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Abstract

In this paper we consider the problem of determining approximations for distortion

risk measures of sums of non-independent random variables. First, we give an overview

of the recent actuarial literature on distortion risk measures and convex bounds for

sums of random variables. Then, we examine the case of discrete risks with identical

distribution. Upper and lower bounds for risk measures of sums of risks are presented

in the case of concave distortion functions. The result is then extended to cover the

case of non necessarily discrete risks.
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1 Introduction

Recently in actuarial literature, the study of the impact of dependence among
risks has become a major and flourishing topic: even if in traditional risk theory,
individual risks have been usually assumed to be independent, this assumption is
very convenient for tractability but it is not generally realistic. Think for example
to the aggregate claim amount in which any random variable represents the
individual claim size of an insurer’s risk portfolio. When the risk is represented
by residential dwellings exposed to danger of an earthquake in a given location or
by adjoining buildings in fire insurance, it is unrealistic to state that individual
risks are not correlated, because they are subject to the same claim causing
mechanism. Several notions of dependence were introduced in literature to model
the fact that larger values of one of the component of a multivariate risk tend
to be associated with larger values of the others. It is particularly interesting
to study sums of random variables of which the marginal distribution is known
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but the joint distribution is not specified or too complex to work with; in these
cases it is possible to refer to upper and lower bounds in the sense of convex
order, namely to the riskiest portfolio in which the multivariate distribution
refers to mutually comonotonic risks, and to the safest portfolio in which the
multivariate distribution refers to mutually exclusive risks, respectively. Some
recent papers have investigated the compatibility of risk measures, for example
insurance premium principles, with stochastic orders.

The present contribution is devoted to the analysis of a particular class of
risk measures, namely of distortion risk measures given by Choquet Integrals, as
well as to the definition of explicit formulas for distortion risk measures of upper
and lower bounds of sums of risks, both in case of discrete identically distrib-
uted risks, both in case of identically distributed risks not necessarily discrete.
The framework is that of multivariate risks with the same marginal distribu-
tions. The context is that of distortion risk measures, that is of measures of risks
satisfying additivity for comonotonic risks, positive homogeneity, translation in-
variance, preservation of first order stochastic dominance; in the particular case
of a concave distortion measure, the corresponding distortion risk measure is also
sub-additive. Starting from the representation of risks as sums of layers it is pos-
sible to explicit the distorted risk measure of a risk as a particular sum. In this
way we obtain upper and lower approximations for distortion risk measures of
sums of discrete identically distributed risks, first, and of identically distributed
risks not necessarily discrete, then.

The paper is organized as follows. In Section 2 we first review some basic
settings for describing the problem of measuring a risk and then we remind
some definitions and preliminary results in that field. Section 3 is devoted to
the problem of detecting upper and lower bounds for sums of not mutually
independent risks. Next Section 4 presents the study of the case of a discrete
risk with finitely many mass points in such a way that it is possible to give an
explicit formula for its distortion risk measure. In Section 5 the case of sums
of discrete and identically distributed risks is investigated in order to obtain
upper and lower bounds for concave distortion measures of aggregate claims of
the portfolio. Finally Section 6 is devoted to the problem of setting bounds for
distortion risk measures of sums of identically distributed risks by a limit result.
Some concluding remarks end the paper.

2 Distortion risk measures: properties and preliminary
results

An insurance risk is defined as a non-negative real-valued random variable X
defined on some probability space. We will consider a set Γ of risks with bounded
support on [0, c]. For each risk X ∈ Γ we will denote by HX its tail function,
i.e. HX(x) = Pr[X > x], for all x ≥ 0.

A risk measure is defined as a mapping from the set of random variables,
namely losses or payments, to the set of real numbers. In actuarial science com-
mon risk measures are premium principles; other risk measures are used for
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determining provisions and capital requirements of an insurer in order to avoid
insolvency (see e.g. [4]).

In this paper, we will concentrate on those risk measures associated with the
risks X ∈ Γ which belong to the class of distortion risk measures introduced by
Wang [8]. They can be written as

Wg(X) =
∫ ∞

0

g(HX(x))dx (1)

where the distortion function g is defined as a non-decreasing function g : [0, 1] →
[0, 1] such that g(0) = 0 and g(1) = 1.

