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1 Introduction

An old and central problem in Game Theory is the enumeration of all Nash

equilibria of a game.1 This problem turns out to be a difficult and tedious

one, and to date, there is even no complete answer for “small” games like

m × m bi-matrix games.2 However, a close look at this literature shows

that there is, in general, a monotone relation between the number of pure

strategies and the maximal number of (pure and mixed) Nash equilibria.

Similarly, several papers tackle the issue of the mean number of equilibria

(e.g., Berg and McLennan [1], McLennan [6]) and, again, show that there is a

monotone relation between the number of strategies and the (mean) number

of equilibria.3

In this paper, we are interested in a slightly different question: Can we

isolate a class of games for which there exists a monotone relation between the

size of pure strategy spaces and the exact number of pure Nash equilibria?

An immediate answer to this question is the class of games with constant

payoffs i.e., games such that for each strategy profile, the payoff to all players

is the same, since for such games all strategy profiles are equilibria. However,

this class is trivial and non-generic. The non-trivial answer we propose in

this paper is the class of two-player nice games, i.e., games with non-empty

compact real intervals as strategy spaces, and continuous and strictly quasi-

concave payoff functions, assumptions met by many economic models. More

precisely, we consider two two-player nice games G and G′ such that both

players have smaller strategy sets in G′ compared to G, and show that each

equilibrium strategy profile of G′ can be paired with an equilibrium strategy

profile of G. The core of our proof precisely consists then in showing that

1See McKelvey and McLennan [5] or von Stengel [10] for recent surveys.
2For instance, after proving that when m = 3 there is at most 7 equilibria (provided the

game satisfies some regularity conditions), Quint and Shubik [8] conjectured that 2m − 1
would be an upper bound. This bound turns out to be correct when m = 4 but not when
m ≥ 6 (see McLennan and Park [7] and von Stengel [9]). The conjecture remains open for
m = 5.

3For instance, using techniques from statistical mechanics, Berg and McLennan show
that the mean number of Nash equilibria in bi-matrix games with m pure strategies for
each player is exp(m[0.281644 + O(log(m)/m)]).
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this pairing map is injective. It is also of interest to note that equilibrium

sets are not necessarily nested.

Finally, we extensively discuss the conditions for our theorem to hold

and show that they are tight. For instance, little reflexion suffices to realize

that for strategic-form games with finite strategy spaces, our result does not

hold. To see this, consider the game G′ in Figure 1, that has two pure Nash

equilibria. Adding to each player a strictly dominating strategy we obtain

this way a game like the game G in Figure 1. Because G is dominance

solvable, it has only one Nash equilibrium, the desired conclusion.4

0 2

0 1, 1 −1,−1

2 0, 0 3, 3

G′

0 1 2

0 1, 1 2, 4 −1,−1

1 4, 0 4, 4 4, 1

2 0, 0 1, 4 3, 3

G

Figure 1: Games with finite strategy spaces

The paper is organized as follows. Section 2 presents the model and states

our main result. Section 3 proves our main result while section 4 discusses

the tightness of our sufficient conditions. Section 5 gives some final remarks.

2 Definitions and Theorem

Let G(Y ) :=< N, (Yi, ui)i∈N > be a strategic-form game with Y :=
∏

i∈N Yi.

N = {1, . . . , n} is the set of players, Yi is the set of pure strategies available to

player i. Denote Y−i =
∏

j 6=i(Yj) and y−i an element of Y−i. Player i’s payoff

function is ui : Yi × Y−i → R. A strategic-form game G(Y ) is a nice game

if for each player i ∈ N , Yi is a non-empty real intervals (i.e., a compact,

convex subset of the real line), and the payoff function ui is continuous in all

its arguments, and strictly quasi-concave in yi, that is, for all y−i ∈ Y−i, for

4Observe that the “trick” of using mixed strategies to bypass the finiteness of pure
strategies does not work either.
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all yi ∈ Yi, y′i ∈ Yi and α ∈ (0, 1),

ui(αyi + (1− α)y′i, y−i) > min(ui(yi, y−i), ui(y
′
i, y−i)).

