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Abstract

Consider Becker’s (1973) classic static matching model, with output a stochas-
tic function of unobserved types. Assume symmetric incomplete information
about types, and thus commonly observed Bayesian posteriors. Matching is then
assortative in these ‘reputations’ if expected output is supermodular in types.

We instead consider a standard dynamic version of this world, and discover
a robust failure of Becker’s global result. We show that as the production out-
comes grow, assortative matching is neither efficient nor an equilibrium for high
enough discount factors. Specifically, assortative matching fails around the high-
est reputation agents for ‘low-skill concealing’ technologies. Our theory implies
the dynamic result that high-skill matches (like the Beatles) eventually break up.

Our results owe especially to two findings: (a) value convexity due to learning
undermines match supermodularity; and (b) for a fixed policy in optimal learning,
the second derivative of the value function explodes geometrically at extremes.
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1 Introduction

This paper is co-authored by a tenured faculty member and a graduate student. It
is reasonable to assume that the reputation of the faculty member is substantially
more established than the graduate student’s. The Beatles broke up after it was clear
that their members were highly talented, and each member went on to form a new
group with individuals having unestablished reputations. While in the first example
individuals with established reputations matched with those not established, in the
second example partnerships of likes dissolved once reputations were established. These
examples motivate two questions: What static matchings can we expect to see when
reputations matter? Which partnerships will endure and which will fail?

Becker’s (1973) matching model established that in a static Walrasian complete
information model, if output depends solely on underlying types, then supermodular
match output ensures positive assortative matching (PAM). If we extended his work
to incomplete information, but retained the static framework, then supermodular ex-
pected output would deliver the same result: like reputation agents match together.

But restricting the model to a static setting dodges an important issue, that matches
yield not only output but also information about types. One’s reputation is often at
least as important as the static output produced by the current partnership: The
graduate student co-author cares much more about the paper’s effect on the market’s
perception of his ability than about the paper’s actual quality. Thus, to investigate the
impact of reputational concerns on partner choice, we must embellish Becker’s original
model with both incomplete information and dynamics. Our goal is to shed light on
who matches with whom in such a dynamic, incomplete information setting.

We assume that output is a stochastic function of types — either ‘good’ or ‘bad.’
Everyone is summarized by the public posterior chance that he is ‘good’, which we call
his reputation. Our main finding is an impossibility result, that PAM fails in the limit
for sufficiently patient individuals and rich technologies. We also find that failures of
assortative matching occur for those agents with focused reputations. Finally, we flesh
out the implications of this for matching dynamics: Partnerships of agents with similar
reputations, like the Beatles, will dissolve as they establish themselves as either highly
skilled — or not so. Conversely, matches of unlike agents, like tenured faculty with
graduate student coauthors, will form in their place.

For an overview, we first find that expected continuation values are convex in the
reputation of one’s partner, information being valuable. Thus, one’s own continuation
value can be raised by matching with high or low reputation agents. Since those agents
with very high or low reputations benefit the least from Bayes-updating, PAM never
maximizes expected continuation values. More precisely, we show that value convexity
due to learning is at cross purposes with the supermodularity that delivers PAM.
So even with supermodular expected output, there is a tradeoff between maximizing
current payoffs (Becker’s effect) and future payoffs (the reputational or informational
concern). With enough patience, the latter dominates. Using Becker’s PAM result in
the final period, we validate this intuition in a stylized two period model (Proposition 1).
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Proposition 2 provides a simple labor theoretic insight as to where the PAM failure
occurs. We show, for instance, that PAM fails for high reputations when production is
sufficiently ‘low-skill concealing’ — i.e., it cannot statistically identify both partners as
‘bad’. Since matching can only reveal whether both agents are ‘good’, high types are
informationally valuable to middling agents, and should be nonassortatively matched.
This static insight has dynamic implications: Partnerships of identical ‘good’ agents
(the Beatles) will eventually break down, as reputations perforce converge to the truth.

In an infinite horizon model, the situation is substantially more complex, and these
findings a priori hang in the balance. Intuitively, the value function ‘flattens out’ with
rising patience. So as the discount factor tends to 1, match payoffs and information
acquired in a match both become vanishingly important. In this way, the static payoff
losses may forever outweigh the informational (reputational) gains for any level of
patience. We find that under quite general assumptions, given sufficient patience,
PAM fails for some agents with well-focused reputations. Our approach to the PAM
impossibility result is by contradiction — namely, we study the assortative matching
policy, and argue that its associated value function cannot possibly satisfy Bellman’s
equation. This turns on a new finding relevant to the optimal learning literature: For
a fixed policy, the convexity of the value function entirely accumulates at the extremes;
specifically, the second derivative explodes at a geometric rate near 0 and 1 — namely,
where our noted PAM failure occurs (Proposition 3). We characterize this rate, thereby
rescuing a close analogue of our earlier skill-concealing conditions in Proposition 2 for
PAM to fail at high/low reputation agents (Proposition 4). Finally, these conditions
hold for generic production technologies with enough outputs (Proposition 5).

There are a number of extensions of Becker’s original work which assume search
frictions (see Burdett and Coles (1997), Smith (1997), and Shimer and Smith (2000) for
a sampling), but the essential thrust of the results is to develop additional conditions
under which PAM still obtains. We are aware of no extension of Becker’s original work
to include incomplete information about types. And quite unlike the search papers,
we show that Becker’s finding robustly unravels given the reputational concern.

Our paper also enters a very small literature on equilibrium models of matching with
incomplete information. Most relevant and earliest is the work on strategy-proofness
with uncertain types in models with small numbers of agents (see Roth and Sotomayor
(1990)). We know of only one truly general equilibrium matching model with (albeit
asymmetric) incomplete information: Wolinsky (1990) explores information revelation,
but in a model of exchange. Finally, Kremer and Maskin (1996) study a failure of PAM
in a static complete information general equilibrium model without supermodularity.

The model and Becker’s result is found in Section 2. In Section 3, we define a
Pareto optimum and competitive equilibrium, establish the Welfare Theorems, and
deduce existence. Our theory will thereby apply both to the efficient and equilibrium
analysis. In Section 4, we build intuition in a stylized two period setting, in which we
deduce our key insight about convexity versus supermodularity. We explore the infinite
horizon model in Section 5, where we also develop our value function characterization.
Wherever possible, we relegate unilluminating technicalities to the appendix.
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2 The Model

A. The Static Economy. We consider the simplest world with uncertain types,
where each agent can either be ‘good’ (G) or ‘bad’ (B). Only nature knows the types.
Agents match in pairs to produce output, and enjoy a symmetric production role.
Everyone is risk neutral. There are N > 1 distinct output levels qi possible. For each
pair of matched types, there is an implied distribution over output levels. Table 1
summarizes the chances hi,mi, and `i of output qi (i.e.,

∑
i hi =

∑
i mi =

∑
i `i = 1):

B G
B `i mi

G mi hi

Table 1: Stochastic Output. Probability that the given types produce output qi

Each of the continuum of individuals has a publicly observed probability x ∈ [0, 1]
of being type G. Call x the reputation of the agent. So a match between agents with
reputations x and y yields output qi ≥ 0 (i = 1, . . . , N) with probability

pi(x, y) = xyhi + [x(1− y) + y(1− x)]mi + (1− x)(1− y)`i.

The expected output of this match is f(x, y) =
∑

i qipi(x, y). Since qi ≥ 0, with qi > 0
for some i, we have f(x, y) > 0 when 0 < x, y < 1, and matching is always optimal.

Recall that a twice differentiable function f is strictly supermodular (denoted SPM)
iff f12(x, y) > 0 for all (x, y). Reversing the inequality yields submodularity (SBM).
A bilinear function like f(x, y) is obviously globally SPM or SBM or amodular (i.e.,
both). Our results simply require that f not be amodular, which is a knife-edge case.

Assumption 1 (Supermodularity) σ ≡ f12(x, y) =
∑

i qi(hi+`i−2mi) > 0. Hence,
output is not stochastically invariant to types: We do not have (hi) = (mi) = (`i).

Assumption 2 If (mi − `i)/(hi + `i − 2mi) = c for a constant c, then c /∈ [0, 1].

This ‘no confounding’ assumption guarantees that for any pair (x, y), an output qi

exists for which the reputations of both agents will change upon its realization.
We assume a (non-probability) density g0 over reputations x ∈ [0, 1]. Matching is

described by a symmetric measure µ on [0, 1]2, where µ(X,Y ) is the measure of matches
of (x, y), where x ∈ X and y ∈ Y , for measurable sets X,Y ⊂ [0, 1]. Also, the marginal
µ([0, 1], ·) of µ obeys µ([0, 1], x) ≤ g0(x) at all x. The static efficient matching µ = µ∗

yields the constrained one-shot maximum output V(g0) ≡
∫

[0,1]2
f(x, y)µ(dx, dy).

