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Abstract

We study how individuals divide themselves into coalitions and choose a

public alternative for each coalition. When preferences have consecutive sup-

port and coalition feasible sets are positively population-responsive, the pro-

posed consecutive benevolence solution generates allocations belonging to the

coalition structure core and that are also Tiebout equilibria. However, when

each coalition follows a single-valued collective decision rule, the coalition struc-

ture core may be empty.

Our results show that if individual preferences are, in a sense, similar and if

members can be as well o¤when a coalition enlarges, then a stable formation of

collective decision-making units can be guaranteed. A predetermined decision

rule makes coalitions less stable.

JEL classi�cation: C62, C71, D71.

1 Introduction

Individuals in a society face many collective decisions; for example, how much tax to

levy, how much to spend on public schools, and whether to build a community center.
�I am grateful to David Austen-Smith, Marcus Berliant, John Nachbar, Diana Richards, Paul

Rothstein, Norman Scho�eld, and the participants at the Public Choice Society Meeting 2000 in

Charleston and the Fall 2000 Midwest Economic Theory and International Economics Meetings at
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Collective decisions are carried out in units. Depending on di¤erent classes of issues

at stake, individuals belong to di¤erent decision-making units, and there are usually

multiple units with respect to one class of issues. Countries, local governments,

universities, unions, and political parties are such units. When national security and

foreign a¤airs are concerned, countries are the units; the United States can have

only one stance on these matters. When policies on abortion, gun control, and the

legalization of marijuana are concerned, states are the corresponding units; each state

has its own policies. When it comes to matters of local area construction, the decision

units are zoning districts.

In most cases, individuals are free to switch to other units or form new units. In-

dividuals want to switch to units that o¤er more preferable alternatives. For example,

people move to other communities for better public schools or amenities. Recurrent

migration also indicates that individuals move into other countries for better lives.

Individuals can also form a new unit that o¤ers a better alternative for all who join.

For example, the former Soviet Union broke down into several republics; West and

East Germany became a united country; East Timor separated itself from Indonesia.

Moreover, countries, as units deciding on international trade issues, form international

organizations, and thus emerged such institutions as the Word Trade Organization

and the Europe Common Market.

In some situations, there is a pre-determined collective decision rule associated

with these decision-making units. For instance, zoning policies are determined by

the vote of residents; a newborn country is expected to adopt democratic rules. In

other situations, a unit makes decisions in a more �exible manner, such as via the

interaction of its members. There is no �xed formal rule to follow and the �nal

decision may not be predicted from the preferences of members. Families, clubs, and

business partnerships are this type of decision-making units.

An important question is, does there exist a stable formation of collective decision-

making units? A formation of units is stable if everyone is satis�ed with the alternative

o¤ered by the unit to which she belongs, so that no individuals want to form or switch

to a new unit. A further question is, is there a solution to attaining stable formations

of units?

The literature of local public �nance addresses the issue of collective decision-

making in multiple units. Tiebout (1956) initiated the approach that models local

economies as competing entities which o¤er tax and expenditure packages to attract

residents. Individuals are free to reside where they wish. Tiebout claims that there is
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an equilibrium and that it is e¢ cient. This concept of �Tiebout equilibrium�has been

criticized by many. For example, Bewley (1981) points out that without very restric-

tive conditions, an equilibrium may not exist or may not be e¢ cient. Other works

provide various conditions under which a Tiebout equilibrium exists in the general

equilibrium framework. In these models, the allocation of private goods is determined

by the market, while various mechanisms are proposed to determine the allocation

of local public goods: via a public competitive equilibrium, which is a pro�le of tax-

expenditure packages provided by governments (Greenberg 1977); by an assignment,

which simply assigns individuals to jurisdictions (Ellickson 1979); by planners, who

maximize local tax revenue or property value (Epple and Zelenitz 1981); or by vote,

which decides an outcome according to aggregated preferences (Westho¤ 1977, Den-

zau and Parks 1983). In many applied studies (Westho¤ 1977, Rose-Ackerman 1979,

Epple, Filimon and Romer 1984, 1993, and Epple and Romer 1990), freely mobile

individuals vote on local tax rates, which a¤ect the prices of private goods including

housing (or land) in local communities. These general equilibrium models assume an

exogenously �xed number of communities, which prohibits individuals from forming

new units. In fact, it causes the �integer problem�in �nite models, where an individ-

ual has to be divided into fractions in equilibria. Many examples of disequilibrium

in Bewley (1981) can be resolved when individuals can form new communities (see

Greenberg and Weber 1986). There is usually a �xed decision rule1 in these models

to make public decisions according to the composition of residents.

The issue of endogenous formation is discussed in the literature of coalition for-

mation games. Many authors develop solution concepts supported by coalition struc-

tures (partitions of players). The  -stability in Luce and Rai¤a (1985) requires that

no new coalition, from a pre-determined list of coalitions, can block. Aumann and

Dréze (1975) apply many solution concepts developed for the grand coalition to coali-

tion structures. The structure equilibrium in Greenberg (1978, 1979) requires that no

player can join another existing coalition and make herself and members of that coali-

tion better o¤. The individual contractual stability in Dréze and Greenberg (1980)

requires that no one can join another existing coalition and make members of the

coalition she leaves better o¤. The C-stable solution in Guesnerie and Oddou (1981)

requires that no new coalition can block. The S-equilibrium in Greenberg and Weber
1A �xed rule is implied even when the decision is made by a community planner who maximizes

residents� utility or tax revenue. Because the objective function of the planner is given, public

decisions can be determined once the composition of residents is known.
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(1986, 1993a) is C-stable and such that no individual wants to join another existing

coalition. (See also the survey in Greenberg 1994.) Note that all these concepts apply

to payo¤ pro�les in coalitional form games, except for the S-equilibrium, which com-
bines the core and Tiebout equilibrium, and applies in a less abstract environment.

Greenberg (1978), Guesnerie and Oddou (1981), and Greenberg and Weber (1986,

1993a) apply tools of coalition formation games to local public economies. They add

a new dimension to the above literature on Tiebout equilibrium. This literature cap-

tures the situation where decision-making units form with more freedom: individuals

can switch among and form units. However, these games focus on payo¤ pro�les, and

economic variables are reduced to utility levels. A drawback is that there may not

be a one-to-one correspondence between payo¤ pro�les and the �economic states�of

individuals.