We denote N(G(Y )) the set of pure Nash equilibria of G(Y ).

For two strategic-form games G(X) :=< N, (Xi, vi)i∈N > and G(Y ) :=<

N, (Yi, ui)i∈N >, we say that G(X) is a restriction of G(Y ) if for each player

i ∈ N , Xi ⊆ Yi and vi(x) = ui(x) for all x ∈ X. In words, a game G(X) is a

restriction of a game G(Y ) if G(X) is obtained from G(Y ) by restricting the

set of pure strategies of some players.

The restriction of strategy sets can be interpreted in different ways. For

instance, we could assume that players have committed not to play some of

their strategies, as it is the case in competition models in which firms must

choose capacity constrains, or that players have signed contracts that limit

their course of actions as in Bernheim and Winston [2]. It is also interesting

to note that there exists a formal relationship between “more strategies” and

“more information” in games. For instance, Gossner [4] shows that for any

restriction G′ of a strategic-form game G, there exists two equivalent games

of incomplete information, with strategic-form games G′ and G, such that

players are more informed in G than in G′. Thus, “more strategies” is merely

a synonym for more information.

We can also note that if G(X) is a restriction of G(Y ) and G(X ′) is a

restriction of G(X), then G(X ′) is a restriction of G(Y ). However, if both

G(X) and G(X ′) are restrictions of G(Y ), we do not necessarily have that

G(X) is a restriction of G(X ′) or G(X ′) is a restriction of G(X). G(Y ) is

obviously a restriction of itself.

Theorem Let G(X) and G(Y ) be two two-player nice games such that G(X)

is a restriction of G(Y ). We have

]N(G(X)) ≤ ]N(G(Y )).

Theorem states that for any two two-player nice games G and G′ such

both players have smaller strategy sets in G′ compared to G, G has more

Nash equilibria in pure strategies than G′. In particular, this implies that if

G has a unique Nash equilibrium, then G′ has also a unique equilibrium.
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3 Proof of Theorem

Let G(X) and G(Y ) be two two-player nice games with G(X) a restriction

of G(Y ). To prove Theorem, we show that there exists an injective mapping

from the set of equilibria N(G(X)) of the restricted game G(X) to the set

of equilibria N(G(Y )). First, observe that N(G(Y )) as well as N(G(X)) are

non-empty sets and generically finite (Harsanyi [3]). Second, note that we can

obviously map each equilibrium of G(X), that is also an equilibrium of G(Y ),

to itself. Therefore, the crucial part of the proof consists in showing that

there exists an injective mapping that associates an equilibrium in N(G(Y ))\
N(G(X)) to each equilibrium of the restricted game in N(G(X))\N(G(Y )).

Lastly, observe that if N(G(X)) \ N(G(Y )) = ∅, there is nothing to prove.

From now on, suppose that N(G(X)) \N(G(Y )) 6= ∅.

3.1 Characterization of N(G(X)) \N(G(Y ))

Define brX
i : X−i → Xi the best-reply map of player i in the game G(X)

with for all x−i ∈ X−i,

brX
i (x−i) := {xi ∈ Xi : ui(xi, x−i) ≥ ui(x

′
i, x−i) for allx′i ∈ Xi}.

It is worth noting that brX
i is a continuous, non-empty, single-valued map in

any nice game G(X). For simplicity, we denote BRi the best-reply of player

i in the game G(Y ), that is BRi := brY
i . For any non-empty compact real

interval Z, we denote z its least upper bound and z its greatest lower bound.

Our first lemma characterizes brX
i as a function of BRi and Xi.

Lemma 1 Player i’s best-reply function brX
i : X−i → Xi in G(X) is given

by

brX
i (x−i) =


xi if BRi(x−i) < xi

BRi(x−i) if xi ≤ BRi(x−i) ≤ xi

xi if xi > BRi(x−i)

.

