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1 Introduction

In this paper we consider discounted non-zero-sum repeated games between two players

with one-sided incomplete information and known own payo®s. We shall investigate equi-

librium payo®s as the players become patient. We consider two cases concerning relative

discount factors. Our ¯rst main result, in Section 3, states that for arbitrary given initial

beliefs, for a ¯xed value of the uninformed player's (player 2) discount factor, and if the

informed player's (player 1) discount factor is su±ciently close to one, the equilibrium

payo®s to player 1 (for each of a ¯nite number of types) must approximately satisfy the

conditions of an equilibrium in which the informed player acts to reveal her information

at the start of the game. This implies a continuity result1 with the undiscounted case:

holding prior beliefs constant, as the players' discount factors go to one, if player 1's dis-

count factor goes to one su±ciently fast relative to that of player 2, then the limiting set

of equilibrium payo®s for player 1 must satisfy the necessary conditions appropriate for

the model with no discounting. In Section 4, the symmetric discounting case is analysed.

Under an assumption on the existence of strictly individually rational payo®s, we estab-

lish a continuity result with complete information games as the probability of one of the

types goes to one: for any degree of approximation, provided the players are su±ciently

patient and provided initial beliefs put su±ciently high probability on this type, then given

any feasible strictly individually rational payo® vector in the game between this type and

player 2, there is a Nash equilibrium of the incomplete information game with approx-

imately these payo®s (to this type of player 1 and to player 2). Since there is no such

continuity result for undiscounted games as the size of the perturbation goes to zero, it

can be concluded that the equilibrium characterization which exists for the undiscounted

case is only the limit (as discount factors go to one, holding beliefs constant) of the dis-

counted case if the limit is taken in a particular way, and notably it is not the limit of the

discounted case if both players' discount factors are equal.

The situation where one or more players' preferences may be unknown to the op-

ponent(s) has received relatively little attention in the non-zero-sum discounted repeated

games literature, despite considerable work on `reputation' models where perturbations of

preferences are in terms of irrational or commitment types. Undiscounted repeated games

1This continuity property is not uniform with respect to initial beliefs.
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of incomplete information have, however, been studied in some depth (see Section 3).

Some recent results exist for the discounted case, however. Kalai and Lehrer (1993) and

Jordan (1995) have established that play must converge to Nash play of the true game.

Jordan (1995) has also proved the existence of an equilibrium for this class of games.

Perfect Bayesian equilibria of such games must have a Markov property (Bergin (1989)).

The results of Kalai and Lehrer and Jordan on convergence to Nash play are informative

about the long-run behaviour of an equilibrium, but to be able to say anything about

the overall payo®s from the beginning of the game|what we are interested in here|it is

necessary to know something about how rapidly convergence takes place relative to the

rate of discounting of payo®s and also, possibly, what happens in the shorter run. By

exploiting a result due to Fudenberg and Levine (1992) on the speed of learning (see also

Sorin (1999) for a synthesis of a number of the results in this literature) the case where the

informed player is arbitrarily patient relative to the uninformed player can be completely

solved purely on the basis of \long-run" considerations. A more detailed consideration of

the shorter run is needed for the symmetric discounting case as the speed of learning is

crucial.2 Finally, in a recent paper, equilibrium payo®s in discounted repeated zero-sum

games with incomplete information have been studied by Lehrer and Yariv (1999), who

show that as both players become in¯nitely and equally patient the equilibrium payo®s

converge to those with no discounting, whereas if the informed player is in¯nitely more

patient than the uninformed an example is given to show that this is not true.

2 The Model

The in¯nitely repeated game ¡(p; ±1; ±2) is de¯ned as follows. There are two players

called \1" (she) and \2" (he). At the start of the game, player 1's \type" k is drawn

from a ¯nite set K (where K also denotes the number of elements) according to the

probability distribution p = (pk)k2K 2 ¢K (the unit simplex of <K), and informed to
2This contrast is why the characterization for the case of a relatively patient informed player holds

for all priors which assign positive probability to all types: equilibria are shown to be approximately
equivalent in terms of player 1's payo®s to an equilibrium where information is revealed at the start of
play; prior beliefs are unimportant for such equilibria. In the symmetric discounting case, where the speed
of learning matters, priors play an important role and they determine the characterization of equilibrium
payo®s. In this case we only provide a characterization for priors putting almost all weight on a particular
type.
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player 1. Hence pk will denote the prior probability of type k. We shall assume that each

type has strictly positive probability: pk > 0 for all k. In every period t = 0; 1; 2; : : :,

player 1 selects an \action" it out of a ¯nite action space I, while player 2 simultaneously

chooses an action jt from the ¯nite set J , where I and J have at least two elements.