We employ the model introduced by Greenberg and Weber (1993a), where indi-

viduals form coalitions endogenously to decide on public alternatives. Each individual

joins one and only one coalition. Each coalition has a set of feasible public alterna-

tives, and members choose one from the feasible set. We study the combination of

the following two notions of stability. The coalition structure core is the collection

of allocations that partition the population such that no group wants to form a new

coalition. A Tiebout equilibrium requires that no individual wants to join another

coalition. (It is envy-free, which requires that no one wants to switch places with

another.) We examine conditions that guarantee the existence of a stable formation

of collective decision-making units (coalitions) and develop a solution to attaining

such allocations.

The existence of a stable formation of coalitions is not unconditionally guaran-

teed. (We will see an example in Section 2.) To make sure there is a stable forma-

tion, we need to impose structures on individual preferences and coalition feasible

sets: The preferences have �consecutive support� if, with respect to a linear order,

the set of individuals who strictly prefer an alternative to the other in any pair of

alternatives is consecutive. This assumption is weaker than three other preference re-

strictions commonly used in the literature: intermediate preferences, order restriction,

and single-crossing (detailed in the Appendix). Coalition feasible sets are �positive

population-responsive� if it is always possible to make existing members as well o¤

when new members join the coalition. We propose a solution that generates Core-

Tiebout equilibria when preferences have consecutive support and feasible sets are

positive population-responsive. A Core-Tiebout equilibrium belongs to the coalition
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structure core and is also a Tiebout equilibria. Our result di¤er from Greenberg

and Weber (1993a) and Demange (1994) in that we do not require alternatives to be

one-dimensional; our preference restriction is weaker; we allow coalitions with empty

feasible sets; and we do not require the feasible sets to be monotonic.

Furthermore, we study situations where each coalition follows a collective decision

rule which chooses a set of public alternatives according to members�preferences. If

coalitions follow single-valued decision rules, there may not exist a stable coalition

structure even when preferences and feasible sets are restricted as mentioned above.

We also show that a Core-Tiebout equilibrium can be guaranteed when the decision

rule permits all of the Pareto optimal alternatives in a coalition.

Section 2 introduces the model and discusses the notions of stability. Section

3 de�nes the consecutive benevolence solution. Section 4 shows that the solution

generates stable coalition structures. Section 5 discusses the situation where coalitions

use decision rules. Section 6 concludes.

2 The Model

A society, S = (N;X;R; '), is composed of a set of individuals N , a nonempty set of
alternatives X, a family of preference relations R, and a feasible correspondence '.

Each individual i 2 N has a preference relation Ri over X, which is a weak order.

Let P denote strict preference and I indi¤erence. The family of preference relations

R = fRigi2N on set N is the collection of preference relations of all i 2 N . Let P (:)
denote the set of all nonempty subsets of its argument. Each subset of N , S 2 P (N),
is a coalition of individuals. The feasible correspondence ' : P (N) ! P (X) [ f;g
denotes the feasible set of public alternatives of a coalition. (Coalitions with empty

feasible sets are permitted.) We require that there exists a coalition S 2 P (N)
such that ' (S) 6= ;. Each coalition chooses an alternative from its feasible set.

Each individual belongs to one and only one coalition. The formation of coalitions

generates a partition of N .

A coalition structure C in society S is a partition of N , where C � P (N) and (i)
S \ S 0 = ; for all S; S 0 2 C, S 6= S 0; (ii) [S2CS = N ; (iii) ' (S) 6= ; for all S 2 C.
An allocation in society S is a map a : N ! X which assigns alternative a (i) to

individual i. Allocation a is feasible if there is a pair (C; x) of coalition structure C

and alternative pro�le x = fxSgS2C with xS 2 ' (S) for all S 2 C such that a (i) = xS
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for all i 2 S for all S 2 C.

Given a coalition structure, individuals may want to switch to other coalitions

or form a new coalition. The following two stability concepts are applicable to our

model.

De�nition 2.1. A feasible allocation a in society S is a Tiebout equilibrium if (i)

there is no S 2 C with ! 2 ' (S) such that !PixS for all i 2 S, and (ii) a (i)Ria (j)
for all j 6= i for all i; j 2 N .

In a Tiebout equilibrium, coalitions cannot �nd a better alternative, and there is

no individual who strictly prefers an alternative o¤ered in another coalition. Tiebout

(1956) wrote the following (p. 418):

�The consumer-voter may be viewed as picking that community which

best satis�es his preference pattern for public goods. ... Given these rev-

enue and expenditure patterns, the consumer-voter moves to that com-

munity whose local government best satis�es his set of preferences.�

With �community� replaced by �coalition� and �local government� by �collective

decision�, the above passage describes a situation where a freely mobile individual

chooses an existing coalition that o¤ers one of her most preferred alternatives of all

that are o¤ered. In a Tiebout equilibrium, coalitions cannot exclude members, and an

individual can move to another coalition without considering the e¤ect of her arrival.

That is, a coalition can not reject a new member even if she reduces the welfare of

the existing members. Actually, a newcomer assumes that the that same alternative

will be o¤ered after she joins. However, the arrival of a new member may reduce a

coalition�s feasible set, and consequently make the existing members worse o¤.

De�nition 2.2. A feasible allocation a in society S belongs to the coalition structure
core, if there is no coalition S 2 P (N) that blocks it. A coalition S 2 P (N) blocks
a feasible allocation a if there is an alternative ! 2 ' (S) such that !Pia (i) for all

i 2 S.

It requires that there are no new coalition that can o¤er an alternative strictly

preferred by all of its members to the status quo. Coalition structure core describes
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a situation where new coalitions can exclude members. A coalition forms if it can

a¤ord an alternative preferred by all of its members. There may be more individuals

who want to join the new coalition. But it does not need to accommodate all who

want to join.

Di¤erent concepts of stability apply to di¤erent categories of decision-making units

in the real world. Tiebout equilibrium applies to situations where individual entry

and exit are not restricted but new coalitions are not permitted, such as public school

districts. Residents can move to anywhere they prefer. On the other hand, coalition

structure core applies to situations where new coalitions are permitted and can ex-

clude other people, such as business partnerships. Everyone is supposed to bene�t in

a partnership. A combination of the above two has attracted some research attentions

(see Greenberg and Weber 1993a and Demange 1994).

De�nition 2.3. A Core�Tiebout equilibrium is a Tiebout equilibrium which is also

in the coalition structure core.

