibrium selection

problem in coordination games.

4 Strictly Dominated Strategies

One of the more striking results in Osborne and Rubinstein is the finding that strategies that
are strictly dominated by pure strategies can receive positive probability in S(1) equilibria.
It is interesting to raise the question, therefore, of whether this can occur at stable S(1)
equilibria. It turns out that not only can S(1) equilibria which place positive probability
on strictly dominated strategies be dynamically stable, they can be uniquely so. In other
words, the S(1) equilibrium which corresponds to the strict Nash equilibrium in which the
dominant strategy is played with probability 1 can be unstable. The “voluntary exchange”

example given by Osborne and Rubinstein itself turns out to have this property.

Example 2 (Voluntary Exchange). Consider the symmetric game with the following payoff

matrix:
ay | a2 | ag
aq 2 5 8
as | 1 | 4|7
a3 | 0| 3| 6

%Note that in example 1, the unique stable S(1) equilibrium in the case > ¥ is also the unique stochas-

tically stable equilibrium, though this equivalence need not hold more generally.



The first action strictly dominates the other two in this game and therefore (a;,a;) is the

unique Nash equilibrium. The conditions for an S(1) equilibrium are as follows.

a = aj+as(l—az)?+ as,
Qo = a1a2(1 — Oég) + Oég(l — 043),
az = ajag+ az(l—az)’.

Exactly two probability distributions satisfy these conditions:

a = (1,0,0)
a = (0.519,0.277,0.204)
Each of the two strictly dominated strategies are played with positive probability in the
latter of these equilibria, while the former corresponds to the unique strict Nash equilibrium
of the game. In order to determine which, if any of these equilibria are stable, consider the
dynamics (1) applied to this game. Substitution for a3 yields the following two-dimensional
system:
g = of +ag(ag +ag)? + (1 —a; —ag) — ay,
dg = 041042(041 + 042) + (1 — 01 — Oz2> (Oll + OZQ) — Q9.
The Jacobean of the system is given by
302 + 200 + 203 — 2 a? +4dajas + 303 — 1
20100 + a3 — 201 — 205 + 1 af + 20100 — 201 — 209
Consider first the pure S(1) equilibrium a = (1,0, 0). Here the Jacobean is
1 0
-1 -1
with eigenvalues 1 and —1. This equilibrium is therefore unstable. Consider next the equilib-

rium o = (0.519,0.277,0.204),in which strictly dominated strategies are played with positive
probability. Here the Jacobean is

—0.750 0.074
—0.228 —1.035

with eigenvalues —0.84 and —0.95. This equilibrium is therefore locally asymptotically

stable, and trajectories which are initially sufficiently close to it converge it. I
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Figure 1: Convergence to the Interior S(1) Equilibrium

The previous example shows that regardless of whether trajectories converge to an equi-
librium, strictly dominated strategies will continue to be played indefinitely along all paths.
Simulation results suggest, moreover, that the stable interior S(1) equilibrium in this example
attracts all trajectories except for that which originates at the unstable equilibrium. Figure 1
depicts the dynamics of the mixed strategy from the initial condition a(0) = (0.98,0.01,0.01),
which is very close to the strict Nash equilibrium. Convergence to the interior equilibrium
is rapid and monotonic.

The finding that strictly dominated strategies can be played in S(1) equilibria of two-
person games does not hold when each player has only two actions (Osborne and Rubinstein,
1998). The following example shows that such strategies can indeed be played in equilibria

of games having two actions, provided that the number of players is at least three.

Example 3 (Three-Player Prisoners’ Dilemma). Consider the symmetric three-person game

with two actions and the following payoff matrix:

(CL1, al) (CLl, a2) (a2, a2)
aq 1 3 5
as 0 2 4




The action a; strictly dominates a; and each player plays a; with probability 1 in the unique
Nash equilibrium. Hence the mixed strategy which places probability 1 on action a; is a
pure S(1) equilibrium. There is a second S(1) equilibrium, however, in which each player

plays the mixed strategy (x,1 — x), where

1<3@0+4ﬁﬁoz—4+2W@0+4%E)

== ~ 0.718
0 ¢/ (20 + 4v/29)