The quantile risk measure and the Tail Value-at-Risk belong to this class.
In fact, the quantile risk measure Qp[X] at level p ∈ (0, 1), often called VaR

(Value-at-Risk), corresponds to the distortion function

g(x) = I(x>1−p), 0 ≤ x ≤ 1, (2)

where I(x>1−p) is the indicator function which equals 1 if x > 1 − p and 0
otherwise.

The Tail Value-at-Risk TV aRp[X] at level p ∈ (0, 1) corresponds to another
distortion function, namely to the function

g(x) = min
(

x

1− p
, 1

)
, 0 ≤ x ≤ 1. (3)

If g is a power function, i.e. g(x) = x1/ρ, ρ ≥ 1, the corresponding risk
measure is the PH-transform risk measure proposed by Wang [?].

Let X be a random vector, i.e. X = (X1, X2, . . . , Xn), with Xi ∈ Γ , i =
1, 2, . . . , n.

For any X, not necessarily comonotonic, we will denote by Xc = (Xc
1 , Xc

2 , . . . , Xc
n)

its comonotonic counterpart, i.e. a random vector with the same marginal dis-
tributions and with the comonotonic dependence structure.

Let Sc be the sum of the components of Xc.
The concept of comonotonicity, its characterizations and applications in ac-

tuarial science and finance are examined in [2] and [3].
It can be proved that a random vector is comonotonic if and only if all its

marginal distribution function are non-decreasing (or non-increasing) transfor-
mations of the same random variable (see e.g. [2]).

Any distortion risk measure obeys the following properties (see [8] and [4]).

P1. Additivity for comonotonic risks
For any distortion function g and all random variables Xi,

Wg(Sc) =
n∑

i=1

Wg(Xi). (4)

P2. Positive homogeneity
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For any distortion function g, any random variable X and any non-negative
constant a, we have

Wg(aX) = aWg(X). (5)

P3. Translation invariance
For any distortion function g, any random variable X and any constant b,

we have

Wg(X + b) = Wg(X) + b. (6)

P4. Monotonicity
For any distortion function g and any two random variables X and Y where

X ≤ Y with probability 1, we have

Wg(X) ≤ Wg(Y ). (7)

The following theorem says that stochastic dominance (of first order) can be
characterized in terms of distortion risk measures.

Theorem 1 For any random pair (X, Y ) we have that X is smaller than Y in
stochastic dominance sense if and only if their respective distortion risk measures
are ordered:

X ≤st Y ⇐⇒ Wg(X) ≤ Wg(Y ), for all distortion functions g.

Proof See [4].

An important subclass of distortion functions is represented by the class of
concave distortion functions. A risk measure with a concave distortion function
is called a concave distortion risk measure. Examples of these risk measures are
the TVaR and the PH-transform risk measure, whereas the quantile risk measure
is not a concave risk measure.

As shown in [4], the stop-loss order can be characterized in terms of ordered
concave distortion risk measures.

Theorem 2 For any random pair (X, Y ) we have that X precedes Y in the stop-
loss order sense if and only if their respective concave distortion risk measures
are ordered:

X ≤sl Y ⇐⇒ Wg(X) ≤ Wg(Y ), for all concave distortion functions g.

Proof See [4].
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3 Convex bounds for sums of risks

In financial or actuarial situations one often encounters random variables of the
type

S =
n∑

i=1

Xi

where the terms Xi are not mutually independent and the multivariate distri-
bution function of the random vector X = (X1, X2, . . . , Xn) is not completely
specified because one only knows the marginal distribution functions of the risks
Xi. In such cases, to be able to make decisions, it may be helpful to determine
approximations for the distribution of S.

Recently, in actuarial literature several authors have derived stochastic lower
and upper bounds for sums S. These bounds are in the sense of convex order. As
shown in the following theorem, the least attractive random vector with given
marginal distribution functions has the comonotonic joint distribution. It is also
shown how to obtain a lower bound for S, in the sense of convex order, by using
a conditioning random variable.

Theorem 3 For any random vector X = (X1, X2, . . . , Xn) and any random
variable Λ, we have that

Sl ≤cx S ≤cx Sc, (8)

with Sl given by

Sl =
n∑

i=1

E[Xi | Λ].

Proof See [2] and [6].