Payo®s at stage t to type k of player 1 and to player 2 are respectivelyAk(i
t; jt) and

B(it; jt). Player i discounts payo®s with discount factor ±i 2 (0; 1), with the payo® to
type k of player 1 being ~ak = (1 ¡ ±1)P1

t=0 ±
t
1Ak(i

t; jt), and that to player 2 being

~b = (1 ¡ ±2)P1
t=0 ±

t
2B(i

t; jt). Both players observe the realized action pro¯le (it; jt)

after each period. Let H t = (I £ J)t+1 be the set of all possible histories ht up to
and including period t. A (behavioral) strategy for type k of player 1 is a sequence

of maps ¾k = (¾0k; ¾
1
k; ¢ ¢ ¢), ¾tk : H t¡1 ! ¢I. We de¯ne ¾ = (¾k)k2K . Likewise, a

strategy for player 2 is a sequence of maps ¿ = (¿0; ¿1; ¢ ¢ ¢), ¿ t : Ht¡1 ! ¢J . The prior

probability distribution p, together with a pair of strategies (¾; ¿ ), will induce a probability

distribution over in¯nite histories and hence over discounted payo®s. We use Ep;¾;¿ to

denote expectations with respect to this distribution, and abbreviate to E where there is

no ambiguity. Players are assumed to maximize expected payo®s, and a Nash equilibrium

is de¯ned as a pair of strategies (¾; ¿) such that, for each k, Ep;¾;¿ [~ak j k] ¸ Ep;¾0;¿ [~ak j k]
for all ¾0, and Ep;¾;¿ [~b] ¸ Ep;¾;¿ 0 [~b] for all ¿

0. Finally we shall need the following. Let

âk := ming2¢J maxf2¢I Ak(f; g) be type k's minmax payo®, where we use the notational

abuse that Ak(f; g) is the expected value of Ak(i; j) when mixed actions f and g are

followed. Likewise player 2's minmax payo® is given by b̂ := minf2¢I maxg2¢J B(f; g).

3 A Relatively Patient Informed Player

We start by considering the case where the discount factor of player 2 is taken as ¯xed,

and we let the discount factor of player 1, the informed player, go to one. This case

corresponds closely to the undiscounted case; necessary conditions which must be satis¯ed

by player 1's payo®s in the undiscounted case must also be (asymptotically) satis¯ed in

the discounted case as ±1 ! 1. These necessary conditions can be interpreted as requiring

payo® equivalence to some fully revealing equilibrium.

Hart (1985) gave a complete characterization for the general class of undiscounted
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games (payo®s evaluated according to a Banach limit) with one-sided incomplete infor-

mation, which includes the possibility that the uninformed player is unaware of his own

payo® function. For the case we are interested in, namely \known own payo®s" but where

one of the players does not know the payo®s of the other player, a simpler characterization

has been provided by Shalev (1994) (see also Koren (1988), and Forges (1992) for a survey

of the literature.) Denote this game by ¡(p; 1; 1). We shall show that essentially the same

characterization as that of Shalev can be obtained for the discounted case provided the

informed player is arbitrarily patient relative to the uninformed player.

We de¯ne ¯rst individual rationality in this setting. Punishment strategies for player

2 are more complex than in the complete information setting, because all possible types

of player 1 must simultaneously be punished. Let x := (xk)k2K 2 <K be a vector of

payo®s for the types of player 1. For q 2 ¢K, let a(q) be player 1's minmax payo® in the

one-shot game with payo®s given by
P
k2K qkAk(i; j).The set of payo®s fy 2 <K jy · xg

is said to be approachable by player 2 if and only if

q ¢ x ¸ a(q) for all q 2 ¢K:(1)