Proof First, it is clear that for any x−i in the set {x−i ∈ X−i : BRi(x−i) ∈
Xi}, brX

i (x−i) = BRi(x−i). Second, choose a x−i ∈ X−i such that BRi(x−i) <
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xi, and suppose that brX
i (x−i) > xi. The single-valuedness of the best-

reply maps implies that u(BRi(x−i), x−i) > u(xi, x−i) and u(brX
i (x−i), x−i) >

u(xi, x−i). It follows that (BRi(x−i), x−i) and (brX
i (x−i), x−i) both belong to

the strict upper contour set of (xi, x−i). Since BRi(x−i) < xi < brX
i (x−i), we

have a contradiction with the strict quasi-concavity of ui. An analogous rea-

soning holds if we choose a x−i ∈ X−i such that BRi(x−i) > xi, and suppose

brX
i (x−i) < xi. �

In words, the best-reply map brX
i of the restricted game G(X) agrees with

the best-reply map BRi of the game G(Y ) on the set {x−i ∈ X−i : BRi(x−i) ∈
Xi}, and is on the boundary ∂Xi of Xi, otherwise. The next lemma states

a quite obvious property of a restricted game, that is, if G(Y ) has a Nash

equilibrium y∗, which is also a feasible action profile of the restricted game

G(X), then y∗ is also a Nash equilibrium of G(X).

Lemma 2 If there exists a Nash equilibrium y∗ = (y∗i )i∈N of G(Y ) such that

y∗ ∈ X, then y∗ ∈ N(G(X)).

Proof Since y∗ is a Nash equilibrium of G(Y ) and y∗i ∈ Xi ⊆ Yi for all

i ∈ N , we have that ui(y
∗
i , y

∗
−i) ≥ ui(xi, y

∗
−i), for all xi ∈ Xi ⊆ Yi and all

i ∈ N , hence y∗ ∈ N(G(X)). �

In the previous lemma, we have seen that any equilibrium of G(Y ), which

belongs to the restricted set of strategies X, is also an equilibrium of G(X).

The converse is obviously not true. However, we can prove that any interior

equilibrium of G(X) is also an equilibrium of G(Y ).

Lemma 3 If there exists a Nash equilibrium x∗ = (x∗i )i∈N of G(X) such that

x∗ ∈ intX, then x∗ ∈ N(G(Y )).

Proof Since x∗ ∈ intX, we have that xi < x∗i < xi for all i ∈ N . Further-

more, since x∗ ∈ N(G(X)), we have that x∗i = brX
i (x∗−i) for all i ∈ N . From

Lemma 1, it follows that brX
i (x∗−i) = BRi(x

∗
−i) for all i ∈ N , hence x∗ is a

Nash equilibrium of G(Y ). �

It immediately follows that the equilibria of G(X), which are not equilib-

ria of G(Y ), are on the boundary of X. The next proposition formally states

this result.
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Proposition 1 If x∗ ∈ N(G(X)) \N(G(Y )), then x∗ ∈ ∂X.

Proof It is a direct consequence of Lemmata 2 and 3. �

We also have the following lemma.

Lemma 4 Let G(X) and G(Y ) be two two-player nice games such that G(X)

is a restriction of G(Y ). Then,

](N(G(X)) \N(G(Y ))) ≤ 4.

Proof From Proposition 1, any x ∈ N(G(X)) \ N(G) is such that x ∈
∂X. Moreover, since X is the product of two compact real intervals, ∂X is

composed of 4 edges. By strict quasi-concavity of the payoff functions, we

have at most one Nash equilibrium on each edge of X, hence the desired

result. �

Next, consider the sequence of strategy sets X0 = Y1×Y2, X1 = X1×Y2

and X2 = X1 × X2, and the sequence of games G(X0), G(X1) , G(X2).

Observe that G(X2) is a restriction of G(X1) with the property that G(X2)

differs from G(X1) only in the set of strategies of player 2. Similarly, G(X1) is

a restriction of G(X0) with the property that G(X1) differs from G(X0) only

in the set of strategies of player 1. By transitivity, G(X2) is a restriction

of G(X0). As a direct corollary of Proposition 1, we have that for any

x∗ ∈ N(G(X1)) \N(G(X0)), x∗1 ∈ ∂X1.