Obviously the marginal distributions of the random vector (E[X1 | Λ], E[X2 |
Λ], . . . , E[Xn | Λ]) will not be, in general, the same of the random vector X =
(X1, X2, . . . , Xn). In order to obtain a lower bound which is the sum of n
comonotonic random variables, one can find a conditioning random variable Λ
with the property that all the random variables E[Xi | Λ] are non-decreasing
(or non-increasing) functions of Λ.

If we restrict our study to a Fréchet space consisting of all n-dimensional
random vectors X possessing (HX1 ,HX2 , . . . , HXn) as marginal tail functions,
for which the condition

∑n
i=1 HXi(0) ≤ 1 is fulfilled, we find that the safest

dependence structure is obtained with the Fréchet lower bound and precisely
it corresponds to the mutually exclusive risks of the Fréchet space. We recall
that the risks Xe

1 , Xe
2 , . . . , Xe

n are said to be mutually exclusive when Pr[Xe
i >

0, Xe
j > 0] = 0 for all i 6= j.
Let Se denote the sum of mutually exclusive risks

Xe
1 , Xe

2 , . . . , Xe
n. Its tail function is given by
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HSe(x) =
n∑

i=1

HXi
(x), for all x ≥ 0. (9)

It is proved in [1] that

Se ≤sl

n∑

i=1

Si (10)

holds true for any random vector X with the given marginal distributions.
It is well known that the concept of stop-loss order is closely related to the

notion of convex order: in fact it can be defined as follows (see e.g. [2]).

Definition 1 The random variable X is said to precede the random variable Y
in the convex order sense, notation X ≤cx Y , if and only if X ≤sl Y and in
addition E[X] = E[Y ].

It follows that the statements of Theorem 3 are also true in the stop-loss
order.

We recall that a risk measure W is said to be sub-additive if for any pair of
random variables X and Y , one has

W (X + Y ) ≤ W (X) + W (Y ). (11)

As we have seen, a concave distortion risk measure preserves stop-loss order
(Theorem 2) and satisfies the property P1 of additivity for comonotonic risks.
From Theorem 3 we have:

Wg(S) ≤
n∑

i=1

Wg(Xi) (12)

i.e. a concave risk measure is sub-additive.

4 Discrete risks

As it is well-known, each risk X ∈ Γ can be written as sum of layers (see [5]),
where a layer at (a, b) of X is defined as the loss from an excess-of-loss cover,
namely

L(a, b) =





0 0 ≤ X ≤ a
X − a a < X < b
b− a X ≥ b

(13)

The tail function of the layer L(a, b) is given by

HL(a,b)(x) =
{

HX(a, b) 0 ≤ x < b− a
0 x ≥ b− a.

(14)
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For any positive integer k and any sequence 0 ≡ y0 < y1 < . . . < yk ≡ c, we
can write

X =
k−1∑

j=0

L(yj , yj+1). (15)

The interest in the proposed decomposition of X relies on the fact that the
layers L(yj , yj+1), j = 0, 1, 2, . . . , k−1, are pairwise mutually comonotonic risks.

In the particular case of a discrete risk X ∈ Γ with finitely many mass points
it is possible to deduce an explicit formula of the distortion risk measure Wg(X)
of X. In fact it is possible to set the following result.

Proposition 1 Let X ∈ Γ be a discrete risk. Then for any distortion function
g

Wg(X) =
m−1∑

i=0

(xj+1 − xj) g(pj) (16)

where the finite sequence {pi}, (i = 0, . . . ,m− 1), is defined in such a way that
the tail function of X is

HX(x) =
m−1∑

j=0

pj I(xj≤x<xj+1), x ≥ 0. (17)

I(xj≤x<xj+1) is the indicator function of the set {x : xj ≤ x < xj+1}.
Proof

By hypothesis, X ∈ Γ is a discrete risk with finitely many mass points:
then, there exist a positive integer m, a finite sequence {xj}, (j = 0, · · · ,m),
0 ≡ x0 < x1 < . . . < xm ≡ c and a finite sequence {pj}, (j = 0, · · · ,m − 1),
1 ≥ p0 > p1 > p2 > . . . pm−1 > 0 such that the tail function HX of X is so
defined

HX(x) =
m−1∑

j=0

pj I(xj≤x<xj+1), x ≥ 0, (18)

where I(xj≤x<xj+1) is the indicator function of the set {x : xj ≤ x < xj+1}.
We can use representation (15) for X, i.e.