Blackwell's approachability result (Blackwell (1956)) then implies that player 2 has a

strategy, ¿ , that guarantees type k gets average (i.e., undiscounted) payo®s of no more

than xk whatever strategy, ¾, player 1 uses. Thus if the set fyjy · xg is approachable
then x is a vector of feasible punishment payo®s for player 2 to impose on the types of

player 1. We will say that the vector x = (xk)k2K is individually rational (IR) if the

set fyjy · xg is approachable. For player 2 the de¯nition of individual rationality is the
usual one from complete information repeated games: a payo® y for player 2 is individually

rational if

y ¸ b̂:(2)

Let ¼ = (¼ij)i;j 2 ¢I£J be a joint distribution over I £ J (i.e., a correlated strategy).
This will generate a vector of payo®s for player 1 and a payo® for player 2 of Ak(¼) =P
i2I;j2J ¼ijAk(i; j) and B(¼) =

P
i2I;j2J ¼ijB(i; j) respectively. Let ¦ = (¢IJ)K be the

set of all correlated strategy pro¯les for each type, (¼k)k2K . Then

De¯nition 1 De¯ne ¦0 ½ ¦ to be the subset of pro¯les satisfying conditions (i) (in-

dividual rationality): (Ak(¼k))k2K is individually rational for player 1, and B(¼k) is
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individually rational for player 2 for each k 2 K, and (ii) (incentive compatibility):

Ak(¼k) ¸ Ak(¼k0) for all k; k0 2 K.

Shalev (1994) showed that payo®s (a; b) are Nash equilibrium payo®s of ¡(p; 1; 1) if and

only if there exists a pro¯le of correlated strategies (¼k)k2K 2 ¦0 such that Ak(¼k) = ak
for all k 2 K and

P
k2K pkB(¼k) = b.

The ¯rst main result needed is Lemma 2, which states that equilibrium play between

type k and player 2, as summarised in the average (using player 1's discount factor in the

weighted average) frequencies over action pro¯les, must approximately satisfy the indi-

vidual rationality condition of De¯nition 1 for player 2. Its proof depends on two main

ideas. First (Lemma 1), if player 2's equilibrium strategy gives him less than b̂ when he

plays against k, then he must anticipate that the probability distribution over outcomes if

he is facing type k's strategy di®ers from the one generated by the \expected" equilibrium

strategy of player 1 (averaging over all possible types using player 2's beliefs). Further-

more, because player 2 discounts future payo®s, there must be a signi¯cant di®erence

between these distributions in the not too distant future. The second idea (Result 1)

states that if player 1 follows type k's strategy, then player 2 cannot continue to believe

that the true probability distribution over outcomes is signi¯cantly di®erent from the one

generated by type k's strategy. Taken together, these results imply that if player 1 plays

according to type k's strategy, then player 2 cannot continue to respond with a strategy

which gives him less than b̂ against this strategy. Eventually he will learn that his oppo-

nent is playing type k's strategy, and he will choose a response which gives him at least

his minmax payo®. For a ¯xed value of ±2, Result 1 implies an upper bound on how long

this learning takes. Consequently if a su±ciently high discount factor (i.e. ±1 as opposed

to ±2) is used to evaluate player 2's payo®s, this learning phase will be insigni¯cant and

player 2 must get approximately his minmax payo® against type k.

For a ¯xed equilibrium, we de¯ne the average frequencies over action pro¯les condi-

tional on type k when the discount factor is ± as: ¼ijk (±) = (1¡±)E [
P1
t=0 ±

t1fi; j; tgj k] ; for
each i and j, where 1fi; j; tg is the indicator function for the action pro¯le (i; j) occurring
at date t. It is easy to check that the equilibrium payo®s are E [~ak j k] = Ak(¼k(±1))

for each k and E
h
~b
i
=

P
k2K pkB(¼k(±2)). Let bmin = mini2I minj2J B(i; j) be the

5



worst payo® player 2 can get in the stage game. Consider after any history ht the

set of possible outcomes over the next N periods, that is (I £ J)N with typical ele-

ment yN =
³
(it+1; jt+1); : : : ; (it+N ; jt+N)

´
. For given equilibrium strategies (¾; ¿ ) we let

qN(¢ j ht) be the distribution over these outcomes (i.e., qN (yN j ht) =prob[ht+N =