The mixing of Tiebout equilibrium and coalition structure core requires a stronger

notion of stability. Not only does no group of individuals want to form a new coalition,

but also no one wants to switch to another coalition. The existence of a stable

coalition structure is not unconditionally guaranteed. Example 2.1 shows a society

with an empty coalition structure core. It is adapted from the famous Condorcet�s

Voting Paradox.

Example 2.1. Consider the society S =(N;X;R; ') where N = f1; 2; 3g, X =

fx; y; zg, ' (f1g) = fzg, ' (f2g) = fxg, ' (f3g) = fyg, and ' (S) = X if jSj � 2.

The preferences are the following.

xP1yP1z

yP2zP2x

zP3xP3y:

First, we check the coalition structure composed of three one-person coalitions.

Allocation (ff1g ; f2g ; f3gg ; fz; x; yg) is blocked by f1; 2g with y. Second, if the

grand coalition f1; 2; 3g choose x, y, or z, it will be blocked by f2; 3g with z, f1; 3g
with x, or f1; 2g with y, respectively. Third, allocations (ff1; 2g ; f3gg ; fx; yg),
(ff1; 2g ; f3gg ; fy; yg), and (ff1; 2g ; f3gg ; fz; yg) are blocked by f2; 3g with z, f1; 3g
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with x, f1; 3g with x, respectively. Thus, by the symmetry, all allocations with coali-
tion structures ff1g ; f2; 3gg or ff1; 3g ; f2gg are blocked also. Hence, the coalition
structure core is empty in this society.

In the above example, a stable coalition structure does not exist because the pref-

erences contain a cycle. Individuals, with diverse preferences, tend to form multiple

coalitions, since the grand coalition may not be able to o¤er an alternative appealing

to all. But preferences cannot be too diverse: unrestricted preferences undermine

the stability of coalitions. In later sections, we impose structures on preferences and

feasible sets. The domain of the problem, hence, is reduced to a class of �reasonable�

societies.

3 The Consecutive Benevolence Solution

In this section, we present the consecutive benevolence solution. It is an algorithm

which selects allocations for a society. It is de�ned with respect to a linear order2 on

N . This solution is de�ned for societies satisfying the following assumptions:

C. (Compact, continuous, closed, and �nite) X is compact in a metric space, Ri is

continuous in X, ' is closed-valued, and N is a �nite set3.

PPR. (Positive Population-Responsive) For all S; S 0 2 P (N) with S � S 0, for all

y 2 ' (S), there is an x 2 ' (S 0) such that xRiy for all i 2 S 0.

Positive population-responsiveness requires that it is always possible to make ex-

isting members as well o¤ when new members join a coalition. This condition is

satis�ed when the feasible correspondence ' is monotonic (that is, ' (S) � ' (S 0)

for all S; S 0 2 P (N) with S � S 0). This is common in many economic situations.

For example, when there is no congestion, the feasible sets of local economies are

2A binary relation > is a linear order on a set T if for every two distinct elements t; t0 2 T , either
t > t0 or t < t0. Since it will not cause confusion between the linear order > with the binary relation

�larger than�of the real numbers, the same symbol is adopted for both, and t is said to be larger

than t0 if t > t0. Note that for t 2 T and A 2 P (T ), t > A means that t > t0 for all t0 2 A; and
for two sets A;B 2 P (T ), A > B means that t > t0 for all t 2 A and t0 2 B. Moreover, a coalition
S 2 P (N) is consecutive with respect to linear order > on N if for all i 2 NnS, either i > S or

i < S.
3Assumption C can be replaced with that 
 and N are both �nite. All results still hold.
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monotonic; the more residents, the less tax one must pay for a unit of public good.

We introduce an algorithm, called the consecutive benevolence solution. Suppose

individuals are arranged according to a linear order >. They are labeled with integers

1 to n and 1 < 2 < ::: < n. A consecutive set Nk, which is composed of individuals 1

to k is called a subsociety. We construct, recursively, an allocation for each subsociety

with a nonempty feasible set, starting at the smallest one. In each Nk the largest

individual, k, is the �benevolent dictator�who gets one of her most preferred alterna-

tives from the alternatives from those that (i) are feasible to a consecutive coalition

containing herself, and (ii) make all other members of that coalition at least as well

o¤ as when they are dictators themselves. Let S be the largest consecutive coalition

containing the dictator that a¤ords one of her most preferred alternatives ! such that

(i) and (ii) are satis�ed. Next, form coalition S if some of the remaining individuals

(that is NknS) can form a coalition with a nonempty feasible set; otherwise, form

the coalition containing the whole subsociety (that is Nk). Alternative ! is assigned

to this coalition containing the dictator. If there are individuals left, let the largest

member among them be a benevolent dictator for the remaining individuals. Then,

form a coalition containing the dictator and assign an alternative in the same way

described above. Keep going if there are individuals left. When there are no individ-

uals left, an allocation of subsociety Nk is determined. The constructed allocation is

a �benevolent dictator allocation�for the subsociety. Then, we proceed to construct

an allocation for Nk+1. Construct a benevolent dictator allocation for each subsoci-

ety in an increasing order up to the N . This determines a �nal allocation for the

whole society. The consecutive benevolence solution is the collection of all potential

benevolent dictator allocations for the whole society. This is de�ned formally in the

following.

For a society S satisfying C and PPR, the consecutive benevolence solution with
respect to >, D> (S), is the collection of allocations constructed from the following

algorithm:

Algorithm. Label individuals with integers 1 to n according to linear order >.

Namely, N = f1; 2; :::; ng and 1 < 2 < ::: < n. Let Nk = f1; :::; kg, where k 2 N ,

denote the consecutive coalition containing individual 1 with k as the largest member.

Take k = min k s.t. ' (Nk) 6= ;. Nk is the minimum consecutive coalition containing

individual 1 that has a nonempty feasible set. Note that there exists S 2 P (N) such
that ' (S) 6= ;. Thus, ' (N) 6= ; by PPR and k exists. Let Sjk =

�
Nk; X;RNk ; 'Nk

�
where RNk = fRigi2Nk and ' : P (Nk) ! P (X) such that 'Nk (S) = ' (S) for all
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S 2 P (Nk). Sjk is the subsociety which contains individuals 1 to k. We will construct
an allocation ajk for each Sjk.
First, let !i denote the least preferred alternative of i in X; i.e., !

0Ri!i for all

!0 2 X. Since X is compact and Ri continuous, !i exists
4. Let ajj (i) = !i for all

i � j < k. We assign their worst alternative to all individual i in Sjj when the whole
subsociety cannot a¤ord anything (i.e., Nj has an empty feasible set).