Of the two S(1) equilibria, only the latter is stable. To see this, consider a mixed strategy

a = (ag,a). Then

a = w(a,a) —a
= 0/11 + 20[10[2 (2@1@2 + a%) + ag — Q7

= af +2a; (1 — ) (2&1 (1—ay)+ a%) +(1—a1)? -

It may be verified that a; > 0 for all a; € [0,2) and &3 < 0 for all oy € (z,1) where z is
as defined above. Hence the pure S(1) equilibrium « = (1,0) is unstable and all trajectories
except that which originates at this unstable equilibrium converge to the equilibrium in

which strictly dominated strategies are played with positive probability. |

The finding that strictly dominated strategies that are dominated by pure strategies can
be played with positive probability at asymptotically stable S(1) equilibria may be contrasted
with the fact that in the standard theory of evolutionary games, payoff monotonic selection
dynamics eliminate all such strategies, and even weakly payoff positive selection dynamics

can never converge to a state in which strictly dominated strategies are played (Samuelson

and Zhang, 1992; Weibull 1995).7

Tt is possible, however, for strategies that are strictly dominated by a mized strategy to survive along
nonconvergent paths under payoff monotonic selection dynamics. This occurs, for instance, in a continuous-
time version of Dekel and Scotchmer’s (1992) example (see Bjornerstedt, 1993 or Weibull, 1995). It is also
possible for strategies that are strictly dominated by a pure strategy to survive along nonconvergent paths

under weak payoff positive selection dynamics (Sethi, 1998).

10



5 Instability of Equilibria

In the examples of the previous section, S(1) equilibria in which strictly dominant actions
are played with probability 1 were shown to be unstable. In this section, simple and easily
verifiable sufficient conditions for the instability of pure S(1) equilibria are given.

Let I" be a symmetric game with n > 2 players and m > 2 actions. Write the action

space as A = {ay, ag,...an}.

Definition. An action profile (ay, aq, ..., a,) in a symmetric n-player game is inferior if,

for every i # q there exists j(i) # q such that
U(CL](l), Qj, a(p ceey aq) > 'U/(Clq, aq, ceey CLq).

It is twice inferior if, for every action i # q there exist j(i) # q and k(i) # q such that
J#k and

U(aj(i)v Q;, Qg, "'CLQ) 2 U(ak(i), Qs Qg -y a(I> > u(a(b Qg -y CLQ)‘

This definition states the following. A symmetric action profile (a,, ay, ..., a,) is inferior
if, when n — 2 of the other n — 1 players take the action a, while the remaining player selects
a; # a4, there exists at least one response a; (j # ¢) by player 1 which yields an outcome
that is strictly preferred by player 1 to the outcome at (a,,ay, ...a;). In Example 3 above,
the dominant strategy equilibrium is inferior. A symmetric action profile is twice inferior if,
when n — 2 of the other n — 1 players take the action a, while the remaining player selects
a; # ag, there exist at least two distinct responses a; and ay (j,k # ¢) by player 1 which
yield an outcome that is preferred by player 1 to the outcome at (a4, ay, ...a,). In Example
2 above, the dominant strategy equilibrium (a,a;) is twice inferior. Note that no action
profile can be twice inferior in games having only two actions.

The following result provides sufficient conditions for instability in games having at least

three players.

Theorem 1. In any symmetric game with three or more players, all inferior symmetric
strict Nash equilibria (and hence all inferior pure S(1) equilibria) are unstable under the

sampling dynamics (1).

11



Proof. Without loss of generality, let (aj, ay,...,a;) be a symmetric strict Nash equilibrium.
Then the mixed strategy which places probability 1 on action a; is a pure S(1) equilibrium.
Consider a mixed strategy o = (1 —¢,¢3,€3,...,6m) € Q™ ,where € € (0,1). Since o € Q™ we
have ¢; > 0 for all i € {2,...,m}, and Y 5'e; = €. Consider the following event: when a,
is sampled, the outcome is (ai,as,...,a1); when aj;) is sampled, the outcome is (a;e), ),
where z € A" contains some permutation of the actions {as, a, ..., a; }. The probability of

this event is
(1—e)" " (n—1)(1—e)" %e,,

and if it occurs, a; will not yield the best outcome. Next consider the following event: when
a; is sampled, the outcome is (a1, ay, ..., a1); when a2 is sampled, the outcome is (a;), ),
where x € A""! does not contain a permutation of the actions {as, ay, ..., a1 }; when a;(3) is
sampled, the outcome is (a;(),y), where y € A™! contains some permutation of the actions
{as,ai,...,a1}. The probability of this event is (regardless of whether or not a;¢) = a;)) at

least
1—e)" " 1-(n—1)(1—e)" &) (n—1)(1—e)" e,

and if it occurs, a; will not yield the best outcome. Note that the two events described
are mutually exclusive. Reasoning in this manner, we obtain the following bound for the

probability that a; will not yield the best outcome under the sampling procedure:

1—wla,0)>1—e)" ' (n—1)(1—¢)" &

+(1-e)" T (1=(n-1)(1-e)" %) (n—1)(1—&)" e5+ ...

+(1—e)"! <H (1-(n-1)(1-¢)"? gi)> (n—1)1—¢)" %epn

=2
Let o(e?) represent terms that are second order or higher in e and/or ¢; (€%, ¢, €65, ...).

Then the above inequality may be written as

w(a,a) <1—(n—1) f:ei +0(e?) <1 — 2 + o(€?) (2)

since n > 3. Note that there exists € > 0 such that, for all £ < &, o(?) < . Hence, for all

€ < g, we have

w(a,a) <1l—2e+e=1—¢c=a. (3)

12



Let N: be defined as follows
Ne={zeQ" |z=(1—¢,e9,63,....,6n) Withe <& }.

Then from (1) and (3)we have &; < 0 for all & € N:z\a*, where o* = (1,0,...,0). Hence all

trajectories initially in N:\a* eventually leave Nz, and o* is unstable. U

Many experimental public goods games in which zero contributions are a dominant strat-
egy belong to the class to which Theorem 1 applies (Ledyard, 1995). Consider, for instance,

the following example.

Example 4 (Private Provision of Public Goods). Each of n > 3 individuals has an endow-
ment e = (m — 1)z, all or part of which may be contributed to the provision of a public good
in finite increments z. The action space A = {ay, ...., a,, } where a; represents a contribution
of (i — 1)z units. Let a; represent the contribution of player j. The total contribution is
i a; and the payoff to player j is 7; = e —a; + 3)_7_, a;, where 1/n < 8 < 1. Clearly
ay is a strictly dominant action. The unique Nash equilibrium is (ay, ...,a1), and hence the
mixed strategy which places probability 1 on action a; is a pure S(1) equilibrium. If 25 > 1

the conditions for Theorem 1 are satisfied and this equilibrium is therefore unstable. |

The example above implies that some positive contributions will be observed at any
stable S(1) equilibrium in this class of games, which accords with much of the experimental
evidence.®

Theorem 1 states that inferiority is sufficient for instability of equilibria in symmetric
games with three or more players. The following simple example shows that inferiority is

not sufficient for instability in two-player games.

Example 5 (Prisoners’ Dilemma). Consider the symmetric game represented by the follow-

ing payoff matrix:

ay | as
aq 1 3
(05} 0 2

8This conclusion is based on the premise that an individual’s preference ordering over outcomes in the
game depends positively on their own monetary payoff and is independent of the monetary payoffs of others.
An alternative interpretation of the experimental evidence is that some individuals have preferences that are

altruistic (or interdependent in other, more complex, ways.)

13



The action a; is strictly dominant and (aq,a;) is the unique Nash equilibrium. The mixed
strategy o = (1,0) which places probability 1 on action a; is the unique S(1) equilibrium.
The action profile (a;,a;) clearly inferior. The dynamics (1) applied to this game are as

follows
dl ZZU(CLl,CY) — :Oz%—l—(l—ozl) — 01 = (1-@1)2.

Hence &y > 0 for all a; € [0, 1) and the inferior pure S(1) equilibrium at o = (1, 0) is globally
stable. I

Example 5 illustrates that inferiority is not sufficient for instability when the number of

players n = 2. Twice inferiority is, however, sufficient.

Theorem 2. In any symmetric two-player game, all twice inferior symmetric strict Nash
equilibria (and hence all twice inferior pure S(1) equilibria) are unstable under the sampling

dynamics (1).