(ht; yN) j ht]; using obvious notation) and likewise qN(¢ j ht; k) the distribution con-
ditional additionally upon player 1's true type being k (de¯ned for ht having positive

probability conditional on type k). We de¯ne for any two distributions qN and q̂N ,

k qN ¡ q̂N k := maxyN
¯̄̄
qN(yN )¡ q̂N (yN)

¯̄̄
. Finally, de¯ne the continuation payo® for

player 1 type k, discounted to period t + 1, as: ~at+1k := (1¡ ±1)P1
r=t+1 ±

r¡t¡1
1 Ak(i

r; jr) ;

and that for player 2 as ~bt+1 := (1¡ ±2)P1
r=t+1 ±

r¡t¡1
2 B(ir; jr):

Lemma 1 Let ±2 2 (0; 1) and ² > 0 be given and consider any Nash equilibrium and

any history ht which has positive probability in this equilibrium conditional upon type k.

Suppose that conditional upon player 1 being type k the expected continuation payo® for

player 2 is

E
h
~bt+1 j ht; k

i
· b̂¡ ² :(3)

Then there exists a ¯nite integer N and a number ´ > 0, both depending only on ±2 and

², such that

k qN(¢ j ht)¡ qN (¢ j ht; k) k > ´ :(4)

Proof: Straightforward.

The next result shows that if player 1 follows the strategy of type k, then there can

be only a ¯nite number of periods in which the probability distribution over outcomes

predicted by player 2 di®ers signi¯cantly from the true distribution. Eventually, player

2 will predict future play (almost) correctly. Given integers N and n, with N > 0 and

0 · n < N , de¯ne the set T (n;N) = fn; n+N; n+2N; : : :g. The result is a straightforward
adaptation of the main theorem of Fudenberg and Levine (1992, Theorem 4.1) which is

stated for the case N = 1.

Result 1 (Fudenberg and Levine) Given integers N and n, with N > 0 and 0 · n <
N , and for every » > 0, Ã > 0 and a type k of player 1 with pk > 0, there is an m
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depending only on N , », Ã, and pk such that for any (¾; ¿ ) and any h
t consistent with

(¾; ¿ ), the probability, conditional on player 1's true type being k, that there are more than

m periods t 2 T (n;N) with

k qN(¢ j ht)¡ qN(¢ j ht; k) k > Ã(5)

is less than ».

Lemma 2 states that equilibrium play between type k and player 2, as summarised

in the average (using player 1's discount factor in the weighted average) frequencies over

action pro¯les, must approximately satisfy the individual rationality condition of De¯ni-

tion 1 for player 2 (see Cripps et al. (1996) for a related argument in the `reputation'

context).

Lemma 2 Given ±2 < 1 and for any Á > 0, there exists a ±1 < 1 such that whenever

±1 < ±1 < 1, the average frequencies over action pro¯les for each k 2 K in any Nash

equilibrium, calculated using discount factor ±1, ¼k(±1), satisfy

B(¼k(±1)) ¸ b̂¡ Á :(6)

Proof: Fix an equilibrium and a type k and choose ² = Á=3 in Lemma 1; then there

is an N and an ´ such that (4) holds whenever (3) holds. Set Ã = ´ in Result 1, take

any integer n, 0 · n < N , and set » = Á

3N(b̂¡bmin) (assuming that b̂ > bmin; the lemma

is trivial otherwise). Then by Result 1 there is an m (¯nite) such that the probability

that inequality (4) holds more than m times in T (n;N) is less than », so the probability

that inequality (3) holds more than m times in T (n;N) must also be less than ». Hence,

considering all values for n, 0 · n < N , we have that the probability, conditional upon
type k, that the inequality

E
h
~bt+1 j ht; k

i
· b̂¡ Á=3(7)

holds more than Nm times is smaller than N» = Á

3(b̂¡bmin) . Next, E
h
~bt+1 j k

i
=

E
h
(1¡ ±2)B(it+1; jt+1) + ±2~bt+2 j k

i
; so (1¡±2)E [B(it+1; jt+1) j k] = E

h
~bt+1 ¡ ±2~bt+2 j k

i
:

Hence, player 2's payo® against type k in the equilibrium, calculated using player 1's dis-

count factor, is

B(¼k(±1)) = (1¡ ±1)
1X
t=0

±t1E
h
B(it; jt) j k

i
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=
1¡ ±1
1¡ ±2

1X
t=0

±t1E
h
~bt ¡ ±2~bt+1 j k

i
=

1¡ ±1
1¡ ±2

(
E
h
~b0 j k

i
+ E

" 1X
t=0

E
h
±t1(±1 ¡ ±2)~bt+1

¯̄̄
ht; k

i¯̄̄̄¯ k
#)