Step 1. We start at Sjk. Note that ' (Nk) 6= ;. Moreover, when C is satis�ed,
' (Nk) � X is compact. Let ! (k) be one of individual k�s most preferred alternatives

in ' (Nk), i.e.,

! (k) 2 f! j !Rk!0;8!0 2 ' (Nk)g :

The existence of a maximizer ! (k) is guaranteed by that Rk is continuous and ' (Nk)

is compact.

Form coalition C (k) = Nk and assign it alternative ! (k). Thus, ajk (i) = ! (k)

for all i 2 Nk. Note that ! (k) 2 ' (Nk) and ! (k)Riaji (i) for all i 2 Nkn fkg. For
the remaining subsocieties, allocations are constructed recursively.

Step 2. Suppose ajj is constructed for Sjj for all j � k�1. We construct allocation
ajk for Sjk. Let C (k � 1) denote the coalition containing k�1 in allocation ajk�1 and
! (k � 1) the alternative assigned to C (k � 1). (Thus ajk�1 (i) = ! (k � 1) for all i 2
C (k � 1).) Also, suppose that ! (k � 1) 2 ' (C (k � 1)) and ! (k � 1)Riaji (i) for all
i 2 C (k � 1) n fk � 1g. Let ~S (k) denote the set of all consecutive subsets of Nk
containing k, i.e., ~S (k) = fS 2 P (Nk) j k 2 S and S is consecutiveg. Let

B (k) =
n
(S; !) 2 P (N)�X j S 2 ~S (k) and ! 2 ' (S) s.t. !Riaji (i) 8i 2 Sn fkg

o
:

B (k) is the set of all coalition-alternative pairs such that (i) the coalition is con-

secutive and contains k, (ii) the alternative is feasible to the coalition, and (iii) the

alternative makes all other members i as well o¤ as in allocations aji (i.e., when i is
the dictator).

Lemma 3.1. B (k) 6= ;.

Proof. Apparently, ! (k � 1) 2 ' (C (k � 1)). By PPR, there exists x 2
' (C (k � 1) [ fkg) such that xRi! (k � 1) for all i 2 C (k � 1). Since ! (k � 1)Riaji (i)

4Each Ri can be represented by a continuous utility function. The existence of a maximizer

and a minimizer of a continuous function in a compact domain is guaranteed by the Weierstrauss

Theorem.
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for all i 2 C (k � 1) n fk � 1g and ! (k � 1) = ajk�1 (k � 1), xRi! (k � 1)Riaji (i) for
all i 2 C (k � 1). Therefore, (C (k � 1) [ fkg ; x) 2 B (k).

Let W (k) � B (k) be the set of coalition-alternative pairs consisting of individual

k�s most preferred alternatives in B (k), i.e.,

W (k) 2 f(S; !) 2 B (k) j !Rk!0; 8 (S 0; !0) 2 B (k)g :

Lemma 3.2. W (k) 6= ;.

Proof. Let G (k) = f! 2 X j 9S s.t. (S; !) 2 B (k)g. W (k) 6= ; if there is a max-
imum element in G (k) according to Rk. We show that G (k) is compact. G (k) � X

is bounded since X is bounded. Let Ri (!) denote the upper contour set of Ri at !;

i.e., Ri (!) = fx 2 X j xRi!g. Note that

G (k) = [S2 ~S(k)
�
\i2SnfkgRi (aji (i)) \ ' (S)

�
:

C assures that Ri (:) and ' (:) are closed, and S and ~S (:) are �nite sets. Thus G (k)

is closed.

Since Rk is continuous, it can be represented by a continuous utility function. It

has a maximizer in compact set G (k).

Let jSj denote the cardinality of coalition S. Let (C (k) ; ! (k)) denote one of

the coalition-alternative pairs in W (k) with the largest coalition (note that C (k) is

unique); i.e.,

(C (k) ; ! (k)) 2 f(S; !) 2 W (k) j jSj > jS 0j for all (S 0; !0) 2 W (k)g :

Let l (k) denote the largest member outside C (k) in Nk; i.e., l (k) � j for all j 2
NknC (k). (Note that the function l (:) is strictly decreasing in N with respect to >.)

Form coalition C (k) and assign it ! (k). Note that either C (k) � Nk or l (k) � k.

To see this, suppose l (k) < k. Since ! (k) 2 ' (C (k)), by PPR, there is x 2
' (C (k) [Nk) such that xRi! (k) for all i 2 C (k). Moreover, ! (k)Riaji (i) for
all i < l (k) < k (note that aji (i) are their worst alternatives). So, (C (k) [Nk; x) 2
W (k) and jC (k) [Nkj > jC (k)j; a contradiction.
Allocation ajk is constructed as the following:
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ajk (i) = ! (k) for all i 2 C (k) ;
ajk (j) = ajl(k) (j) for all j 2 NknC (k) :

ajk is a benevolent dictator allocation for Sjk.
Step 3. Construct allocation ajk for each Sjk for all k � k � n. Hence, the sequence

of coalitions C (k) ; C (k + 1) ; :::; C (n� 1) ; C (n) are de�ned. Let

lr (:) = l (l (::: (l (:))))| {z }
r times

denote the composition of l (:) for r repetitions. (Note that l0 (k) = k.)

Since l (k) is decreasing, N is �nite, and either C (l (k)) � Nk or l (k) � k for all

k, there exists an integer p � n�k such that 1 2 C (lp (n)). A collection of coalitions
is constructed as the following:

C =
�
C (n) ; C (l (n)) ; C

�
l2 (n)

�
; :::; C (lp (n))

	
:

C is a partition of N . Furthermore, ! (lr (n)) 2 ' (C (lr (n))); thus, ' (C (lr (n))) 6= ;
for all 0 � r � p� 1. So, C is a coalition structure in society S.
Let a = ajn, where ajlr(n) (i) = ! (lr (n)) for all i 2 C (lr (n)) for all integer r,

0 � r � p. Alternative ! (lr (n)) is assigned to coalition C (lr (n)) That is,

a (i) = ajn (i) for all i 2 C (n) ;
a (i) = ajl(n) (i) for all i 2 C (l (n)) ;

::::::::

a (i) = ajlp(n) (i) for all i 2 C (lp (n)) :

All alternatives are feasible to the assigned coalition since ! (lr (n)) 2 ' (C (lr (n))) for
all 0 � r � p. Therefore, a is a feasible allocation in S. Allocation a is a benevolent
dictator allocation for society S.