Say that x and y are matched if (x, y) lie in the matching set, namely the support
of µ. Following Shimer and Smith (2000), positive assortative matching (PAM) obtains
when for any x ≤ x′ and y ≤ y′, if matches (x, y′) and (x′, y) obtain, then so do (x, y)
and (x′, y′). So if matching sets are singletons, then PAM plus production symmetry
reduce to everyone being self-matched — that is, each x matched with another x. In
this paper, we shall simply mean self-matching when we write PAM.
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Theorem 0 (Becker (1973)) Given Assumption 1, PAM is efficient (maximizes V(g0)
for any g0).

1 Given f12 <0 (SBM), the efficient matching is negatively assortative.

Assumptions 1 and 2 shall henceforth remain in force. We thereby maintain the most
favorable case for PAM, as we ultimately wish to show that assortative matching fails.

B. The Dynamic Economy. There is a constant inflow density ḡ(x) of reputation
x agents who live forever.2 Reputation is assumed a sufficient statistic for the entire
past history of output production, and only this attribute of an agent is observed.
This anonymity assumption is in the general equilibrium spirit of Becker’s work. So
matching decisions only depend on reputations, and not on identities. Output is pro-
duced each period t = 0, 1, 2, . . . . Let zi(x, y) ≡ z(qi, x, y) ≡ pi(1, y)x/pi(x, y) be agent
x’s posterior reputation given that a match with y yielded output qi. The dynamic
economy is not a trivial repetition of the static one, by Assumption 1. Let 〈f, ~µ〉 ≡
(1− β)

∑∞
t=0 βt

∫
[0,1]2

f(x, y)dµt(x, y) for measurable functions f , where ~µ = (µt)
∞
t=0.

3 Existence, Welfare Theorems, and Values

A. Pareto Optimum. Given an initial density g0 over reputations, the planner
chooses matching measures ~µ to maximize the present value of output. He can’t match
more of any type than is available, and faces a law of motion of the reputation density:

V(g0) = sup~µ〈f, ~µ〉 (1)

s.t. Feasibility: gt(y) ≥
∫

µt(dx, y) ∀y ∀t (2)

Bayes Updating: gt+1 = ḡ + B(µt) ∀t (3)

where B(µt) is the Bayes-updated density given the matching measure µt.
3 In (2),

(µt(.|y)) are conditional measures4 for fixed y, i.e. satisfying dµt(x, y) = dµt(x|y)dy.
In solving this problem, the planner is forced to trade off higher expected output

today and a more informative density over reputations tomorrow. This trade-off is at
the heart of this paper. As usual, we can recursively solve (1)–(3), as we next assert.

Theorem 1 A solution to the planner’s problem exists, and V solves the Bellman
equation: V(gt) = maxµ(1−β)

∫
fdµ+βV(gt+1), for t = 1, 2, . . . subject to (2) and (3).

1Becker proved this for the discrete case. For our purposes, Lorentz (1953) is more appropriate as
he proved the formal result in the continuum case (albeit unaware of any economic context).

2This is nonstandard, as it precludes the possibility of a steady-state, since the mass of agents
grows unboundedly in the infinite horizon model. At some notational cost, we could easily assume
agents die with some chance after producing output. But our theory is true in or out of steady-state,
and so we simply save ourselves the bother of proving one exists. Still, the planner’s value will be
well-defined, given a constant agent inflow and payoff discounting.

3For the precise and natural formula of B(µ), which is inessential here, consult (16).
4We understand that conditional distributions only admit µ-almost sure uniqueness. But we insist

for simplicity in (2) on an everywhere identity (i.e., ∀y), as we soon shift to the agents’ perspective.
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The proof by the Theorem of the Maximum and Blackwell’s Theorem is appendicized.
Starting to suppress time subscripts, the FOC for this problem are:

(x, y) ∈ supp(µ) ⇒ [v(x) + v(y)− (1− β)f(x, y)− βΨv(x, y)] = 0
v(x) + v(y)− (1− β)f(x, y)− βΨv(x, y) ≥ 0

(4)

Here, v(x) is the multiplier on the constraint (2), the shadow value of an agent x. Also,
the expected continuation value of the match (x, y) plays a central role in this paper:

Ψv(x, y) ≡ ψv(x|y) + ψv(y|x), where ψv(x|y) ≡ E[v(z(q̃, x, y))]

That is, ψv(x|y) is the expected continuation value of agent x when matched with y.
Given g0, a Pareto optimum (PO) is abbreviated as a pair (~µ,~v) solving the planner’s
problem, for the infinite value vector ~v = (vt(x) : 0 ≤ x ≤ 1, t = 0, 1, 2, . . .).

The FOCs (4) are then very intuitive. For any matched pair, the sum of the shadow
values of the two agents this period equals the total value to the planner of matching
them. Further, for any pair, the sum of the shadow values today weakly exceeds the
value the planner could achieve by matching them.

Observe that since the planner can always self-match any x for whom g(x) > 0,
and since f(x, x) ≥ 0, it cannot be optimal to leave any x unmatched; thus, for all x
there must exist y ∈ supp{µt(·|x)}. Along with the FOC this implies that:

v(x) = max
y

(1− β)f(x, y) + βΨv(x, y)− v(y) (5)

Let Y (x) denote the set of maximizers of this expression given some fixed reputation x.
It is well-known (see Theorem 2.8.1 in Topkis (1998)) that if (1−β)f(x, y)+βΨv(x, y)
is SPM, then Y (x) is an increasing set in x. Similarly SBM yields this set decreasing
in x. One is thus tempted to seek conditions that guarantee SPM of this expression.
Clearly, it suffices that Ψv be SPM to establish this. We instead show in §5 that Ψv can
never be globally SPM, so that a SPM-SBM trade-off emerges for sufficient patience.

B. Competitive Equilibrium. There are different ways to conceptualize a compet-
itive equilibrium (CE). We assume that workers are willing either (i) to hire a match
partner, offer him a sure wage, and take the output residual as profit; (ii) to hire
themselves out other to another worker; or (iii) to stay unemployed, earning zero.

Let wt(x|y) be the wage that agent x receives in period t if matched with agent y.
Define the infinite wage vector ~w ≡ {wt(x|y) : 0 ≤ x, y ≤ 1, t = 0, 1, 2, . . .}. We overuse
notation, anticipating a welfare theorem to come: Let vt(x) now denote the optimal
discounted sum of wages that a reputation x worker earns from the start of next period
onwards. A CE is a triple (~µ,~v, ~w) such that ~µ obeys (2) and (3), while (~µ,~v, ~w) satisfy

• Free Entry/Exit:
(x, y) ∈ supp(µ) ⇒ w(x|y) + w(y|x)− f(x, y) = 0

w(x|y) + w(y|x) ≥ f(x, y)
(6)

• Worker Maximization: v(x) = max
y

(1− β)w(x|y) + βψv(x|y) (7)
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C. Welfare Theorems. The First and Second Welfare Theorems obtain.5 Observe
that while agents’ true types are unknown, all information is public. Moreover, the
global production technology is linear in measures µ of matched agents, and thus
meets the standard convex technology requirement.6 We appendicize the proofs of
Theorems 2–3. One nonstandard feature of these welfare theorems is that we have
embellished the allocation ~µ with the values ~v, and so are claiming coincidence of the
planner’s shadow values and the agents’ ‘private values’. Hereafter, we consistently
refer to both simply as values, and the map x 7→ v(x) as the value function.

Theorem 2 If (~µ,~v, ~w) is a CE then (~µ,~v) is a PO.

Theorem 3 If (~µ,~v) is a PO, then (~µ,~v, ~w) is a CE, where ~w = (wt(x|y)) solves

wt(x|y) = f(x, y) +
β

1− β
ψv

t (y|x)− vt(y)

1− β
(8)

Reputation x receives a higher fraction of output if ceteris paribus (i.e., static output
considerations aside) he provides a higher quality signal about his partner’s reputation.

Corollary 1 There exists a CE.

Having established the equivalence between the set of CE and PO, we can focus on
the more tractable social planner’s problem.

D. Value Functions. We now prove that map x 7→ v(x) is convex. This is funda-
mentally different from the usual convexity of the planner’s maximum value function.

Lemma 1 The value function is strictly convex.