Proof. Without loss of generality, let (aj, ay,...,a;) be a symmetric strict Nash equilibrium.
Then the mixed strategy which places probability 1 on action a; is a pure S(1) equilibrium.
Consider a mixed strategy o = (1 —¢,¢€3,€3,...,6m) € Q™ , where € € (0,1). Since o € Q™ we
have ¢; > 0 for all i € {2,...,m}, and Y 5'e; = €. Consider the following event: when a,
is sampled, the outcome is (aq,a1); when aj(2) is sampled, the outcome is (aj(2),az). The
probability of this event is (1 — ¢) ey, and if it occurs, a; will not yield the best outcome.
Next consider the following event: when a; is sampled, the outcome is (a;,a1); when a;)
is sampled, the outcome is not (a;(),az); when ay) is sampled, the outcome is (ay(2), az).
The probability of this event is (1 —¢) (1 — &3) €2, and if it occurs, a; will not yield the best
outcome. Note that the two events described are mutually exclusive. Reasoning in this
manner, we obtain the following bound for the probability that a; will not yield the best
outcome under the sampling procedure:

l—w(a,a) > (1—¢€)ea+(1—¢)(1—e3)ea+ ...

m

+(1—¢) (1—5,')25”1 1—51_[1—5Z (1—¢em)em

=2 =2
Let o(e?) represent terms that are second order or higher in ¢ and/or ¢; (€2, e, €565, ...).

Then the above inequality may be written as

14



w(ap,a) <1 — 22& +0(e?) =1 — 2 + o(£?).
=2

This is the same as inequality (2) in the proof of Theorem 1 above, and the argument used

thereafter applies unchanged to the present case. U

A profile (a4, a,) can be twice inferior even when a, is a strictly dominant action, as
Example 2 above illustrates. The instability of the equilibrium which places probability
1 on the strictly dominant action implies that strictly dominated actions must be played
with positive probability indefinitely along all trajectories, regardless of whether or not such
trajectories converge to an S(1) equilibrium. The following example illustrates a further

application of Theorem 2.

Example 6 (Three-Action Coordination Game). Consider the symmetric game represented

by the following payoff matrix:

ay | az | as
ar | 2 | 6|6
ay | 0 | 7|3
as | 1 [ 4] 8

This game has three strict Nash equilibria each of which corresponds to a pure S(1) equilib-
rium. There are no other S(1) equilibria. Of the three equilibria, the one at (a1, a;) is twice

inferior and hence unstable by direct application of Theorem 2. |

The above example shows that selection among strict Nash equilibria in certain games
on the basis of the dynamics (1) can be can be very easy to implement by means of the
sufficient conditions identified in Theorems 1 and 2. This invites a comparison with the
criterion of stochastic stability, which is currently the standard basis for selection among
strict Nash equilibria. Stochastic stability is based on the limiting properties of the invariant
distribution in a model of evolutionary dynamics with rare mutations, as the mutation rate
get vanishingly small. It is therefore most suitable as a selection criterion applied to the
very long run. In contrast, the dynamics (1) are deterministic and can converge rapidly,

providing a selection criterion that applies to the short run. Stochastic stability is, however,

15



a more powerful criterion which can distinguish among equilibria that the sampling dynamics
treat as identical (as in Example 1, for the case x < y). Which of the two methods is
more appropriate in any given context will therefore depend on the time horizon over which

selection is expected to occur.

6 Multiple Populations

The analysis to this point has been based on the assumption that there is a single population
from which all players are drawn. While this is a suitable assumption for symmetric games,
it is not tenable in the case of asymmetric games since the action space and the potential
payoff consequences of a given action generally differ across different player positions. In this
case it is natural to assume that there exists a distinct population for each player position.
Symmetric games too can be analyzed on the basis of multiple player populations (one for
each player position). The multiple population case has different dynamic properties than
does the single population case and results that hold in one case need not carry over to the
other even in the case of symmetric games.