Thus, if G(X1) is a restriction of G(X0), which differs only in the set of

strategies of a single player, say player 1, then any equilibrium of G(X1),

which is not an equilibrium of G(X0) is such that player 1’s equilibrium

strategy is on the boundary of his strategy space. This result will prove

extremely useful in proving Theorem as our strategy of proof will consist in

showing that ]N(G(X1)) ≤ ]N(G(X0)), and thus, by an induction argument,

that ]N(G(X)) ≤ ]N(G(Y )).

3.2 Injective mapping

With a slight abuse of notation, we denote bri the best-reply function of player

i in G(X1), i.e., bri := brX1

i . Let us show that ]N(G(X1)) ≤ ]N(G(X0)).
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Choose a x∗ = (x∗1, x
∗
2) ∈ N(G(X1)) \ N(G(X0)). From a previous ar-

gument, we have that x∗1 ∈ ∂X1. Suppose that x∗1 = x1. (We can reason

in analogy if x∗1 = x1 holds.) Since x∗ is a Nash equilibrium of G(X1), x∗1
satisfies the equation f(x∗1) = 0 with f : X1 → R, f(x1) = br1(br2(x1))− x1.

Remember that BRi is the best-reply function of player i in the game

G(X0), and define F : Y1 → R with F (y1) = BR1(BR2(y1)) − y1. Observe

that F (y
1
) ≥ 0 and F (y1) ≤ 0. Moreover, since x∗ /∈ N(G(X0)), we have

F (x∗1) 6= 0.

From Lemma 1, br2 is the restriction of BR2 to the domain X1 ⊆ Y1, hence

br2(x
∗
1) = BR2(x

∗
1). It follows that F (x∗1) > 0. For otherwise, we would have

BR1(BR2(x
∗
1)) < x∗1 = br1(BR2(x

∗
1)), a contradiction with Lemma 1.

Since F is continuous, it follows from the Intermediate Value Theorem

that there exists a y∗1 in (x∗1, y1] such that F (y∗1) = 0. Hence, we can asso-

ciate to x∗ ∈ N(G(X1)) \ N(G(X0)) an equilibrium y∗ = (y∗1, BR2(y
∗
1)) in

N(G(X0)) \N(G(X1)). Note that if x∗ is such that x∗1 = x1, we associate to

x∗ an equilibrium y∗ such that y∗1 ∈ [y
1
, x1).

For completeness, suppose that ∂X1 ∩ ∂Y1, and that x∗ ∈ N(G(X1)) \
N(G(X0)) is such that x∗1 = y1. By Lemma 1 and compactness, we then

have

y1 ≥ BR1(x
∗
2) > br1(x

∗
2) = x∗1 = y1,

a contradiction. A similar reasoning holds if x∗1 = y
1
. Hence, for any Nash

equilibrium x∗ ∈ N(G(X1))\N(G(X0)), we can associate a Nash equilibrium

y∗ in N(G(X0)) \N(G(X1)). The last part of the proof consists in showing

that for any two Nash equilibria x∗ 6= x∗∗ of G(X1), we can associate two

different Nash equilibria y∗ 6= y∗∗ of G(X0).

Clearly, if x∗1 6= x∗∗1 , then y∗1 6= y∗∗1 since x∗1 6= x∗∗1 implies that x∗1 is x1 and

x∗∗1 is xi or the inverse, hence y∗1 is a zero of F in (x1, y1] and y∗∗1 is a zero

of F in [y
1
, x1). Suppose that x∗1 = x∗∗1 . But, then since best-reply map are

single-valued, we have that br2(x
∗
1) = br2(x

∗∗
1 ), a contradiction with x∗ 6= x∗∗.

Therefore, we have that ]N(G(X1)) ≤ ]N(G(X0)).
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To complete the proof, apply the preceding arguments to prove that

]N(G(X2)) ≤ ]N(G(X1)), hence that ]N(G(X)) ≤ ]N(G(Y )).

4 Tightness of Theorem

To recapitulate, the sufficient conditions for our theorem to hold are that

both G(X) and G(Y ) are two-player nice games i.e., games with non-empty

real intervals as strategy spaces and continuous and strictly quasi-concave

payoff functions. We first show that Theorem does neither extend to n-

player games, nor to games with multidimensional compact-convex strategy

spaces, nor to games with payoff functions that are not strictly quasi-concave.