Proof of convexity: Suppose that a binary signal is publicly revealed about the true
types in an ε-measure ball around x, so that these agents’ reputations increase to near
x′ > x with chance λ and decrease to near x′′ < x with chance 1− λ. Because beliefs
are a martingale, x = λx′ + (1 − λ)x′′. The first order change in the planner’s value
equals the sum of the changes in shadow values, i.e., ε[λv(x′) + (1 − λ)v(x′′) − v(x)].
Since the planner may always ignore this signal, this expression cannot be negative,
thus proving weak convexity. Strict convexity obtains because the social planner is not
indifferent across all matches, as shown in the Appendix.

We next show that continuation values are convex in one’s partner’s reputation.

5Mortensen (1982) is the first paper to show that Welfare Theorems are not to be taken for granted
in a matching setting. But his impediment was search frictions, while ours is incomplete information.

6On a mathematical level this is not surprising, given the similarity between our problem and an
assignment problem. (See Roth and Sotomayor (1990) for a survey of the topic.) Gretsky, Ostroy,
and Zame (1992) establish that in a continuum assignment problem, the set of PO, CE, and the Core
coincide. They establish their results in a general static setting. Although we relied on their work
for insight into our welfare and existence theorems, the dynamic nature of our problem prevented us
from applying their results directly.
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Lemma 2 If v is strictly convex, then the expected continuation value function ψv(x|y)
is strictly convex in x and y.

Proof: Since v is convex, it is twice differentiable a.e., so we may a.e. twice differentiate
ψv(x|y) = E[v(z(q̃, x, y))] in x or y. Let u = x or y. Now pi(x, y) and pi(x, y)zi(x, y) are
both bilinear in (x, y). So piuu(x, y) = 0 and 2piu(x, y)ziu(x, y) + pi(x, y)ziuu(x, y) = 0.
This yields ψv

uu(x, y) =
∑

i pi(x, y)ziuu(x, y)v′′(zi(x, y)) > 0, whenever v′′ exists. ¤

4 The Metaphorical Two Period World

To build intuition for our infinite horizon results, we consider a stylized two period
model, with payoffs in periods t = 0 and t = 1 weighted by 1 − β ∈ [0, 1) and β.
Obviously, β < 1/2 for a true two period model with period zero more important
than period-one payoffs. But investigating what happens as β → 1 will capture the
basic insights in our infinite horizon model as β → 1; however, the continuation value
function is endogenous in that setting. By contrast, in the two period model, Theorem 0
yields a strictly convex period one continuation function v1(x) = f(x, x)/2, fixed for
any β. This dodges a hard complication, allowing us to prove an impossibility result.

A. Convexity versus Supermodularity. We first deduce an unqualified failure
of PAM that is unique to the two period model, but which cleanly demonstrates the
opposition between value convexity and match supermodularity. To better flesh out the
contrast, observe that if ψv(x|·) were type x’s match payoff function, then PAM would
require that it be SPM on the matching set. We see below that the strict convexity of
ψv(x|y) in y and the Bayesian sinks at x = 0, 1 preclude global supermodularity.

Proposition 1 (a) Let v be strictly convex, and x ∈ (0, 1). Given the matches (0, 0),
(x, x), and (1, 1), the expected continuation value is strictly raised by rematching x with
0 or 1. Specifically, (b) in the two period model, PAM fails for large enough β < 1.

Proof of (a): Rematching x ∈ (0, 1) with 0 changes expected continuation values by

A0 = ψv(x|0)− ψv(x|x) + ψv(0|x)− ψv(0|0) = ψv(x|0)− ψv(x|x)

since agent 0 has posterior reputation 0 regardless of partner. Likewise, rematching
x with 1 shifts expected values by A1 = ψv(x|1) − ψv(x|x). A convenient weighted
average of these changes (1 − x)A0 + xA1 = (1 − x)ψv(x|0) + xψv(x|1) − ψv(x|x) is
positive by strict convexity of ψv(x|y) in y. Hence, either A0 > 0 or A1 > 0. (Note
that SPM, however, would instead require A0 ≤ 0 and A1 ≤ 0.) So any x ∈ (0, 1)
achieves a higher expected continuation value by matching with 0 or 1 rather than x.

Proof of (b): Given the period one value function v1(x) = f(x, x)/2, Assumption 1
yields v′′1(x) = 2

∑
i(hi + `i− 2mi)qi > 0; by Lemma 2, ψv1 is strictly convex in y. The

period zero losses from the above rematching are finite, being swamped by the first
period gains for β high enough, so PAM is inefficient. ¤
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Examining the proof of Proposition 1 yields a rather striking corollary: In the two
period model, if the planner is patient enough and (0, 0) and (1, 1) are matched in
equilibrium, then no other x can be self-matched.

B. The Failure of PAM via Skill-Concealing Conditions. Proposition 1 is a
quick illustration of how Bayesian learning of reputations undermines supermodularity;
however, it does not suggest whether we should expect the failure for high or low types.
Also, it will not prove a robust finding once we abandon the metaphorical two period
setting, with its possibly unrealistic negative interest rates.

We next consider a result that does extend to the infinite horizon setting, and that
offers labor theory insights — relating the PAM failure to the stochastic productive
interaction. Let h = (hi),m = (mi), ` = (`i). Notice that if m = ` (but of course,
not m = h, by Assumption 1), then (G,G) matches can be statistically distinguished
from (B,G) and (B, B), but the latter two cannot be nuanced: This is an extreme case
of a low-skill concealing technology. Think of (h,m, `) as sufficiently low-skill (resp.
high-skill) concealing if it is close enough to the m = ` (resp. m = h) hyperplane.

Proposition 2 The expected continuation value Ψv1 is SBM around (0, 0) or (1, 1) iff:
∑

i
mi

`2i
(m2

i − 2hi`i + mi`i) > 0 or (resp.)
∑

i
mi

h2
i

(m2
i − 2hi`i + himi) > 0 (9)

Specifically, PAM fails around (1, 1) (resp. (0, 0)) if β is high enough and output is
sufficiently low-skill (resp. high-skill) concealing.

To understand the skill concealing conditions (9), assume hi = mi for all i. The
RHS of inequality (9) is then S(h,m, `) ≡ ∑

i m
2
i (mi − `i)/`

2
i . As the mi − `i factor in

S(·) is weighted by m2
i /`

2
i ≷ 1 for mi ≷ `i, we have S(·) >

∑
i(mi − `i) = 1 − 1 = 0.

Since S(·) is continuous in (h,m, `), the inequality holds near this extreme.

Proof: Since v1(x) = f(x, x)/2, we have ψv1(x, x) clearly C∞ on (0, 1), being
smoothly defined. Suppressing x and y arguments,

ψv1
xy =

∑
i [pixyv1(zi) + (pixziy + piyzix + pizixy)v1(zi)

′ + 2pizixziyv1(zi)
′′]

Define κ(x) ≡ ψv1
xy(x, x). Simple algebraic manipulation establishes that terms in v1,

v′1 and v′′1 each vanish at (1, 1) and (0, 0).7 Thus, κ(0) = κ(1) = 0. Now κ′(0) < 0 iff :

v′′1(0)
∑

i
mi

`2i
(m2

i − 2hi`i + mi`i) > 0

proving (9). Similarly, κ′(1) > 0 iff v′′1(1)
∑

i(mi/h
2
i ) (m2

i − 2hi`i + himi) > 0.
The proof of ψv1 SBM around (1, 1) for low-skill concealing output is analogous. ¤
For an intuition, recall that match types are either (G,G), (G,B), or (B, B). If

output is purely low-skill concealing, then (G,B) matches cannot be distinguished from
(B,B) matches. Clearly, this renders (x, 0) matches informationally worthless. More
strongly, if x ∈ (0, 1) is self-matched then we will only ever learn {(B,B), (G,B)} or
(G,G), whereas if x is matched with 1, then we can learn his true type.

7We assume h À 0 and ` À 0 in this proof. If `i = 0 (resp. hi = 0) for some i then the cross
partial κ(0) = −∞ (resp. κ(1) = −∞).
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Figure 1: Two Period Example. On the left, we depict the shaded SBM total
value region (where Hxy < 0), and the resulting discontinuous optimal matching graph
G = {(x, y(x)), 0 ≤ x ≤ 1} (solid line). On the right, we plot the equilibrium wages w(x) ≡
w(x|y(x)) (solid line) — which is discontinuous due to the information rents. We superimpose
the surplus in optimal values over assortative matching values v0(x) − 0.1x2 − 0.99ψv(x|x)
(dashed line).