We can see in the above construction that D> (S) is well-de�ned.

Proposition 3.1. For any society S satisfying C and PPR, D> (S) 6= ;.

The following example illustrates how this solution works.

12



Example 3.1. Consider society S =(N;X;R; ') whereN = f1; 2; 3g,X = fx; y; zg,
' (f1g) = fxg, ' (f2g) = ;, ' (f3g) = fyg, ' (f1; 2g) = fx; zg, ' (f2; 3g) = fx; yg,
' (f1; 3g) = fx; yg, and ' (N) = X. The preferences are the following:

xP1yP1z

yP2xP2z

zP3yP3x:

Order individuals according to their labels; that is 1 < 2 < 3. We start at the

subsociety composed of f1g and assign allocation (ff1gg ; fxg), since x is individual
1�s most preferred feasible alternative. This is the dictator allocation for individual

1. Next, for the subsociety composed of f1; 2g, individual 2 can form coalition f1; 2g
(she cannot stay alone) and we assign allocation (ff1; 2gg ; fxg). This is the dictator
allocation for individual 2. Finally, for the whole society, individual 3 can stay alone

with y, form f2; 3g with x or y, or form f1; 2; 3g with x. Note that she cannot

choose y; z in f1; 2; 3g since individual 1 should not enjoy an alternative worse than
x. Since alternative y is the most preferred by 3 among x; y and f2; 3g is larger
than f3g, we assign y to f2; 3g and individual 1 forms a one-person coalition. The
resulting allocation (ff1g ; f2; 3gg ; fx; yg) is the consecutive benevolence solution for
this society.

The dictator is benevolent because she guarantees members of her coalition to be

as well o¤ as when they are dictators themselves in the subsocieties. By the recursive

nature of the solution, this argument extends to the whole society. This solution has

an interesting equity property: each individual enjoys a �minimum welfare level�.

Any allocation guarantees each individual a minimum welfare level, which is what

she enjoys in a benevolent dictator allocation when she is a dictator.

Proposition 3.2. For all society S, for all a 2 D> (S), a (i)Riaji (i) for all i 2 N .

Proof. Every individual in N belongs to a coalition in C since C is a partition of N .

Suppose individual i 2 C (lr (n)) for some r � p where p = jCj. By the construction
of a, ajk (j) = ajl(k) (j) for all j 2 NknC (k) for all k. Hence, ajlt(n) (j) = ajlt+1(n) (j) for
all j 2 Nlt(n)nC (lt (n)) for all t. Moreover, i 2 C (lr (n)) means i 2 Nlt(n)nC (lt (n))
for all t < r. Therefore,

ajn (i) = ajl(n) (i) = ajl2(n) (i) = ::: = ajlr(n) (i) :

13



By the construction of ajlr(n), ajlr(n) (i) = ! (lr (n))Riaji (i) because i 2 C (lr (n)).
Therefore, a (i) = ajlr(n) (i)Riaji (i).

4 Stable Coalition Formation

We de�ne consecutive support and show that the proposed solution generates Core-

Tiebout equilibria when preferences have consecutive support and feasible sets are

positive population-responsive.

CS. (consecutive support) The family of preference relations R has consecutive sup-

port on N if there is a linear order > on N such that for any pair x; y 2 X, the set
fi 2 N j xPiyg is consecutive with respect to >.

Consecutive support requires that the set of individuals who strictly prefer an

alternative to the other in any pair of alternatives is consecutive with respect to

a linear order. It is strictly weaker than the following three preference restrictions:

intermediate preferences, order restriction, and single-crossing (see the Appendix). It

is satis�ed by many economic models: for example, those in Westho¤ (1977), Roberts

(1977), Epple, Filimon and Romer (1984), and Epple and Romer (1990). In models

with public goods where the individual�s marginal rate of substitution between the

private and the public good is monotonic with respect to a characteristic (such as

income), preferences have consecutive support.

One of the reasons for individuals to form a coalition is that a coalition can o¤er

better alternatives. For example, a homeowner may not be able to a¤ord a tennis

court nearby the house, but a community can provide a gym; a local community can-

not a¤ord to build a baseball stadium while a city can. With the freedom to exit, an

individual who remains in the coalition actually prefers the o¤ered alternative to what

she can a¤ord on her own. Therefore, �better alternatives with more members�makes

coalitions more stable. Consecutive support and positive population-responsiveness

guarantee a Core-Tiebout equilibrium.

Proposition 4.1. For every society S = (N;X;R; ') satisfying C, PPR and CS,
if a 2 D> (S) where > is the linear order that su¢ ces CS, a is a Core-Tiebout
equilibrium.

14



Proof. Suppose a 2 D> (S) is constructed with corresponding C (:), ! (:), B (i),
W (i), and aji for all i 2 N . The proof consists of the following three lemmas.

Lemma 4.1. For any two adjacent coalitions C (m) and C (l) in allocation a with

m < l,
! (m)Ri! (l) for all i � m,

! (l)Ri! (m) for all i > m.

Proof. Let � = ! (m) and � = ! (l). First, suppose �Rm� = ajm (m). There
exists x 2 ' (C (l) [ fmg) such that xRi� for all i 2 C (l) [ fmg by PPR. Thus,
xRm�Rmajm (m) and xRi! (l)Riaji (i) for all i 2 C (l). Therefore, (C (l) [ fmg ; x) 2
W (l) and jC (l) [ fmgj > jC (l)j; a contradiction. It must be that �Pm�. Second,
�Rm+1ajm+1 (m+ 1) by construction. Since � 2 ' (C (m)) and �Riaji (i) for all i 2
C (m), by PPR, there is x0 2 ' (C (m) [ fm+ 1g) such that x0Ri�Riaji (i) for all i 2
C (m). So, (C (m) [ fm+ 1g ; x0) 2 B (m+ 1). Hence, ajm+1 (m+ 1)Rm+1x0Rm+1�
by construction. So, �Rm+1�. Third, suppose �Ii� for all i 2 C (l), then �Ii�Riaji (i)
for all i 2 C (l) n flg. Also, �Rjajj (j) for all j 2 C (m) by construction. More-

over, there exists x00 2 ' (C (m) [ C (l)) such that x00Ri� for all i 2 C (l). So,

(C (m) [ C (l) ; x00) 2 W (l) and jC (m) [ C (l)j > jC (l)j; a contradiction. Therefore,
there exists i 2 C (l) such that �Pi�.
From the above results, we can see that if there is i > m such that �Pi�, or i � m

such that �Pi�, then CS is violated. Therefore, �Ri� for all i > m and �Ri� for all

i � m.