:(8)

Using the result on the number of times (7) holds, for ±1 > ±2 the random variableP1
t=0E

h
±t1(±1 ¡ ±2)~bt+1

¯̄̄
ht; k

i
¸

n
±1¡±2
1¡±1 (b̂¡ Á

3
)¡ (±1 ¡ ±2)(b̂¡ bmin)Nm

o
with probabil-

ity at least (1¡N») conditional on k, where we are using the fact that in the event that
(7) fails no more than Nm times, subtracting (b̂¡ bmin) Nm times undiscounted yields a

payo® lower than the minimum possible. The random variable is at least ±1¡±2
1¡±1 bmin oth-

erwise. Using this in (8) gives a lower bound, say ©(±1; ±2), so that B(¼k(±1)) ¸ ©(±1; ±2),
and notice that ©(±1; ±2) is independent of the particular equilibrium studied. Next, tak-

ing the limit as ±1 ! 1 yields lim±1!1©(±1; ±2) = (1 ¡ N»)
³
b̂¡ Á

3

´
+ N»bmin ; hence,

since N» = Á

3(b̂¡bmin) , we get

lim
±1!1

©(±1; ±2) = b̂¡ Á
3
¡ Á

3(b̂¡ bmin)

Ã
b̂¡ bmin ¡ Á

3

!

= b̂¡ 2Á
3
+

Á2

9(b̂¡ bmin)
> b̂¡ 2Á

3
:(9)

Choosing ±
(k)
1 such that ©(±1; ±2) is within

Á
3
of its limit (±

(k)
1 depends only upon pk, Á

and ±2), we have for ±1 ¸ ±(k)1 ; B(¼k(±1)) ¸ b̂¡ Á: Set ±1 = maxk2Kf±(k)1 g and the result
follows. Q.E.D.

We are now in a position to establish that Shalev's equilibrium characterization

holds approximately as a necessary condition provided that player 1 is su±ciently patient

relative to player 2. This theorem is a characterization of the equilibrium payo®s of player

1 only: since di®erent discount factors are being used, the usual feasibility constraint on

the average payo® pro¯le across both players does not apply. First we need to de¯ne the

set of payo® vectors which player 1 can receive in equilibrium in the undiscounted case (i.e.,

the projection of the equilibrium payo® set onto the space of player 1's payo®s). Recall

that ¦0 is the set of all correlated strategy pro¯les which satisfy individual rationality

and incentive compatibility. We de¯ne

A¤ = f(A1(¼1); A2(¼2); : : : ; AK(¼K)) : (¼k)k2K 2 ¦0g :(10)

We can state
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Theorem 1 Let ±2, 0 < ±2 < 1, and p À 0 be ¯xed. Then for any ² > 0 there exists a

±1 < 1 such that for all 1 > ±1 > ±1, if player 1 has equilibrium payo®s a in ¡(p; ±1; ±2),

then

minx2A¤ k a¡ x k< ² :(11)

Proof:We take ±2 and p to be ¯xed throughout the proof. First consider condition (i) of

De¯nition 1 of ¦0, individual rationality (for player 1). Let (¾; ¿ ) be a Nash equilibrium

pair of strategies for the game ¡(p; ±1; ±2), and suppose that the equilibrium payo® pro¯le

for player 1, a = (Ak(¼k(±1)))k2K, is not individually rational. Then by (1), there exists

q¤ 2 ¢K such that q¤ ¢ a < a(q¤). By the minimax theorem,

q¤ ¢ a < max
f2¢I

min
g2¢J

X
k

q¤kAk(f; g) ;(12)

so that if player 1 plays a mixed action f ¤ which attains the maximum in (12), q¤ ¢ a <P
k q

¤
kAk(f

¤; g) for all g 2 ¢J . Denote by ¾¤ the repeated game strategy in which

player 1 plays the mixed action f¤ each period and independently of type k. Then

Ep;¾¤;¿ [(1¡ ±1)P1
t=0 ±

t
1

P
k q

¤
kAk(i

t; jt)] > q¤ ¢ a (NB. k is not a random variable), so

that X
k

q¤kEp;¾¤;¿ [~ak j k] =
X
k

q¤kEp;¾¤;¿

"
(1¡ ±1)