C. An Illustrative Example. We set β = 0.99 and assume a uniform density
over reputations. Let (q1, q2) = (0, 2), h = (1/2, 1/2), m = (1, 0), and ` = (1, 0).
Since m = `, this is a perfectly low-skill concealing case, and thus PAM will fail
around (1, 1). Clearly PAM is optimal in the final period, and so v1(x) = x2. Further,
p1(x, y) = 1 − xy/2, p2(x, y) = xy/2, z1 = (1 − y/2)x/(1 − xy/2), and z2 = 1. So the
total match value is H(x, y) ≡ 0.01xy + 0.99Ψv1(x, y), where

Ψv1(x, y) = p1(x, y)v1(z1(x, y)) + p2(x, y)v1(z2(x, y)) =
x2(1− y) + y2(1− x) + xy

1− xy/2

Figure 1 illustrates the solution, showing where H(x, y) is SPM or SBM.
Here’s an intuition for the graph. First, by local optimality considerations, the

matching set G is increasing (decreasing), though possibly with jumps, whenever the
match value H(x, y) is SPM (SBM). Second, it must later jump downwards since it
cannot exit the SPM region on a downward slope. Finally, by the assumed uniform
density over reputations, G has slope ±1 whenever it is continuous. As we simply wish
to illustrate the theory,8 we do not prove what a computer simulation of a Walrasian
tâtonnement process quickly reveals — that there is a single down segment. This avoids
a rather lengthy diversion.

At the right in Figure 1, we see that agents with high reputations capture large
information rents in less productive matches with lower reputations. This provides their
partners a higher quality signal about their own type and thus a higher expected value
in period one than they would have otherwise received from matching assortatively.

8See Kremer and Maskin (1996) for a one-shot matching model where PAM fails (since SPM fails).
Since their paper is half devoted to characterizing such solutions, we do not offer a formal argument.
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5 The Infinite Horizon Model

5.1 Extremal Convexity of the Value Function

We now wish to understand the failure of PAM in an infinite horizon setting. In the
two period model, the strict convexity of the given continuation value v1 was critical.
In the infinite horizon model, the continuation value9 vβ is a function of β, and flattens
out as β approaches 1. Indeed, reputations converge to 0 or 1 (see Lemma 3), and since
beliefs are a martingale, the chance that an agent with initial reputation x converges to
1 is x. Thus, as β → 1, the value function vβ(x) → xv(1)+(1−x)v(0). So when agents
rematch, both current losses (scaled by 1− β) and the gains in expected continuation
values vanish as β → 1. Thus, Proposition 1 fails; instead, we build on Proposition 2.

We proceed entirely by contradiction, assuming PAM and thereby working with a
time-independent value function vβ — yet in our possibly nonstationary model! Indeed,
agent x always receives the wage f(x, x)/2 with PAM. Using the resulting value function
vβ, we find hard-to-satisfy necessary conditions for the efficiency of PAM. Towards our
goal, we now argue that v′′β geometrically explodes near 0 and 1 under PAM. This will
compensate for the flattening out of the value function in β. Understanding learning
with very patient individuals is important (see Easley and Kiefer (1988)), and yet we
do not believe that the extremal accumulation of convexity has been noticed, yet alone
characterized as we do now. Hence, this result has stand-alone merit in its own right.

Proposition 3 Assume PAM and χβ ≡ β
∑

i m
2
i /`i > 1. Implicitly define αβ ∈ (0, 1)

by 1 ≡ β
∑

i `i(mi/`i)
2−αβ . Then αβ → 1 as β → 1 and v′′β(x) ∼ cβx−αβ as x → 0, for10

some cβ > 0. (An analogous result is valid as x → 1, defining χ′β ≡ β
∑

i m
2
i /hi > 1.)

Proof: Our proof uses some nonstandard tools, and so is mostly included in the text.

Step 1 β
∑

i `i(mi/`i)
2−αβ ≡ 1 defines an increasing function β 7→ αβ, with α1 = 1.

Proof: If α = 1, then
∑

i `i(mi/`i)
2−α = 1, and if α = 0 then this sum is

∑
i m

2
i /`i > 1.

It suffices then to show that
∑

i `i(mi/`i)
2−α falls in α. By the Power Mean Inequality,

or Theorem 96 in Hardy, Littlewood, and Polya (1952), Mθ(x) = (
∑

i ωix
θ
i )

1/θ is rising
in θ if

∑
i ωi = 1. Setting θ = 2−α, ωi = `i and xi = mi/`i yields the desired result.¤

• Proof that v′′ Explodes Near 0. Simplify notation: ξ(x) ≡ f(x, x), ζi(x) ≡
zi(x, x), and πi(x) ≡ pi(x, x). Given PAM, vβ satisfies the following ‘policy equation’:

vβ(x) = (1− β)ξ(x) + β
∑

i πi(x)vβ(ζi(x)) (10)

We now affinely transform the value function, defining φ(x) ≡ vβ(x)− vβ(0)− v′β(0)x.
Thus, φ(x) is the deviation of vβ from its best linear approximation at x = 0. Observe

9We now remove time subscripts, and instead add a β subscript to highlight the dependence of vβ

on discounting. We also switch to the more compact notation ψβ and Ψβ rather than ψvβ and Ψvβ .
10Notational reminder: φ(x) ∼ g(x) near 0 iff limx→0 φ(x)/g(x) = 1 iff φ(x) = g(x)(1 + o(1)).
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Figure 2: vβ, v′β, and v′′β. This graph illustrates limx→0 v′′β(x) = ∞. (Note βH > βL.)

how this preserves φ′′(x) = v′′β(x). Now, evaluating (10) and its derivative at x = 0
yields vβ(0) = ξ(0) and v′β(0) = ξ′(0) for all β < 1. Since ξ(x) ≡ σx2 + ξ′(0)x + ξ(0),

φ(x) = (1− β)σx2 + β
∑

i πi(x)φ(ζi(x)) (11)

Twice differentiate (11) — valid a.e. by convexity of vβ (Lemma 1) — to get:

ϕ′′(x) = T (ϕ′′)(x) ≡ γ(φ(x), φ′(x), x) + β
∑

i πi(x)ζ ′i(x)2ϕ′′(ζi(x)) (12)

an operator equation with fixed point ϕ′′ = φ′′. Here, γ(x) ≡ γ(φ, φ′, x) is defined by:

γ(φ(x), φ′(x), x) ≡ 2(1−β)σ+β
∑

i[p
′′
i (x)φ(ζi(x))+(2p′i(x)ζ ′i(x)+πi(x)ζ ′′i (x))φ′(ζi(x))]

(We thus fix the limits φ and φ′ in the operator equation ϕ′′ = T (ϕ′′) in (12) for φ′′.)
Naively evaluating (12) at x = 0, we have v′′β(0+) = 2(1−β)σ+v′′β(0+)

∑
i β`i(mi/`i)

2.
As the sum χβ > 1 by premise, and v′′β ≥ 0 (Lemma 1), the solution v′′β(0+) explodes.

• Intuition for the Rate of Explosion of v′′. Multiply (12) by xα to get:

ϕ′′α(x) = γ(φ, φ′, x)xα +
∑

i wαi(x)ϕ′′α(ζi(x)) (13)

where ϕ′′α(x) ≡ xαϕ′′(x) and wαi(x) ≡ βπi(x)ζ ′i(x)2(x/ζi(x))α. But since wαi(0) =
β`i(mi/`i)

2−α, we have
∑

i wαβi(0) = 1. In fact,
∑

i wαi(0) ≷ 1 respectively as α ≷ αβ,
just as in the proof of Step 1. Finally,

∑
i wαi(x) is continuous in x, so that

∑
i wαi(x) ≷ 1 as α ≷ αβ so in a neighborhood [0, ε] (ε = ε(α) > 0) (14)

So limx→0 xαv′′β(x) = 0 (resp. ∞) for α > αβ (resp. α < αβ). This is suggestive, but in
no way proves the Proposition, since other functional forms, like xαβ log x, also satisfy
the twin limits. Towards a formal proof, we first establish the asymptotic form of φ.

Step 2 For some 0 < cβ < ∞, we have φ(x) ∼ cβ

(2−αβ)(1−αβ)
x2−αβ .

Proof: Write (11) as φ(x) = Tφ(x), where T : C [0, 1] 7→ C [0, 1], the space of continuous
functions on [0, 1]. Since β < 1, T is a contraction in the sup-norm. Let ϕ = φ be the
unique fixed point of ϕ(x) = Tϕ(x). Also, note that T is a monotonic operator.

11



Step 2-a There exists a > 0 such that ax2−αβ ≤ φ(x).

Step 2-b There exists ā > 0 and b > 0 such that φ(x) ≤ āx2−αβ − bx2.