Lemma 4.2. For all i; j 2 N , a (i)Ria (j).

Proof. Take any i; j 2 N . Without loss of generality, suppose i < j and i 2 C (m),
j 2 C (l). If C (m) = C (l), then a (i) = a (j). If not, suppose the following are

adjacent coalitions C (m) ; C (n1) ; :::; C (nh) ; C (l). By Lemma 4.1, i � m implies

! (m)Ri! (n1); i < n1 implies ! (n1)Ri! (n2);...; i < nh implies ! (nh)Ri! (l). So,

a (i) = ! (m)Ri! (l) = a (j). Similarly, by Lemma 4.1, j > nh implies ! (l)Rj! (nh);

j > nh�1 implies ! (nh)Rj! (nh�1);...; j > m implies ! (n1)Rj! (m). So, a (j) =

! (l)Rj! (m) = a (i).

Lemma 4.3. There exists no S 2 P (N) that blocks a.
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Proof. (i) First, we show that there is no consecutive coalition that blocks a. Sup-

pose coalition T is consecutive and blocks a with !. Note that, by Lemma 3.3,

a (i)Riaji (i), so !Pia (i)Riaji (i) for all i 2 T . Suppose l is the largest member in T ,
then (T; !) 2 B (l). !Plajl (l) implies that (C (l) ; ajl (l)) =2 W (l); a contradiction.

(ii) Second, we show that if there is a blocking coalition, then there is a consecutive

blocking coalition. Suppose S blocks a with ! 2 ' (S). Suppose the smallest member
of S is m and the largest is m. Take T = fi 2 N j m � i � mg; T � S and T is

consecutive. If T = S, then S is a consecutive coalition that blocks a. If T 6= S,

then m < i < m for all i 2 TnS. Since S blocks a, !Pja (j) for all j 2 S. Moreover,
by Lemma 4.2, a (m)Rma (i) and a (m)Rma (i) for all i 2 TnS. So, !Pma (i) and
!Pma (i). This implies, by CS, !Pia (i) for all i 2 TnS. Hence, !Pia (i) for all i 2 T .
By PPR, there exists x 2 ' (T ) such that xRi! for all i 2 T since ! 2 ' (S). This

means that T blocks a with x.

We have shown that, by Lemma 4.3, a is in the coalition structure core. Moreover,

by Lemma 4.2 and the fact that �no coalition can block� implies �each coalition

chooses a weakly Pareto optimal alternative� (condition ii in De�nition 2.1), a is a

Tiebout equilibrium. Thus, a 2 D> (S) is a Core-Tiebout equilibrium.

Theorem 4.1. Every society S = (N;X;R; ') that satis�es C, PPR and CS has a
Core-Tiebout equilibrium.

Proof. Take linear order > that su¢ ces CS. Since S satis�es C and PPR, D> (S) 6=
; by Proposition 3.1. Thus any allocation a 2 D> (S) is a Core-Tiebout equilibrium
by Proposition 4.1.

The following examples illustrate that the conditions in our result are necessary.

First, Example 2.1 shows a society with an empty coalition structure core. It satis-

�es PPR but not CS. Second, Example 4.1 shows that without PPR, the coalition
structure core may be empty. Third, Example 4.2 shows that a stronger notion of

stability, �strong coalition structure core5� cannot be guaranteed even with CS and

5A feasible allocation a in society S belongs to the strong coalition structure core if there is

no coalition S 2 P (N) and alternative ! 2 � (S) such that !Ria (i) for all i 2 S and !Pja (j)
for some j 2 S. There is no inclusion relationship between the Core-Tiebout equilibrium and the

strong coalition structure core in general. However, when feasible sets are monotonic, the set of

Core-Tiebout equilibria contains the strong coalition structure core.
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monotonic feasible sets.

Example 4.1. Consider the society S = (N;X;R; ') where N = f1; 2; 3g, X =

fx; y; zg, ' (f1g) = fzg, ' (f2g) = fyg, ' (f3g) = fxg, ' (f1; 2g) = fxg, ' (f2; 3g) =
fag, ' (f1; 3g) = fyg, and ' (N) = fyg. The preferences are the following:

xP1aP1yP1z

aP2xI2zP2y

zP3yP3aP3x:

Note that CS is satis�ed with respect to the order of individuals�labels. However,

PPR is violated since x 2 ' (f1; 2g), xP1y, and y is the only alternative in ' (f1; 2; 3g).
Allocations (ff1g ; f2g ; f3gg ; fz; y; xg) and (ff1; 2; 3gg ; fyg) are blocked by f1; 2g
with x. Allocation (ff1; 2g ; f3gg ; fx; xg) is blocked by f2; 3g with a. Allocation

(ff1g ; f2; 3gg ; fz; ag) is blocked by f1; 3g with y. Allocation (ff1; 3g ; f2gg ; fy; yg)
is blocked by f1; 2g with x. Therefore, the coalition structure core is empty.

Example 4.2. Consider the society S =(N;X;R; ') where N = f1; 2; 3g, X =

fx; y; zg, ' (S) = X if jSj � 2, ' (f1g) = fzg, ' (f2g) = fyg, and ' (f3g) = fxg.
The preferences are the following:

xP1yP1z

xI2zP2y

zP3yP3x:

Apparently, CS is satis�ed with respect to the order of their labels and feasible sets

are monotonic. Note that the coalition structure core contains allocations a (f1g) =
a (f2g) = a (f3g) = x with coalition structure ff1; 2; 3gg or ff1; 2g ; f3gg, and
a0 (f1g) = a0 (f2g) = a0 (f3g) = z with coalition structure ff1; 2; 3gg or ff1g ; f2; 3gg.
However, allocation a is not in the strong coalition structure core since zR2x, zP3x,

and z 2 ' (f2; 3g); and allocation a0 is not in the strong coalition structure core since
xP1z, xR2z, and x 2 ' (f1; 2g). Therefore, the strong coalition structure core is
empty.