X =
m−1∑

j=0

L(xj , xj+1). (19)

In this case, the tail function of the layer L(xj , xj+1) is given by

HL(xj ,xj+1)(x) =
{

pj 0 ≤ x < xj+1 − xj

0 x ≥ xj+1 − xj
(20)

and so L(xj , xj+1) is a two-points distributed random variable which satisfies
the following equality in distribution
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L(xj , xj+1)
d= (xj − xj+1) Bpj , (21)

where Bpj denotes a Bernoulli random variable such that

Pr[Bpj = 1] = pj = 1− Pr[Bpj = 0].

Consider a distortion risk measure Wg. From the property of additivity for
comonotonic risks, we have

Wg(X) =
m−1∑

i=0

Wg(L(xj , xj+1)). (22)

Further, the property of positive homogeneity leads to

Wg(X) =
m−1∑

i=0

(xj+1 − xj)Wg(Bpj
) (23)

with

Wg(Bpj ) = g(pj). (24)

and this completes the proof.

5 Distortion risk measures for sums of discrete risks

In this paragraph the components of the random vector X are supposed to
be discrete and identically distributed risks with common tail function given
by (18). In this framework it is possible to refer to Theorem 3 in order to have
upper and lower approximations of distortion risk measures of sums S. More
precisely, it is possible to obtain upper and lower bounds in the case of one
particularly interesting class of distortion risk measures: namely, the class of
concave distortion risk measures. It is possible to state, in fact, that

Theorem 4 Let X be a random vector with discrete and identically distributed
risks Xi ∈ Γ . Let the common tail function of Xi be written as

HXi(x) =
m−1∑

j=0

pj I(xj≤x<xj+1), x ≥ 0 (25)

where m is a positive integer and 1 ≥ p0 > p1 > p2 > . . . pm−1 > 0, 0 ≡ x0 <
x1 < . . . < xm ≡ c. Let n p0 ≤ 1.

Then for any concave distortion function g the following inequality is verified:

m−1∑

j=0

(xj+1 − xj) g(n pj) ≤ Wg(S) ≤ n

m−1∑

j=0

(xj+1 − xj) g(pj). (26)
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Proof
Under these assumptions, the tail function of the sum Se of mutually exclu-

sive risks given by (9) becomes

HSe(x) = n

m−1∑

j=0

pj I(xj≤x<xj+1), for all x ≥ 0, (27)

provided that the condition n p0 ≤ 1 is satisfied. Note that Se can be written as
a sum of layers

Se =
m−1∑

j=0

L̃(xj , xj+1) (28)

where L̃(xj , xj+1) is a two-points distribution with

Pr[L̃(xj , xj+1) = xj+1 − xj ] = n pj = 1− Pr[L̃(xj , xj+1) = 0]

i.e. (see (21)):

L̃(xj , xj+1)
d= Bn pj . (29)

By considering a concave distortion risk measure, we find:

Wg(Se) =
m−1∑

j=0

(xj+1 − xj) g(n pj) (30)

¿From (10) we obtain

Wg(Se) ≤ Wg(S). (31)

In order to apply Theorem 3, we observe that, under these assumptions, the
following equality distribution holds:

Sc d= nX1, (32)

and then

Wg(S) ≤ Wg(nX1). (33)

Hence, for any concave distortion function g, we have:

m−1∑

j=0

(xj+1 − xj) g(n pj) ≤ Wg(S) ≤ n

m−1∑

j=0

(xj+1 − xj) g(pj). (34)
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Note that in the case in which all, except n p0 ≤ 1, the conditions in The-
orem 4 are verified, for any random variable Λ the following inequality may be
stated

n

m−1∑

j=0

(xj+1 − xj)Wg(E[Bpj
| Λ]) ≤ Wg(S) ≤ n

m−1∑

j=0

(xj+1 − xj) g(pj). (35)

In fact owing to the fact that the following equality in distribution is verified

Sl d= n E[X1 | Λ] (36)

according to (19) and (21) we can also write

nE[X1 | Λ] d= n

m−1∑

j=0

E[L(xj , xj+1) | Λ] d= n

m−1∑

j=0

(xj+1 − xj)E[Bpj | Λ]. (37)

From Theorem 3 it follows

n

m−1∑

j=0

(xj+1 − xj)E[Bpj | Λ] ≤cx S ≤cx n

m−1∑

j=0

L(xj , xj+1) (38)

and so it follows (35).