Steps 2-a and 2-b are proven in the Appendix. Now, φ(x)xαβ−2 is trivially nonneg-
ative, and bounded above as x ↓ 0, by Step 2-b. Being continuous, it has some limit
at 0, say cβ/[(2 − αβ)(1 − αβ)]. Moreover, Step 2-a forces cβ > 0. Finally, since φ is
also continuous, the map x 7→ φ(x)xαβ−2 is continuous at x = 0. ¤

We have found the tail asymptotic order on the value function, namely φ(x) ∝
x2−αβ , and thereby vβ(x) − ξ(0) − ξ′(0)x ∝ x2−αβ . This seems tantalizingly close to
our goal of v′′β(x) ∝ x−αβ . But whereas integrating asymptotic relations is a fully valid
exercise, differentiation requires regularity conditions on the derivative (results known
as ‘Tauberian Theorems’). Fortunately, by §7.3 in De Bruijn (1958), monotonicity is
one such condition for our context, with an implicitly defined function.

Step 3 Near x = 0, we have φ′(x) ∼ cβx1−αβ/(1− αβ).

Proof: Where it exists, the first derivative φ′ is increasing, by convexity of the value
function, Lemma 1. Hence, De Bruijn’s condition is met, provided φ′ exists near 0, as
next established in Step 3-a (whose proof by contraction methods is appendicized.) ¤
Step 3-a There exists ε′ > 0 such that φ′ is continuous on [0, ε′].

Now, being convex on [0, 1], the value function is a.e. twice differentiable; however,
the easy deduction of Step 3 is simply not an option for the second derivative, since φ′′

is not monotonic (see Figure 2). We proceed down a different route. Step 3-a rules out
any ‘kinks’ near 0, where the first derivative jumps up. The next result asserts that
near 0, the second derivative is not merely nonnegative (when it exists), but is in fact
locally continuous. Trivially, this implies that it everywhere exists near 0.

Step 4 There exists ε∈(0, ε′) such that the solution ϕ′′αβ
to (13) is continuous on (0, ε].

Proof: Consider instead (13) for fixed α > αβ. Recalling (14),
∑

i wαi(x) < 1 on some
interval [0, ε], with ε ≤ ε′ WLOG. Also, γ is continuous on [0, ε′] by Step 3-a, and
ζi(0) = 0. So by Lemma 4 in Choczewski (1961),11 ϕ′′α is continuous on [0, ε]. Since
ϕ′′αβ

= xαβ−αϕ′′α(x), we have ϕ′′αβ
continuous on the left open interval (0, ε]. ¤

We can now deduce our intuited asymptotic expression for the second derivative φ′′.

Step 5 We have φ′′(x) ∼ cβx−αβ , and therefore v′′β(x) ∼ cβx−αβ .

Proof: By Step 4, ϕ′′αβ
(x) ≡ xαβφ′′(x) is continuous near 0. If ϕ′′αβ

(x) converges to

a finite constant c as x ↓ 0, we are done — for then ϕ′′αβ
(x) ∼ c; this means that

φ′′(x) ∼ cx−αβ , and c = cβ. Otherwise, ϕ′′αβ
(x) explodes near 0, so that for all M > 0,

there exists ηM > 0 with xαβφ′′(x) > M on [0, ηM ]. Since φ′(0) = 0,

φ′(ηM) =

∫ ηM

0

φ′′(t)dt ≥
∫ ηM

0

Mt−αβdt = Mη
1−αβ

M /(1− αβ)

Since M is arbitrarily large for small ηM , this violates Step 3. Thus, c = cβ < ∞. ¤
11Lemma 4 also assumes that ζi(x) > x (false here) to strengthen his conclusion beyond continuity.
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5.2 Non-Assortative Matching and Match Dynamics

A. The Failure of PAM. The major result of the paper is a sequel to Proposition 2.
By simple substitution, the new high-skill concealing conditions below12 (15a) and
(15b) are met for open neighborhoods around the same hyperplanes h = m and ` = m
as (9). This result therefore admits the same intuition as Proposition 2.

Proposition 4 In the infinite horizon model, there exists β∗ ∈ (0, 1) such that for any
β ∈ (β∗, 1), PAM fails in a neighborhood of (0, 0) or (1, 1) iff:

∑
i

[
(mi − hi) log

(
mi

`i

)
+

m2
i − hi`i

`i

]
> 0 (15a)

or (respectively)
∑

i

[
(mi − `i) log

(
mi

hi

)
+

m2
i − hi`i

hi

]
> 0 (15b)

Specifically, PAM fails around (0, 0) (resp. (1, 1)) if β is high enough and output is
sufficiently high-skill (resp. low-skill) concealing.

The proof is appendicized. For an overview, in the proof of Proposition 2 for the two
period model, we established submodularity by explicitly evaluating the cross partial
κ of Ψv1 at the extremes x = y = 0 and x = y = 1. In the infinite horizon model,
the cross partial Ψβ explodes as x → 0 and x → 1 (whenever χβ > 1, as it turns out).
Hence, we must proceed asymptotically. How fast does Ψβ explode? In the appendix,
we use our approximation for v′′β to evaluate this cross partial near x = 0.

A natural question is: How commonly are inequalities (15a) and (15b) satisfied?
They are satisfied as N →∞, as seen in the following proposition (proof appendicized).

Proposition 5 With an atomless probability measure over the parameter space, the
chance that PAM fails at one extreme converges to one as N →∞.13

For insight, we argue here that the LHS of (15a) is a positive definite sum, plus one with
a positive expectation. Indeed, the second sum

∑
i(m

2
i − hi`i)/`i =

∑
i(m

2
i /`i) − 1 =∑

i(mi/`i)(mi−`i) > 0, as the summands command weight ≷ 1 whenever ≷ 0. Assume
that h,m, ` are each independently generated by a uniform measure on the simplex,
denoted ∆N . Consider the first sum. The map (m,h) 7→ (m − h) log(m/`) is strictly
convex in (m,h). By Jensen’s inequality and Emi = Ehi, if ui ≡ log(mi/`i)(mi − hi)
then E(ui) > log[(Emi)/`j](Emi−Ehi) = 0, for all fixed `j. But we cannot apply a Law
of Large Numbers as we have dependence across i among the summands (

∑
i hi = 1,

etc.), and the domain (∆N)3 changes with N . The appendicized proof uses Chebyshev’s
inequality to show that as N → ∞: (a) (1/n)

∑
i ui ⇒ 0 in probability, and (b) the

second sum on the LHS of (15a) converges in probability to c > 1.

12While highly correlated, neither pair of conditions is implied by the other.
13Simulations suggest extremely rapid convergence. With uniformly generated parameters, (15a)

and (15b) are simultaneously violated 43, 18, 5, and 1 of 1 billion times for the N = 3, 4, 5, 6 cases.
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To underscore the probabilistic nature of this result, we observe that there are
rare cases in which PAM obtains at 0 and 1. For a parameterized family, let h =
(3ε2, 1/2− 3ε2, 1/2), m = (ε, 1− 2ε, ε), and ` = (1/2, 1/2− 3ε2, 3ε2). Then Ψβ is SPM
at both extremes. Indeed, each LHS of (15a) and (15b) has the form (constant) +
log(ε)/2 + O(ε), which is clearly negative for small ε. For intuition, note that this
reduces to h = (0, 1/2, 1/2), m = (0, 1, 0), and ` = (1/2, 1/2, 0) for ε = 0. So self-
matching all agents with reputations x near zero or one reveals much information
about the actual types of those matched. Indeed, there is a roughly equal chance that
both partners are immediately updated to surely G or surely B for these matches.

B. Long Run Match Dynamics. Our focus until now has been on a failure of
PAM in the large. We now focus on the small. Indeed, in our title we promise to
opine on the Beatles breakup. Not wishing to disappoint avid Beatles fans, we come
to our discussion of that famous split. To this end, we first ask whether types are fully
revealed in the limit. We apply a law of large numbers result for controlled processes
(due to Easley and Kiefer (1988)) to establish in the appendix:

Lemma 3 Fix an agent. Let xt be his reputation at time t. Then 〈xt〉 is a martingale,
and xt → 0 or 1 with ex ante chances 1− x0 and x0 (i.e., when his type is B or G).

Intuitively, Assumption 2 implies that in each period information is revealed about
any agent’s type (G or B). Thus, his type is eventually revealed. As limit beliefs must
respect the martingale property, the limit distribution has the form given in Lemma 3.

Proposition 6 Assume β ∈ (0, 1) is high enough and output is sufficiently low-skill
(resp. high-skill) concealing. Assume an individual’s true type is in fact G (resp. B).
Then, almost surely, he will eventually no longer assortatively match.

Proposition 6 only speaks about one individual, since our model cannot distinguish
between his matches with like-reputation agents. The problem with applying our in-
sights to an observably long-lived partnership such as the Beatles is that matching here
is assumed anonymous. That is, the relevant state space is not {G,B}, as we have, but
rather {(G, G), (B, B), (G,B), (B, G)}. Of course, with a continuum of agents, com-
pletely dispensing with anonymity is infeasible. But we can relax anonymity somewhat.