Two related existence theorems are in Greenberg and Weber (1993a) and De-

mange (1994). Demange (1994) provides the existence of a Core-Tiebout equilibrium

with intermediate preferences on a tree6. Greenberg and Weber (1993a) provide the

6A tree is a graph with no loop and a graph is a collection of paths linking elements of a set.
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existence of a Core-Tiebout equilibrium with single-peaked preferences in the same

setting as ours. Single-peakedness requires that each individual has an �ideal point�,

which is strictly preferred to any other alternatives, and the closer an alternative is

to the ideal point, the more preferred it is. It is used in a wide range of studies. How-

ever, single-peakedness is not satis�ed in many economic models (see Stiglitz 1974

and Roberts 1977). On the other hand, consecutive support can be assumed in a

broad range of models, especially in public good economies.

Our result shows that if individual preferences are, in a sense, similar and if

members can be kept as well o¤ when a coalition enlarges, then there is a stable

formation of collective decision-making units. Our results di¤er from others in the

following ways. First, Greenberg and Weber (1993a) assumes a one-dimensional set

of alternatives. We impose no restriction on the dimension of alternatives. Second,

our preference restriction is weaker than that used in Demange (1994). Third, both

studies assume that every potential coalition has a nonempty feasible set. Our results

apply to more general situations where coalitions can have empty feasible sets. Fourth,

we relax monotonicity, assumed in both, to positive population-responsiveness.

5 Coalition Formation with a Collective Decision

Rule

In this section, we study the case where a coalition decides its public alternative

according to a pre-determined collective decision rule which selects an alternative

from the feasible set according to the preferences of members.

For coalition S, a collective decision rule f : P (R)�P (X)! P (X) selects a subset of
alternatives f (RS; ' (S)) from its feasible set ' (S) according to preference relations

RS.

The coalition formation problem with a collective decision rule is a society

Sf = (N;X;R; '; f). The rule selects a set f (RS; ' (S)) � ' (S) for coalition S.

Let f̂ (S) = f (RS; ' (S)) be the induced feasible set of coalition S, then de�nitions

for S can be modi�ed for Sf with f̂ (:) replacing ' (:); for example, a is a feasible
allocation in society Sf if there is a pair (C; x) of coalition structure C and alternative
pro�le x = fxSgS2C with xS 2 f̂ (S) for all S 2 C such that a (i) = xS for all i 2 S
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for all S 2 C.
To compare the cases with a collective decision rule with those without, suppose

each coalition has a �coalition planner� (as a city planner to a city) in charge of

selecting the public alternative to attract members and sustain stability. First, when

a decision rule is not present, a planner has the freedom to select any alternatives

from the feasible set of a coalition. She can o¤er members the most attractive feasi-

ble alternative against alternatives o¤ered elsewhere. On the other hand, when the

decision rule is present, the power of the planner is reduced to a subset of feasible

alternatives. The freedom of a planner helps to stabilize a coalition. Second, without

a decision rule, other coalitions have more freedom to attract members away as well.

The planner of a new coalition can choose the most damaging alternative that un-

dermines the stability of existing coalitions. Therefore, coalitions without a collective

decision rule are more competitive than those with one. This translates into a prob-

lem of stability: a decision rule undermines the stability of coalitions. Example 5.1

shows that when the decision rule is single-valued, the coalition structure core may be

empty in a society satisfying C and CS and with monotonic feasible sets. The reason

is that, in contrast to Theorem 4.1, PPR is not satis�ed by the induced feasible sets.

Example 5.1. Consider the society S = (N;X;R; ') where N = f1; 2; 3g, X =

fx; y; zg, ' (S) = X for all S 2 P (N), f̂ (f1g) = fzg, f̂ (f2g) = fyg, f̂ (f3g) =
fxg, f̂ (f1; 2g) = fxg, f̂ (f2; 3g) = fag, f̂ (f1; 3g) = fyg, and f̂ (N) = fyg. The
preferences are the following:

xP1aP1yP1z

aP2xI2zP2y

zP3yP3aP3x:

Allocations (ff1g ; f2g ; f3gg ; fz; y; xg) and (f1; 2; 3g ; fy; y; yg) are blocked by
f1; 2g with x. Allocation (ff1; 2g ; f3gg ; fx; x; xg) is blocked by f2; 3g with a. Alloca-
tion (ff1g ; f2; 3gg ; fz; a; ag) is blocked by f1; 3g with y. Allocation (ff1; 3g ; f2gg ; fy; y; yg)
is blocked by f1; 2g with x. Therefore, the coalition structure core is empty.

Hence we have reached the following result.

Proposition 5.1. If the decision rule is single-valued, a society may have an empty

coalition structure core, even when C, CS and monotonicity are satis�ed.
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If the induced feasible correspondence f̂ satis�es PPR, Theorem 4.1 applies here

and Sf has a Core-Tiebout equilibrium given it satis�es C and CS also. Let the

Pareto set of coalition S be

P (S) = f! 2 ' (S) j /9!0 2 ' (S) s.t. !0Ri! 8i 2 S, !0Pj! 9j 2 Sg ,

When the feasible sets are monotonic, if f permits the Pareto set, then f̂ is PPR.

Consequently, there is a Core-Tiebout equilibrium under f .

Theorem 5.1. If society Sf = (N;X;R; '; f) satis�es C and CS, ' is monotonic,
and f (RS; ' (S)) � P (S), then there is a Core-Tiebout equilibrium.

Proof. Let f̂ (S) = f (RS; ' (S)); de�ne bS = �N;X;R; f̂�. If bS satis�es C, CS and
PPR, it has a Core-Tiebout equilibrium (Theorem 4.1) which is also a Core-Tiebout

equilibrium in Sf . Evidently, bS satis�es C and CS. We show that PPR is satis�ed.
Suppose S; S 0 2 P (N) with S � S 0, and y 2 f̂ (S) � ' (S). By monotonicity,

y 2 ' (S 0). We show that there is an alternative ! 2 f̂ (S 0) such that !Riy for all

i 2 S 0.
Note that since Ri is continuous and X is compact, the upper contour set Ri (!)

of Ri at ! is compact for all ! 2 X for all i 2 N . Also, there is a continuous

utility function ui that represents Ri for all i 2 N . Moreover, take function h (!) =P
i2N ui (!) : X ! R1; it is continuous. De�ne I (y) = \i2S0Ri (y) \ ' (S 0); it is the

intersection of the feasible set of S 0 and all members�upper contour sets at y. This

set is compact. So, h has a maximum in I (y). Let �! = argmax!2I(y) h (!). There

is no other alternative x 2 ' (S 0) that Pareto dominates �!. Suppose there is; xRi�!

for all i 2 S 0 and xPi�! for some j 2 S 0. Thus, h (x) > h (�!). Also, xRi�!Riy means

x 2 I (y); a contradiction. So, �! 2 P (S 0) � f̂ (S 0). Since �!Riy for all i 2 S 0; PPR is
satis�ed.