Lower and upper bounds in (26) represent approximations for distortion risk
measures of sums of discrete risks Xi, i = 1, 2, . . . , n, identically distributed. The
reference to them is particularly interesting when dependency structure between
the Xi is unknown or too cumbersome to work with.

For example, if we consider the PH-transform risk measure introduced by
Wang (1995), we obtain:

n1/ρ
m−1∑

j=0

(xj+1 − xj) p
1/ρ
j ≤ Wg(S) ≤ n

m−1∑

j=0

(xj+1 − xj) p
1/ρ
j . (39)

In this case we have:

Wg(Sc) = n1−1/ρ Wg(Se) (40)

This means that, for a portfolio of a given size n, the performance of the
obtained approximations depends on ρ which is called the risk-averse index: the
smaller ρ, the better the performance.
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6 Distortion risk measures for sums of i.d. risks: an
extension result

In the case in which the risk X ∈ Γ is not discrete, it is possible to approximate
its tail function HX by the following piecewise constant tail function:

HX̃m
(x) =

2m−1∑

j=0

HX(
j + 1
2m

c) I( j
2m c≤x< j+1

2m c), x ≥ 0. (41)

Let Wg be a concave distortion function. In [5] it is proved that:

lim
m→∞

Wg(X̃m) = Wg(X) (42)

where Wg(X̃m) is given by:

Wg(X̃m) =
2m−1∑

j=0

c

2m
g(HX(

j + 1
2m

c)). (43)

The previous observations have an appealing interpretations in the case in
which it is assumed that the components of the random vector X are identically
distributed risks with tail function HX .

Theorem 5 Let X be a random vector with identically distributed risks Xi ∈ Γ
with common tail function HX(x). Let nHX(0) ≤ 1.

Then for any concave distortion function g the following inequality is verified:

lim
m→∞

Wg(S̃e
m) ≤ Wg(S) ≤ n ( lim

m→∞
Wg(X̃m)) (44)

where

Wg(S̃e
m) =

2m−1∑

j=0

c

2m
g(nHX(

j + 1
2m

c)) (45)

and

Wg(X̃m) =
2m−1∑

j=0

c

2m
g(HX(

j + 1
2m

c)). (46)

Proof
Assume that the condition nHX(0) ≤ 1 is satisfied. Now we can approximate

the tail function of the sum Se of mutually exclusive risks by the following
piecewise constant tail function:

HS̃e
m

(x) = n

2m−1∑

j=0

HX(
j + 1
2m

c) I( j
2m c≤x< j+1

2m c), x ≥ 0. (47)

By considering a concave distortion risk measure, as in (30), we obtain:
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Wg(S̃e
m) =

2m−1∑

j=0

c

2m
g(nHX(

j + 1
2m

c)). (48)

It can be proven that

lim
m→∞

Wg(S̃e
m) = Wg(Se) (49)

holds true like (42).
In our assumption we also have:

Wg(
n∑

i=1

Xc
i ) = nWg(X1) = n ( lim

m→∞
Wg(X̃m)). (50)

Then, we can write:

lim
m→∞

Wg(S̃e
m) ≤ Wg(S) ≤ n ( lim

m→∞
Wg(X̃m)). (51)

Note that the previous results can be extended to the case of a risk with an
unbounded support. In fact, if the risk X has an unbounded support, for any
c ≥ 0 the risk min(X, c) is bounded and the concave distortion risk measure
satisfies (see [5]):

lim
c→∞

Wg(min(X, c)) = Wg(X) (52)

7 Concluding remarks

In this contribution we considered the problem of deriving distorted risk mea-
sures of upper and lower bounds, in the sense of convex order, for sums of
possibly dependent random variables with known marginal distribution. First,
we assumed that the risks are discrete and identically distributed, then, that
they are identically distributed but not necessarily discrete. Starting from the
representation of risks as sums of layers, we derived explicit formulas for risk
measures of upper and lower bounds of sums of risks, in the particular case of
concave distortion risk measures. In the case of the PH-transform risk measure
introduced by Wang [7], we obtained that the performance of the upper and
lower approximations depends on the risk-averse index.
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