Assumption 3 The output history of currently matched individuals is observable.

This captures the informational essence of long-lived matches, while adhering as much
as possible to the general equilibrium spirit. As long as two agents have been matched,
their outputs belong to recorded history; but if they break up, only their reputations
remain. This generalization allows us to speak of partnerships in a meaningful sense.
Yet an agent’s reputation is still a sufficient statistic for the information revealed from
all his previous matches. Given the production symmetry, any previous insights will
carry over to this richer information structure. Lemma 3 and Proposition 6 imply:

Corollary 2 Assume β high enough and production sufficiently low-skill (resp. high-
skill) concealing. If both agents’ types are G (resp. B), they will eventually break up.
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6 Conclusion

This paper merges insights from two fields: matching and learning. We have started
with Becker’s well-known paper on static matching theory, and added an economically
important dynamic concern — reputation. We have found that this overturns Becker’s
finding of global PAM under supermodularity assumptions. With sufficient patience,
PAM cannot arise in a stylized two period model. In the infinite horizon model, an
unqualified failure no longer holds. Still, we show that PAM fails for high reputation
agents if production is sufficiently low-skill concealing (the Beatles case). These con-
ditions admit simple intuitions, and are so weak that one almost must hold — that
is, for randomly chosen production technologies, with chance tending to one as the
number of outputs N grows — and in practice, almost always at very low N , such as
3 or 4. Individuals are more likely to assortatively match when their reputations are
low, while stars are more likely to match with those having unestablished reputations.
Finally, this yields the dynamic result that matched stars eventually must split.

En route, our analysis has yielded two key theoretical insights that should prove
valuable in future dynamic matching work. First, supermodular continuation values is
at odds with convexity. Second, the convexity of the value function in our Bayesian
learning model (and thus perhaps others) explodes near 0 and 1 at a geometric rate.

A Omitted Proofs

A.1 Existence, Welfare Theorems, and Values

• Proof of Theorem 1. Equip Z ≡ L∞([0, 1]) and X ≡ L∞([0, 1]2) with the
standard norm topology. The dual X∗ of X is the space of bounded measures on
[0, 1]2. We endow X∗ with the weak* topology. Let Φ : Z → X∗ be the correspondence
that captures constraint (2):

Φ(g) = {µ ∈ X∗ : λg(A) ≥ µ(A× [0, 1]) ≥ 0 ∀A measurable}, g ∈ Z

where λg(A) ≡ ∫
A

gdλ, and λ is Lebesgue measure. Define the Bayes operator B :
X∗ → Z by

B(µ)(z) =
∫

ρ(z, x, y)dµ(x, y), µ ∈ X∗, z ∈ [0, 1] (16)

where ρ(z, x, y) is the easily computed probability that x updates to z when matched
with y plus the probability that y updates to z when matched with x. Let

W = {V : Z → R : V is homogeneous of degree 1, continuous, and ‖V‖ < ∞}
where we have endowed W with the standard norm ‖V‖ = sup‖g‖≤1 |V(g)|. Let

Γ(V, µ) ≡ (1− β)
∫

fdµ + βV(g + B(µ)), where the argument of the latter V captures
constraint (3). Define the Bellman operator T , as follows: TV(g) = maxµ∈Φ(g) Γ(V, µ),
where g ∈ Z. We prove below that T maps W into itself and is a contraction. Thus, it
has a unique fixed point V, by the Banach Fixed Point Theorem, solving (1), (2), (3).
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Claim 1 Φ is a continuous and compact valued correspondence.

Proof: Alaoglu’s Theorem states that if Φ(g) ⊂ X∗ is weak* closed, bounded, and
convex then Φ(g) is weak* compact. Convexity and boundedness are immediate. Let
IY be the characteristic function of the set Y . Let BA

[a,b] = {µ : a ≤ ∫
IA×[0,1]dµ ≤ b},

and likewise define notation for open intervals and half-open and half-closed intervals.
Note that Φ(g) =

⋂
A BA

[0,λg(A)] and that IA×[0,1] ∈ X. By definition, BA
[0,λg(A)] is weak*

closed, and therefore Φ(g) is weak* closed.
We now show that this correspondence is upper and lower hemi-continuous (u.h.c.

and l.h.c.). Now Φ is point closed, and we can assume WLOG that it maps into a
compact subset14 of X∗, say with upper bound M < ∞. Thus, we only need show that
Φ has the closed graph property to prove u.h.c. Now, Φ has the closed graph property
if for any g ∈ Z: µ /∈ Φ(g) implies that there exists an open set O that contains µ such
that O ∩ Φ(g) = ∅. But µ /∈ Φ(g) if µ > λg(A) for some A. The result follows from
continuity of λg(A)=

∫
IA×[0,1]dµ in µ.

For l.h.c., WLOG we only consider (basis) open sets of the form O =
⋂m

k=1 B
Ak

(ak,bk).

Pick µ ∈ O ∩ Φ(g), and let µε(A × [0, 1]) ≡ µ(A × [0, 1]) − ελ(A) for all A. We claim
that there exists δ, ε > 0 such that µε ∈ O∩Φ(ĝ) for all ĝ ∈ Z with ‖ĝ−g‖∞ < δ. Pick
any such ĝ. For ε small enough, µε ∈ O. To show µε ∈ Φ(ĝ), i.e. λĝ(A) ≥ µε(A× [0, 1])
for all A, first note that |λg(A)− λĝ(A)| < δλ(A) for all A, as shown below:

|λg(A)− λĝ(A)| = | ∫
A

gdλ− ∫
A

ĝdλ| ≤ ∫
A
|g − ĝ|dλ ≤ ∫

A
supx∈A |g(x)− ĝ(x)|dλ

= sup
x∈A

|g(x)− ĝ(x)|λ(A) ≤ ‖g − ĝ‖∞λ(A) < δλ(A)

Thus, λĝ(A) > λg(A)− δλ(A), so that λg(A)− δλ(A) ≥ µ(A× [0, 1])− ελ(A) suffices.
Since λg(A) ≥ µ(A× [0, 1]), it is enough that δλ(A) ≤ ελ(A), or δ ≤ ε. ¤
Claim 2 T : W → W .

Proof: The mapping clearly preserves boundedness and homogeneity. We now show
that T preserves continuity. First, Γ(V, µ) is weak* continuous in (V, µ) ∈ W × X∗.
Indeed, since f ∈ X, µ 7→ ∫

fdµ is weak* continuous on X∗. Similarly ρ ∈ X yields
µ 7→ B(µ) weak* continuous on X∗. For each V ∈ W , the composition V(B(µ)) is
continuous in µ. Thus, Γ(V, µ) is continuous. Also, the constraint correspondence is
continuous and compact valued by Claim 1. Then by Robinson and Day (1974) — a
generalization of Berge’s Theorem of the Maximum — TV is continuous. ¤

Claim 3 T is a contraction.

Proof: Indeed, T is monotonic and T (V+ c) = TV+βc, where 0 < β < 1 and c is real.
Thus, T is a contraction by Blackwell’s Theorem.15 ¤

14Of course, the population size is unbounded, absent deaths. But Φ(g) and thereby TV(g) are
linear functions of g. So we can work on a compact set of g’s, and extend Φ and TV linearly.

15We are indebted to Ennio Stacchetti for providing the key insights for this proof. Any errors and
preference for hemi- over semi-continuity are, of course, our responsibility.
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• Proof of Theorem 2: Assume that (~µ,~v, ~w) is a CE, but ~µ is not a PO. Thus,
there exists feasible ~ν with 〈f, ~ν〉 > 〈f, ~µ〉. Define wy(x, y) = w(y|x). By definition
of a CE and (6), we have 〈~w + ~wy, ~µ〉 = 〈f, ~µ〉 and 〈~w + ~wy, ~ν〉 ≥ 〈f, ~ν〉.16 Hence,
〈~w + ~wy, ~ν〉 > 〈~w + ~wy, ~µ〉. By symmetry, 〈~w, ~ν〉 = 〈~wy, ~ν〉, and so 〈~w, ~ν〉 > 〈~w, ~µ〉.