Consider, for simplicity, the case of a two-player asymmetric game with action spaces
A ={a1,...,am, } and B = {by,..., by, } respectively. Let uy(a;,b;) denote the payoff to
Player k£ when Player 1 chooses the action a; € A while Player 2 chooses b; € B. These
payoff functions represent each player’s ordinal preferences over the set of outcomes. Let «
be a probability distribution on A and [ a probability distribution on B. Let v;(a;, 3) be
the m; random variables yielding u;(a;, b;) with probability 3, for each b; € B. Similarly,
let vy(b;, ) be the my random variables yielding wus(a;, b;) with probability «; for each
a; € A. Let wy(a;, B) be the probability that, when each random variable vy (z, 3) is drawn
independently and exactly once, the action a; yields the best outcome. As before, in the
case of realizations in which a; is not unique in yielding the best outcome, the probability is
weighted by the reciprocal of the total number of tied alternatives. Finally, let wy(b;, ) be
the probability that, when each random variable vy (y, ) is drawn independently and exactly
once, the action b; yields the best outcome, again with the same tie-breaking convention that
the probability is weighted by the reciprocal of the total number of tied alternatives.

An S(1) equilibrium in this case is defined as a pair of probability distributions («, ) on
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the sets of actions A and B respectively, with the property that

wi(a;, f) =« for every action a; € A,

wy(bj, ) = [, for every action b; € B.
The dynamics (1) can easily be generalized to cover this case as follows:

ai(t) = wla;, B(t)) — ai(t), (4)
Bi(t) = w(bs,a(t)) = Bi(1). (5)

If the number of actions available to the two players are m; and msy respectively, the above
dynamics are defined for the state space R™ ™2, It is easily verified that under the dynamics
(4-5), if (a(to),B(to)) € Q™ x Q™2 then (af(t),5(t)) € Q™ x Q™ for all t > 5. It is
also easily seen that a state («, ) is a rest point of these dynamics if an only if it is an
S(1) equilibrium. Furthermore, all of the above definitions and statements generalize in a
straightforward manner to the case of three or more populations.

For symmetric games, if o is an S(1) equilibrium in the single population case, then
(o, ) must be an S(1) equilibrium in the multiple population case. There may, however, be
additional equilibria in the latter case, and the stability properties of equilibria which occur

in both cases need not be identical, as the following example illustrates.

Example 7 (Hawk-Dove). Consider the game represented by the following payoff matrix:

by by
aj (Ou 0) (37 1)
as | (1,3) | (2,2)

In the single population case there is a unique S(1) equilibrium a = (%, %) which is globally

asymptotically stable. To see this, observe that the dynamics (1) yield
dp =w(ay, o) —ayp =1 —2a4.
In the multiple population case, on the other hand, the dynamics are as follows

&y = w(a,f)—ar=1-0—a

Bl = w(b,a) -G =1-a—f
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In this case any pair of distributions («, ) is an S(1) equilibrium provided that a; + 3; = 1.
The single population S(1) equilibrium remains an equilibrium in the multiple population

case, but it is no longer asymptotically stable. |

Although the stability of an equilibrium need not be maintained as one moves from the
single population to the multiple population case, the following result shows that instability

is maintained.’

Theorem 3. In any symmetric game, if o* is a pure S(1) equilibrium which is unsta-
ble under the single population dynamics (1), then (a*,a*) is unstable under the multiple

population dynamics (4-5).

Proof. Suppose that a pure S(1) equilibrium a* € Q™ is unstable under the dynamics (1).
Then, by definition, there exists a neighborhood U C R™ of a* such that all trajectories
which originate at any a(tg) € UNQ™, a(ty) # o, must eventually leave U. Now consider the
multiple population dynamics (4-5) in the neighborhood of the equilibrium (a*, 3%), where
8" = a*. Since I is symmetric, any trajectory which satisfies initial conditions «(tg) = B(to)
must satisfy a(t) = [(t) for all t > t,. Moreover, the time path of a(t) will be identical under
(1) to the time paths of a(t) and B(¢t) under (4-5), provided that initial conditions «(tg)
in the former case are identical to the initial conditions «a(ty) and [(to) in the latter case.
Hence, all trajectories from initial conditions («(tg), 5(to)) satisfying a(tg) = B(to) € UNQ™
will eventually leave U x U under (4-5). Since every neighborhood of (a*, ") contains
some points (a, 3) such that o = 3, there can be no neighborhood W of (a*, 3*) such that

trajectories initially in W remain in U x U . Hence (a*, %) is unstable. O

Theorem 3 implies, in particular, that dominant strategy equilibria which are unstable
under the single population dynamics (as in Examples 2 and 3 above) remain unstable under
the multiple population dynamics. In such cases, strictly dominated strategies will be played
with positive probability along all trajectories, regardless of whether or not they converge.