Interestingly enough, in all three cases, our proof breaks down at the same

point: the mapping from N(G(X)) to N(G(Y )) needs not be an injection.

Example 1 (Two-player games) Consider the following three-player nice

game5 G(Y ). Assume that the strategy spaces are Y1 = Y2 = Y3 = [0, 1].

Player 1’s payoff when he plays y1, player 2 plays y2 and player 3 plays y3 is

u1(y1, y2, y3) = y1.

Similarly, player 2’s payoff is

u2(y1, y2, y3) = −0.1(y2)
2 + (1− y1)y3y2,

and player 3’s payoff is

u3(y1, y2, y3) = −(y3 − y2)
2.

Since player 1’s payoff is strictly increasing in its own strategy, it follows

that 1 is a strictly dominant strategy. The Nash equilibria of G(Y ) are

then the points at which the graph of the restriction of BR2 to {1} × Y3

intersects the graph of the restriction of BR3 to {1} × Y2. It follows that

there exists a unique Nash equilibrium of G(Y ), namely (1, 0, 0). Assume now

that player 1 has a restricted set of strategy X1 = [0, 0.5]. Player 1’s new

strictly dominant action is 0.5. G(X) has a multiplicity of Nash equilibria:

(0.5, 0, 0) and (0.5, 1, 1).

5We thank Andrew McLennan for having suggested us this example.
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Example 2 (Actions are subset of the real line) Consider the follow-

ing two-player game G(Y ) that is nice except for the assumption that player

1’s strategy space is multidimensional. Player 1’s action is the unit square

Y1 = [0, 1]× [0, 1], and his payoff when he plays y1 = (y1
1, y

2
1) ∈ Y1 and player

2 plays y2 ∈ Y2 := [0, 1], is

u1(y1, y2) = y1
1 − (y2 − y2

1)
2,

while player 2’s payoff is

u2(y1, y2) = −0.1(y2)
2 + (1− y1

1)y
2
1y2.

Clearly, this example is a very close relative of the previous example, and

has similar equilibria. The strategy profile ((1, 0), 0) is the unique Nash

equilibrium of the game G(Y ). However, the game G([0, 0.5]×[0, 1], [0, 1]) has

more than one equilibrium: ((0.5, 0), 0) and ((0.5, 1), 1) are both equilibrium

profiles.

Example 3 (Strict quasi-concavity) Consider a two-player game G(Y )

that is nice except for the assumption that player 2’s payoff function is strictly

quasi-concave. We have Y1 = Y2 = [0, 1] and the payoff to player 1 when

he plays y1 and player 2 plays y2 is u1(y1, y2) = y1 while player 2’s payoff is

u2(y1, y2) = (0.5−y1)y2. G(Y ) has a unique Nash equilibrium (1, 0). Now, let

us restrict player 1’s strategy space to [0, 0.5]. The game G([0, 0.5]×[0, 1]) has

infinitely many equilibria: any (0.5, λ) with λ ∈ [0, 1] is a Nash equilibrium.

If we drop any one of the other sufficient conditions i.e., convexity or com-

pactness of strategy spaces or continuity of payoff functions, our proof might

fail for an additional reason. Any two-player game with either discontinuous

payoffs or non-compact strategy spaces that does not have an equilibrium

can serve as an example to illustrate this point. To see this, take any such

game G(Y ) and restrict both players’ strategy spaces to singletons {x1} and

{x2}. The strategy profile (x1, x2) is an equilibrium of G({x1}×{x2}), which

clearly cannot be mapped to an equilibrium in N(G(Y )) since this set is

empty. However, even if G(Y ) has a Nash equilibrium, our proof still fails as

the following examples show.
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Example 4 (Convexity) Consider the example in the introduction. G

is a nice game except for the assumption that strategies space are con-

vex. To see that strict quasi-concavity is satisfied, observe that ui(1, y−i) >

min(ui(0, y−i), ui(2, y−i)) for all y−i ∈ {0, 1, 2}, for all i ∈ {1, 2}. Continuity

refers to order-continuity (we endow {0, 1, 2} with the usual order ≥).