Let ĝt be the density associated with matching ~ν, and define ρt(z, x, ~µ) as the revised
probability that x at time 0 updates to z at time t. By worker maximization (7),
∑

t β
t
∫ ∫

z∈supp gt
wt(z|y)ρt(z, x, ~µ)dµt(z|y)

gt(z)
dy ≥ ∑

t β
t
∫ ∫

z∈supp gt
wt(z|y)ρt(z, x, ~ν)dνt(z|y)

ĝt(z)
dy

Multiply both sides by g0(x), integrate over x, and note gt(z) =
∫

ρt(z, x, ~µ)g0(x)dx.
This yields 〈~w, ~µ〉 ≥ 〈~w, ~ν〉, which contradicts 〈~w, ~ν〉 > 〈~w, ~µ〉. Thus µ is a PO.

To establish that ~v is a multiplier in the planner’s problem for the given (efficient)
~µ, we show that (~µ,~v) satisfies the planner’s FOC. Take any matched pair (x, y). If we
sum the worker maximization conditions (7) for x and y we obtain:

v(x) + v(y) = (1− β)(w(x|y) + w(y|x)) + βΨv(x, y)

Since w(x|y) + w(y|x) = f(x, y), the planner’s FOC (4) is satisfied for this matched
pair. Now take any (x, y) (not necessarily matched). Worker maximization (7) implies:

v(x) ≥ (1− β)w(x|y) + βψv(x|y) and v(y) ≥ (1− β)w(y|x) + βψv(y|x)

Summing these two inequalities and applying (6) yields:

v(x) + v(y) ≥ (1− β)(w(x|y) + w(y|x)) + βΨv(x, y) ≥ (1− β)f(x, y) + βΨv(x, y) ¤

• Proof of Theorem 3: Let (~µ,~v) be a PO. Note that (2) and (3) are satisfied by
assumption. Plugging the given wages (8) into (7), we see the given ~µ satisfies (7) by
the alternative representation of the planner’s FOC (5). Summing the specified wages
for any matched pair and multiplying both by 1− β:

(1− β)(w(x|y) + w(y|x)) = (1− β)f(x, y) + (1− β)f(x, y) + βΨv(x, y)− v(x)− v(y)

Along with the FOC of the social planner’s problem (4), this implies that (6) holds. ¤

• Proof of Lemma 1: We show that v cannot be linear, or piecewise linear.

Claim 4 The value function v cannot be linear.

Proof: If v is linear, then Ψv is amodular, and match values are strictly SPM (as f is
strictly SPM), so that PAM obtains. But then v(x) = (1 − β)f(x, x)/2 + βΨv(x, x).
As f is strictly SPM, f(x, x) is strictly convex, which contradicts v globally linear. ¤
Claim 5 If v is linear over some interval, then v is linear.

Proof: Being convex (Lemma 1), v is continuous. Any maximal interval of linearity in
[0, 1] is closed, say [x, x̄]. By continuity of zi(x, y) and Assumption 2, ∃ε ∈ (0, x̄− x),
such that ∀ y ∃ i s.t. zi(x̄− ε, y) > x̄. The logic of Lemma 2 yields Ψv strictly convex
at x̄− ε for all y. But v(x̄− ε) = maxy(1− β)f(x̄− ε, y) + βΨv(x̄− ε, y)− v(y) by (5),
where the maximand is strictly convex at x̄− ε, contradicting v linear on [x, x̄]. ¤

16We abuse notation by using a vector of measurable functions as a first argument in 〈·, ·〉.
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A.2 Extremal Convexity of the Value Function

Define Υ(x) ≡ β
∑

i πi(x)(ζi(x)/x)2−αβ and Υ̂(x) ≡ β
∑

i πi(x)(ζi(x)/x)2.

Claim 6 Υ(x) = 1 + O(x), and Υ̂(x) = χβ + O(x), recalling χβ = β
∑

i m
2
i /`i > 1.

Proof : This follows directly from taking a Taylor Series about x = 0. ¤

Claim 7 0 < c ≡ minx Υ(x) < 1, 0 < ĉ ≡ minx Υ̂(x), and c̄ ≡ maxx Υ(x) < ∞.

Proof: Clearly, Υ and Υ̂ are continuous on [0, 1]. Further, πi(x) and ζi(x)/x are positive
on [0, 1]. So c > 0 and ĉ > 0. Finally, Υ(0) = 1, and Υ′(0) < 0 forces c < 1. ¤

Claim 8 If Υ(x) ≥ β, then Υ̂(x) > Υ(x), and d ≡ min{Υ̂(x)−Υ(x) : Υ(x) ≥ β} > 0.

Proof: Since not all ui ≡ ζi(x)/x are equal, (
∑

i piu
2
i )

1/2 > (
∑

i piu
2−αβ

i )1/(2−αβ), by

Theorem 96 in Hardy, Littlewood, and Polya (1952). Simple algebra yields Υ̂(x)/β >
(Υ(x)/β)2/(2−αβ) ≥ Υ(x)/β, the second inequality owing to αβ∈(0, 1) and Υ(x)/β≥1.

Finally, Υ̂(x)−Υ(x) attains its minimum d>0, being continuous on [0, 1]. ¤

• Proof of Step 2-a. Let ϕ0(x) = ax2−αβ , where a is determined below. By the
monotonicity of T , it suffices that Tϕ0(x) ≥ ϕ0(x), or:

(1− β)σx2 + ax2−αβΥ(x) ≥ ax2−αβ (17)

Claim 9 There exists ε > 0 such that (17) holds for all x ≤ ε and x ≥ 1− ε.

Proof: We now prove this in the neighborhood of x = 0. (The x = 1 case is similar.)
By Claim 6, inequality (17) obtains iff

(1− β)σ + ax−αβ(1 + O(x)) ≥ ax−αβ

Rearrangement yields (1− β)σ + ax−αβO(x) ≥ 0, valid since O(x1−αβ) = o(1). ¤

Claim 10 Inequality (17) holds for all x ∈ [ε, 1− ε].

Proof: Replacing Υ(x) by its lower bound c from Claim 7, we need (1−β)σ+ax−αβc ≥
ax−αβ to prove (17). Equivalently, xαβ(1 − β)σ ≥ (1 − c)a, whose LHS is minimized
on [ε, 1− ε] at x = ε. It suffices that a ≤ εαβ(1− β)σ/(1− c), which is positive. ¤
• Proof of Step 2-b. We need Tϕ0(x) ≤ ϕ0(x), where ϕ0(x) = āx2−αβ − bx2, or

(1− β)σx2 + β
∑

i

πi(x)[āζi(x)2−αβ − bζi(x)2] ≤ āx2−αβ − bx2

This expression is seen to be equivalent to (ā, b) ∈ S(x) for all x, where

S(x) ≡ {(ā, b) ∈ R2|(1− β)σ ≤ āx−αβ(1−Υ(x))− b(1− Υ̂(x))}
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Claim 11 If S1≡{(ā, b)|(1−β)σ<b(χβ−1)} then S1 ⊂ S(x) for all x ∈ [0, δ] (δ > 0).

Proof: Replacing Υ(x) and Υ̂(x) in S(x) by their asymptotic forms (i.e. in some [0, δ])
yields: (1−β)σ ≤ āx−αβO(x)−b(1−χβ +O(x)). Since x−αβO(x) = o(1), if (1−β)σ <
b(χβ − 1), or equivalently (ā, b) ∈ S1, then (ā, b) ∈ S(x). ¤

Claim 12 Define S2 ≡ {b > āδ−αβ} and S3 ≡ {σ ≤ ā + b(d − 1 + β)/(1 − β)}.
Then S2 ∩ S3 ∩ {Υ(x) > β} ⊂ S(x) for all x ≥ δ.

Proof: Since the RHS of the inequality in S(x) is rising in Υ̂(x), we can replace Υ̂(x)
by its lower bound Υ(x)+d (Claim 8) to get the following sufficient condition for S(x):

(1− β)σ ≤ (āx−αβ − b)(1−Υ(x)) + bd (18)

If (ā, b) ∈ S2, then āx−αβ − b ≤ 0 for all x ≥ δ. The following inequality suffices
for (18): (1− β)σ ≤ (ā− b)(1− β) + bd. Rearranging we find (ā, b) ∈ S3. ¤

Claim 13 Define S4 ≡ {σ + b(1− ĉ)/(1− β) ≤ ā}. Then S4 ∩ {Υ(x) ≤ β} ⊂ S(x) for
all x ≥ δ.