Turning, finally, to the case of genuinely asymmetric games with multiple player pop-
ulations, the following definition extends the notion of inferiority to the case in which the

action spaces of the two players need not be the same.

9 Although Theorem 3 is stated and proved for the two population case, the generalization to multiple

populations is straightforward.
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Definition. An action profile (aq,b,) in a two-player game is inferior for player 1 if, for

every i # r there exists j(i) # q such that
u(aj), bi) > u(ag, by).

It is twice inferior for player 1 if, for every action i # r there exist j(i) # q and k(i) # q
such that j # k and

u(ajey, b)) > u(argy, b)) > u(ag, by).

(Twice) inferiority for player 2 is defined analogously. An action profile (a4, b,) is (twice)

inferior if it is (twice) inferior for both players.

This definition is consistent with that given for symmetric games above (for symmetric
games the two definitions are identical.) The following result provides sufficient conditions

for the instability of S(1) equilibria in asymmetric games with multiple player populations.

Theorem 4. In any two-player game, all twice inferior strict Nash equilibria (and hence all

twice inferior pure S(1) equilibria) are unstable under the dynamics (4-5) .

Proof. Without loss of generality, let (a1, b;) be a strict Nash equilibrium. Then the pair
(a*, 0%) where o* = % = (1,0) is a pure S(1) equilibrium. Consider the pair of mixed
strategies a = (1 —6,6) € Q? and 3 = (1 —,¢) € Q?, where €,6 € (0,1). Using the same

reasoning as in the proof of Theorem 2, the following inequalities may be obtained

w(alaﬁ) S 1_25+0(62)7
w(by, ) < 1—26+0(6%)

Hence there exist 6, £ > 0 such that for all § < § and € < &, the following holds

w(a, ) < l—e¢ (6)
w(b,a) < 1-=906 (7)

Let n = min{¢,z} and let N, be defined as follows

Ny ={(a,8) € ¥ x 0 | (o, f) = (1 = 6,6),(1 —e,¢)) with §,e <n }.
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Then from (4-5) and (6-7), the following holds for all (a, 3) € N,

a, = w(al,ﬁ)—al<(1—6)—(1—5):5—5,
B = wbya) = <(1-68)—(1—¢)=c—6.

Hence ¢, + 3, < 0 for all (a,3) € N,\(e*, %), and all trajectories initially in N,)\ (o, 3%)

eventually leave NN,. Therefore (a*, 5*) is unstable. O

Theorem 4 provides sufficient conditions for the instability of strict Nash equilibria (and
hence pure S(1) equilibria) in two-player asymmetric games. As in the case of symmetric
games, these conditions can be satisfied at equilibria in which strictly dominant actions are
played with probability 1. Hence the basic conclusion arising from the analysis of symmetric
games remains unchanged: strictly dominated strategies may be played with positive prob-
ability along all trajectories even in asymmetric games with multiple player populations. As
might be conjectured, the following asymmetric game analogue of Theorem 1 also holds: in
games with three or more players, all inferior strict Nash equilibria (and hence pure S(1)
equilibria) are unstable under the multiple population dynamics. The proof of this claim
follows the same logic as those of Theorems 1 and 4, but requires considerable additional

notation, and is therefore omitted.

7 Conclusions

This paper has explored the dynamic implications of the sampling procedure that underlies
Osborne and Rubinstein’s equilibrium concept for games with procedurally rational play-
ers. Dynamic stability can serve as a criterion for selection among multiple S(1) equilibria.
Furthermore, since there is a correspondence between strict Nash equilibria and pure S(1)
equilibria, this criterion can also be used to address the standard (Nash) equilibrium selec-
tion problem. More significantly, the theory of S(1) equilibria yields predictions that differ
starkly from those based on the standard theory of evolutionary games. This occurs because
the sampling dynamics do not generally satisfy the condition of payoff monotonicity that
underlies most work in evolutionary game theory. Which of the two approaches is more
suitable in particular applications will depend, naturally, on which of the dynamic speci-
fications more accurately describes individual learning and adjustment in the environment

being studied.
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