1X
t=0

±t1Ak(i
t; jt) j k

#
> q¤ ¢ a ;(13)

since given that ¾¤ does not vary with type, conditioning on k does not a®ect the distri-

bution over histories. Because q¤ 2 ¢K, it follows that Ep;¾¤;¿ [~ak j k] > ak for at least

one k, contradicting the de¯nition of equilibrium. Hence individual rationality must be

satis¯ed for player 1 for any value of ±1; that is, a satis¯es (1). Next, condition (ii) of

De¯nition 1 (incentive compatibility) must be satis¯ed for any ±1, 0 < ±1 < 1, since in any

Nash equilibrium Ak(¼k(±1)) ¸ Ak(¼
0
k(±1)) for all k, k

0 by the de¯nition of equilibrium

(recall that Ak(¼k(±1)) is the equilibrium payo® of type k of player 1, and Ak(¼
0
k(±1)) is

the payo® type k would get from following the strategy of type k0).

Finally, individual rationality for player 2 must be dealt with. De¯ne

¦̂ := f(¼k)k2K 2 ¦ j Ak(¼k) ¸ Ak(¼k0) all k; k0and(Ak(¼k))k2K is individually rationalg ;

and de¯ne the compact valued correspondence

ª : [0;1)!! ¦byª(Á) =
n
(¼k)k2K j Bk(¼k) ¸ b̂¡ Á for all k 2 K

o
:
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Since ª is clearly an upper hemi-continuous function of Á, it follows that the correspon-

dence given by ª\ ¦̂, which is non-empty (Shalev (1994)), is also upper hemi-continuous.
Moreover, if the linear function A((¼k)k2K) := (A1(¼1); A2(¼2); : : : ; AK(¼K)) is de¯ned

on ¦, the correspondence given by A[ª(Á) \ ¦̂] is an upper hemi-continuous function of
Á, with value A¤ at Á = 0. Hence given ², there is a ¹Á > 0 such that for 0 · Á < ¹Á, all

payo®s in A[ª(Á)\¦̂] lie within ² of A¤. Choose Á in Lemma 1 to be ¹Á; the corresponding

±1 is therefore as required for (11) to hold. Q.E.D.

Theorem 1 developed necessary conditions which equilibrium payo®s must satisfy asymp-

totically. In the undiscounted model, the necessary conditions were also su±cient. A

similar result can be established with discounting provided the inequalities in the con-

ditions of De¯nition 1 are assumed to hold strictly (as they will at any interior point of

Shalev's set). We say that a payo® vector a is strictly individually rational for player 1 if

there exists some individually rational point x with ak > xk for all k.

Theorem 2 Suppose that (¼k)k2K 2 ¦0 satis¯es (i) : (Ak(¼k))k2K is strictly individually
rational for player 1, and B(¼k) is strictly individually rational for player 2 for each

k 2 K, and (ii) : Ak(¼k) > Ak(¼k0) for all k; k0 2 K. Then for any ² > 0 there exists a
± such that whenever 1 > ±1, ±2 > ±, there exists a Nash equilibrium of ¡(p; ±1; ±2) with

payo®s (a; b) satisfying jAk(¼k)¡ akj < ² for all k 2 K and jPk2K pkB(¼k)¡ bj < ².

The proof is straightforward and is omitted; it follows closely the argument for the undis-

counted case given in Koren (1988) which constructs a completely revealing joint plan,

with each type k revealing itself during the ¯rst few periods and thereafter playing ap-

proximately according to ¼k. One complication which arises is the punishment of player

1; see Section 4 for a discussion of Blackwell punishment strategies with discounting.