Proof: The RHS of the inequality in S(x) is falling in Υ(x) and rising in Υ̂(x), so set
Υ̂(x) = ĉ (the minimum established in Claim 7) and set Υ(x) = β. Thus, (1− β)σ ≤
ā(1− β)− b(1− ĉ) implies S(x). Rearranging, this becomes (ā, b) ∈ S4. ¤

Finally, we prove S = S1 ∩ S2 ∩ S3 ∩ S4 6= ∅. Indeed, (ā, b) ∈ S1 ∩ S3 for all
large enough ā, b. Next, (ā, b) ∈ S2 iff b exceeds a linear function of a with adjustable
slope, while (ā, b) ∈ S4 iff b less than a given linear function of ā. We can choose the
adjustable slope in S2 low enough (large δ) such that S2 ∩S4 6= ∅, since it contains the
large values of ā, b lying inside S1 ∩ S3. We thus find (ā, b) ∈ S1 ∩ S2 ∩ S3 ∩ S4. ¤

• Proof of Step 3-a. Differentiating equation (11) yields:

φ′(x) = η(φ(x), x) + β
∑

i πi(x)ζ ′i(x)φ′(ζi(x))

where η(φ(x), x) ≡ 2(1− β)σx + β
∑

i p
′
i(x)φ(ζi(x)). From this we form the functional

equation:
ϕ′(x) = η(φ(x), x) + β

∑
i πi(x)ζ ′i(x)ϕ′(ζi(x)) (19)

Notice that we have used φ as an argument in η, while allowing ϕ′ to vary. Clearly,
ϕ′ = φ′ solves this functional equation. Multiply both sides of (19) by xα−1 for some
α > αβ to get:

ϕ′α(x) = η(φ(x), x)xα−1 +
∑

i ŵαi(x)ϕ′α(ζi(x)) (20)

where ϕ′α(x) ≡ ϕ′(x)xα−1 and ŵαi(x) ≡ β
∑

i πi(x)ζ ′i(x)(x/ζi(x))α−1. Since
∑

i ŵαi(0) =∑
i wαi(0) = β

∑
i `i(mi/`i)

2−α, and ŵαi is continuous, we have
∑

i ŵαi(x) < 1 on some
[0, ε′], just as in (14). Finally, η is continuous on [0, ε′] and ζi(0) = 0. Altogether,
Lemma 4 in Choczewski (1961) implies that the solution to (20) uniquely exists on
[0, ε′], and is continuous. Consequently, φ′(x) also is continuous on [0, ε′]. ¤
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A.3 Non-Assortative Matching

• Proof of Proposition 4. Computing the exploding cross partial derivative, we
have

κβ(x) ≡ Ψβ
12(x, x) =

∑
i(σivβ(zi) + ai(x)v′β(zi) + bi(x)v′′β(zi)), (21)

where σi = hi − 2mi + `i, ai(x) = hi −mi + O(x), and bi(x) = [(hi`i −m2
i )mi/`

2
i ]x +

O(x2). Proposition 3 proved that v′′β(x) = cβx−αβ(1+o(1)). Substituting the integrated
asymptotic expressions for vβ, v′β into (21), and using zi(x) = (mi/`i)x + O(x2), yields:

∑
i

σivβ(zi) =
∑

i

σi

[
cβ

(1− αβ)(2− αβ)
z

2−αβ

i + v′β(0)zi + vβ(0) + o(x2−αβ)

]

= (
∑

i σi(mi/`i)) v′β(0)x(1 + o(1))
∑

i

ai(x)v′β(zi) =
∑

i

(hi −mi + O(x))

[
v′β(0) +

cβ

1− αβ

z
1−αβ

i (1 + o(1))

]

=
cβ

1− αβ

∑
i

(hi −mi)

(
mi

`i

)1−αβ

x1−αβ(1 + o(1))

∑
i

bi(x)v′′β(zi) = cβ

∑
i

[
(hi`i −m2

i )mi

`2
i

x + O(x2)

] (
mi

`i

x

)−αβ

(1 + o(1))

= cβ

∑
i

hi`i −m2
i

`i

(
mi

`i

)1−αβ

x1−αβ(1 + o(1))

The lowest order term x1−αβ in (21) has coefficient cβ[R1(αβ)+(1−αβ)R2(αβ)]/(1−αβ),
where R1(αβ) ≡ ∑

i(hi−mi)(mi/`i)
1−αβ and R2(αβ) ≡ ∑

i[(hi`i−m2
i )/`i](mi/`i)

1−αβ .
We want κβ(x) < 0 in a neighborhood of 0, for large enough β < 1. To prove this, it
suffices that R(α) ≡ R1(α)+(1−α)R2(α) < 0 for large enough α < 1. Since R(1) = 0,
we are done if R′(1) > 0. For then κβ(x) < 0 for β near 1 for x small enough. Finally,
differentiation reveals that R′(1) is the LHS of (15a), which is strictly positive. ¤

• Proof of Proposition 5. Given the atomless assumption, it is WLOG to assume
that hn = (hn

1 , h
n
2 , . . . , h

n
n) is a r.v. uniformly distributed (i.e. Lebesgue measure λ)

on ∆n. Thus (n− 1)! is the joint density, with marginals dλi(h
n
i ) = (n− 1)(1− hn

i )n−2

and dλij(h
n
i , h

n
j ) = (n− 1)(n− 2)(1− hn

i − hn
j )n−3.

We wish to show that measure of parameters (h,m, `) for which (15) fails (so the
opposite weak inequality holds) vanishes as n increases. That is, if we define s1

n =
(1/n)

∑
i log(mn

i /`
n
i )(mn

i − hn
i ) and s2

n = (1/n)
∑

i(m
n
i )2/`n

i , then Pr[s1
n + s2

n > 1] → 1.

Claim 14 The first sum in (15) vanishes in probability: s1
n ⇒ 0.

Proof: First Es1
n → 0. Indeed, straightforward calculation using the densities given

above yields that Es1
n = ((n− 1)/n2)(ς + Γ′(n)/Γ(n)). Here ς is Euler’s constant and
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Γ(n) ≡ ∫∞
0

sn−1e−sds is the Gamma function, i.e. Γ′(n) =
∫∞
0

log(s)sn−1e−sds. It is
known that (the ‘ψ function’) Γ′(n)/Γ(n) ∼ log n as n →∞, and so Es1

n → 0 .
Then by routine calculations, var(s1

n) → 0. Thus, Pr[|s1
n − Es1

n| ≥ ε] → 0 ∀ε.
Finally, Chebyshev’s inequality states that Pr[|s1

n − Es1
n| ≥ ε] ≤ var(s1

n)/ε2 ∀ε. ¤

Claim 15 The second sum in (15) converges in probability to some c ≥ 2: s2
n ⇒ c ≥ 2.

Proof: Define ˜̀n
i = `n

i if `n
i ≥ 1/n2 and 1/n2 otherwise. Let s̃2

n = s2
n with `n

i replaced
with ˜̀n

i , and note that s2
n ≥ s̃2

n. It suffices to prove s̃2
n ⇒ 2.

We first claim that Es̃2
n → 2. To this end, note that E(1/˜̀n

i ) = n2 + o(n2). To
see this let ρn = 1 − (1 − 1/n2)n−1 be the chance that `i ≤ 1/n2. Then E(1/˜̀n

i ) =

n2ρn +
∫ 1

1/n2(n − 1)(1 − s)n−2/sds. The latter term is bounded above by (1 − ρn)n2,

and ρn → 1, proving the result. Finally, E(mn
i )2 = 2/n(n + 1), so that Es̃2

n → 2.
It thus suffices that Pr[|s̃2

n − Es̃2
n| ≥ ε] → 0 ∀ε. By similar reasoning as above,

E(1/(˜̀ni )2) = n4 + o(n4), and E((1/˜̀n
i )(1/˜̀n

j )) = n4 + o(n4). Also, E((mn
i )4) =

24/(n(n + 1)(n + 2)(n + 3)), and E((mn
i )2(mn

j )2) = 4/(n(n + 1)(n + 2)(n + 3)). Then

var(s̃2
n) =

1

n
E

(mn
i )4

(˜̀ni )2
+

n− 1

n
E

(mn
i mn

j )2

˜̀n
i
˜̀n
j

−
(

E
(mn

i )2

˜̀n
i

)2

=
4n2(n− 1)

(n + 1)2(n + 2)(n + 3)
+o(n)

using the independence of mn from ˜̀n — i.e., var(s̃2
n) → 0. Apply Chebyshev. ¤

• Proof of Lemma 3. By Easley and Kiefer (1988), controlled stochastic processes
may only converge to potentially confounding beliefs, where the belief remains un-
changed. Now, if x 6= 0 then zi(x, y) = x iff pi(1, y) = pi(x, y). Since ∂pi(x, y)/∂x
is constant in x, this requires ∂pi(x, y)/∂x = (hi + `i − 2mi)y + mi − `i = 0, or
y = (mi − `i)/(hi + `i − 2mi) ∀ i, contrary to Assumption 2. But absent interior
potentially confounding beliefs, the long run distribution g∞ has support {0, 1}. As
reputation is a martingale, the weights are (1− x0, x0). ¤
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