Example 5 (Compactness) Consider a two-player symmetric game G(Y )

that is nice except for the assumption that strategy spaces are compact. For

all i ∈ {1, 2}, Yi = R, ui(yi, y−i) = (1 − 2y−i)yi − 1
2
y2

i . G(Y ) has unique

Nash equilibrium (1
3
, 1

3
). Now, consider the restriction G(X) of G(Y ), with

X = [0, 1
2
] × R. It is easy to see that G(X) has three Nash equilibria:

(1
3
, 1

3
), (0, 1) and (1

2
, 0).

Example 6 (Continuity) Consider a two-player game G(Y ) that is nice

except for the assumption that payoff function u2 of player 2 is continuous.

Player 1’s payoff u1(y1, y2) when he plays x1 ∈ [3
5
, 4

5
] and player 2 plays

y2 ∈ [1
5
, 4

5
] is

(
1

2
x2 +

1

2
)x1 −

1

2
(y1)

2.

Player 2’s payoff u2(y1, y2) when she plays y2 and player 1 plays y1 is{
(y1 − 1)y2 if y2 > 1

2

y1(y2 − 1) if y2 ≤ 1
2

.

G(Y ) has no Nash equilibrium in pure strategies. (In fact, it is because u2

fails to be upper semi-continuous). Now, consider the restricted game G(X)

with X = [3
5
, 4

5
]× [1

5
, 1

3
]. Then, G(X) has a Nash equilibrium (2

3
, 1

3
).

5 Final remarks

Theorem states that any two-player nice game G(X), which is a restriction of

the two-player nice game G(Y ), has fewer Nash equilibria in pure strategies

than the game G(Y ) . The theorem is silent on whether a restriction G(X)

11



admits strictly less Nash equilibria than the game G(Y ). However, it is easy

to construct examples for which some restrictions have strictly less Nash

equilibria than the game G(Y ) while some others have exactly the same

number of Nash equilibria. For instance, consider the two-player symmetric

game G(Y ), and for all i ∈ N , Yi = [0, 1], (yi, y−i) 7→ ui(yi, y−i) = (1 −
2y−i)xi − 1

2
(yi)

2. It is straightforward to check that G(Y ) is indeed a nice

game. G(Y ) has three Nash equilibria in pure strategies (1, 0), (0, 1) and

(1
3
, 1

3
). To see this, observe that i’s best-reply to y−i is 1− 2y−i if y−i ∈ [0, 1

2
]

and 0, otherwise. Consider the restriction G(X) of G(Y ), with X = [0, 1
2
]×

[0, 1
2
]. G(X) has a unique Nash equilibrium (1

3
, 1

3
). Similarly, consider the

restriction G(X ′) of G(Y ) with X ′ = [1
5
, 2

5
] × [1

5
, 2

5
]. It is easy to see that

G(X ′) has three Nash equilibria: (1
3
, 1

3
), (1

5
, 2

5
) and (2

5
, 1

5
).

We can also mention a discrete counterpart6 of Theorem. Suppose that

strategy spaces are discrete Yi := {1, 2, · · · , mi} for all i ∈ {1, 2}, and payoff

functions are order-continuous, strictly quasi-concave and have increasing

differences in (yi, y−i). Consider two such games G(X) and G(Y ) such that

G(X) is a restriction of G(Y ). We then have that ]N(G(X)) ≤ ]N(G(Y )).

The proof is almost identical to our proof. First, observe that since G(Y )

as well as G(X) are supermodular games, hence N(G(Y ) and N(G(X)) are

non-empty. Second, the characterization of N(G(X)) \N(G(Y )) is the same

as in our proof. Finally, it suffices to apply Tarsky fixed-point Theorem

(instead of the Intermediate Value Theorem) to show that the map from

N(G(X)) to N(G(Y )) is injective.

Finally, we remark that Theorem holds for regular as well as irregular

nice games G(Y ). Moreover, it might well be that G(Y ) is a regular game,

hence has a finite and odd number of Nash equilibria (Harsanyi ([3]), but

G(X) has an even number of Nash equilibria, hence is not regular.
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