The function of a decision rule is to narrow down the alternatives of a coalition to

a permissible subset. Unfortunately, if it is too selective (the selected subset is small

compared with the feasible set), our approach to the stability of coalitions cannot

apply. There may not exist a stable coalition structure if the rule is single-valued.

Theorem 5.1 shows that if the rule permits the Pareto set, stability exists. However,

since many decision rules are actually selections from the Pareto set, our result cannot

apply. Whether there are conditions guaranteeing stable coalition structures for other

decision rules in general is still an open question.
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6 Conclusion

We propose the consecutive benevolence solution for coalition formation with pub-

lic alternatives. It selects Core-Tiebout equilibria when preferences have consecutive

support and feasible sets are positive population-responsive. We also study the situa-

tion where coalitions follow a collective decision rule to make decisions. We show that

if the decision rule is single-valued, there may not exist a stable coalition structure

even when preferences and feasible sets are restricted. Yet, a Core-Tiebout equilib-

rium exists when the decision rule permits the Pareto set, given consecutive supporte

and monotonic feasible sets.

Our study shows that two things are instrumental to the existence a stable for-

mation of collective decision-making units: (i) individual preferences are similar, and

(ii) members can be kept as well o¤when a coalition enlarges. One surprising �nding

is that a pre-imposed decision rule can destabilize the society.

Appendix: Preference Restrictions

This section discusses the relationships among four preference restrictions: interme-

diate preferences, order restriction, single-crossing, and consecutive support. They

all concern a linear order on the set of individuals. Intermediate preferences7 is pro-

posed by Grandmont (1978), and order restriction by Rothstein (1990, 1991), for the

transitivity of the majority rule (see also ch. 4 in Austen-Smith and Banks 1999).

Single-crossing appears many times in the literature (a general version is formulated

by Milgrom and Shannon 1994). It also implies the transitivity of the majority rule

(see Gans and Smart 1996).

The family of preference relations R are intermediate preferences on N if there is a

linear order > on N such that for any pair x; y 2 X for all i; j; k 2 N with i < j < k,

(i) xRiy and xRky implies xRjy, and (ii) xPiy and xPky implies xPjy.

It requires one to agree with two agreeing individuals if they are on the opposite

sides.

The family of preference relations R satis�es order restriction on N if there is a linear

order > on N such that for any pair x; y 2 X, either
7This notion, weaker than the one used in Grandmont (1978), coicides with the �betweeness�of

perferences in Kemeny and Snell (1972), p. 10; and is adopted in Demange (1994).
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(i) fi 2 N j xPiyg > fi 2 N j xIiyg > fi 2 N j yPixg, or
(ii) fi 2 N j xPiyg < fi 2 N j xIiyg < fi 2 N j yPixg.
It requires that individuals can be divided into three consecutive sets by any pair of

alternatives according to their preferences, and those who are indi¤erent are ordered

in between individuals with opposite strict preferences.

The family of preference relations R satis�es single-crossing on N if there is a linear

order > on N such that there is a linear order >0on X such that for any pair x; y 2 X
with x >0 y and for all i; j 2 N with i > j, xRiy implies xRjy and xPiy implies xPjy.

It requires that there is also an order on the alternatives such that one has to

agree with a larger individual if she strictly prefers a larger alternative to a smaller

one.

Intermediate preferences, order restriction, and single-crossing are equivalent, and

consecutive support is weaker than all of them.

Proposition A.1. If R satis�es order restriction on N with respect to >, then it

has consecutive support on N with respect to >.

Proof. (This is obvious.)

Proposition A.2. For a family of preference relations R on N with a linear order

>, the following are equivalent:

(i) R is intermediate on N with respect to >,

(ii) R satis�es order restriction on N with respect to >,

(iii) R satis�es single-crossing on N with respect to >.

Proof.
(i) (Intermediate preferences implies order restriction.)

If R is intermediate on N with respect to >, then for any pair x; y 2 X, the sets
A1 = fi 2 N j xPiyg, A2 fi 2 N j xIiyg, and A3 = fi 2 N j yPixg are all consecutive.
Suppose A1 is not; there exists i < j < k such that i; k 2 A1 and yPjx or yIjx; a

contradiction. Suppose A3 is not; there exists i < j < k such that i; k 2 A3 and xPjy
or xIjy; a contradiction. Suppose A2 is not; there exists i < j < k such that i; k 2 A2
and xPjy or yPjx; a contradiction.
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Suppose R is not order restricted, suppose �rst that either A1 < A3 < A2 or

A2 < A3 < A1. Then for any i 2 A1, j 2 A2, k 2 A3, either i < k < j or j < k < j.

Thus xRiy and xRjy implies xRky by intermediateness; a contradiction to k 2 A3.

The same contradiction occurs when A2 < A1 < A3 or A3 < A1 < A2. Hence it can

only be the case that either A1 < A2 < A3 or A3 < A2 < A1.

(ii) (Order restriction implies intermediate preferences.)

Suppose R is not intermediate; either there exist i < j < k and x; y 2 X such

that xRiy and xRky and yPjx or xPiy and xPky and yRjx. Take the pair x; y. In

the �rst case, j 2 A3 and i; k 2 A1 [ A2 (A1, A2, A3 are de�ned in i). Thus, neither
j < A1[A2 nor j > A1[A2. In the second case, i; k 2 A1 and j 2 A2[A3. So, neither
j < A2 [ A3 nor j > A2 [ A3. Both case violate A1 < A2 < A3 and A3 < A2 < A1.

So, R is not order restricted.

(iii) (Single-crossing is equivalent to order restriction.)

See Theorem 3 in Gans and Smart (1996).

The following example illustrates the di¤erence between consecutive support and

order restriction.

Example A.1. There are four individuals.

R = xI1yP1z � R0 = xP1yP1z

xP2yP2z xI2yP2z �
yP3xP3z yP3xP3z

zP4yP4x zP4yP4x

zP5xI5y �

R has consecutive support but does not satisfy order restriction; R0 satisfy order

restriction and also consecutive support. The di¤erence is about the starred indi-

viduals, who are indi¤erent between x; y. In order restriction, indi¤erent individuals

have to be in-between individuals with strict preferences, while this is relaxed in con-

secutive support; they can be any place as long as the set of individuals with strict

preferences are consecutive.
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