4 Symmetric Discounting

In this section we consider games where the two players are equally patient. We denote

this class of games by ¡(p; ±), so ¡(p; ±) := ¡(p; ±; ±). We show, in a sense to be made

more precise, that the (Nash) Folk Theorem for complete information games is robust to

10



small perturbations in the information structure; speci¯cally it can be extended to the

repeated games ¡(p; ±) when p1 is close to one. In the previous section, by contrast, the

characterization was valid for all values of p. (For symmetric discounting, it is easy to

construct examples in which the Folk Theorem characterization fails when p1 is not close

to one.) In the repeated game of complete information played between, say, type 1 of

player 1 and player 2 the Folk Theorem asserts that, given any pro¯le of feasible and

strictly individually rational payo®s (a1; b), there is a Nash equilibrium where the players

receive these payo®s if the players are su±ciently patient. We will extend this result in the

following way. Again let (a1; b) be any pro¯le of feasible and strictly individually rational

payo®s for the complete information game played by type 1 and player 2. Then Theorem

3 shows, given an assumption on the existence of strictly individually rational payo®s,

that there exists ±º; p
º
1 < 1 such that the pair (a1; b) can be approximately sustained as

equilibrium payo®s in ¡(p; ±) if ± > ±º and p1 > p
º
1. Thus introducing a small amount of

uncertainty about the type of player 1 does not reduce the set of equilibrium payo®s in

any signi¯cant way when both of the players are su±ciently, and equally, patient.

4.0.1 Example

To illustrate what is to come, we consider an example, where 2 > c ¸ 1 (which satis¯es
(A.1) below provided c > 1). In this example, Shalev's (1994) results (discussed in

B

T

L R

3
1

0
0

0
0

1
3

(A1; B)

B

T

L R

c
1

0
0

1
0

0
3

(A2; B)

Section 3) imply that for c < 2; there is a lower bound on type 1's equilibrium payo® in

the undiscounted case strictly above her minmax payo® of 3=4; individual rationality for

type 2 and for player 2 (A2(¼2) ¸ 1; B(¼2) ¸ 3=4), together with incentive compatibility,
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implies A1(¼1) ¸ A1(¼2) ¸ 3(c + 2)=4(3c¡ 2): (This is clearest for the case where c = 1;
since A2(¼2) ¸ 1 then implies ¼2(T; L) + ¼2(T;R) = 1 and ¼2(T; L) ¸ 3=4; so that

A1(¼1) ¸ 9=4). Here we show in the symmetric discounting case that as ± ! 1; a1 can be

driven down to 3=4:

Let ² > 0 be given. Consider ¯rst the following (pooling) equilibrium of ¡ (p; ±) : both

types of player 1 play U and player 2 plays L in every period, irrespective of past history.

Player 1 gets (3; c) and player 2 gets a payo® of 1 (this plays the role of the equilibrium of

Lemma 5). This will be our \terminal equilibrium". Next, precede this equilibrium by the

repeated play of (T;R) by both types and by player 2 ((T;R) plays the role of ¼2 in Lemma

6, and is played to reduce type 1's payo®; note that z as de¯ned there, using this ¼2; is

individually rational: player 2 need only play a punishment strategy which minmaxes

type 1; the \¯nite sequence" of Lemma 7 is just a single play of (T;R)). Punishments in

all earlier periods involve player 2 being minmaxed thereafter for observable deviations,

and type 1 being minmaxed for observable deviations by player 1 (so type 2 gets (3+c)=4

after any observable deviation); in the general proof we shall need to vary the punishment

with type 1's payo®. The constraint that limits the length of the phase where (T;R)

is played in such a pooling equilibrium concerns player 2's individual rationality. Thus

(T;R) is played out N times before the above terminal equilibrium is played, where N

is the largest integer satisfying (1¡ ±N)0 + ±N1 ¸ (1¡ ±)3 + ±3=4 (the LHS is player 2's
payo® from the strategy speci¯ed, and he can get at most 1 in the period of deviation

and is minmaxed thereafter). When ± is close to 1; ±N is close to 3=4; so player 2's payo®

is also close to 3=4 : there exists ±¤(²) < 1 such that for ± > ±¤(²), player 2's payo® ±N is

within ²=3 of 3=4; 3 and thus type 1's payo® ±N3 is no more than ² above 9=4: Payo®s to

type 1 and player 2 at this (pooling) equilibrium are shown by point C in Figure 1.

To reduce type 1's payo® further, we introduce a randomization by type 1 in the

¯rst period of this equilibrium: suppose that type 1 plays B with probability q such that

p1q = 0:5, where p1 is player 2's prior at the start of the period (so that from player 2's

point of view B is played with probability 0:5). If B is played, so that player 1 signals she

3The continuation payo® received by player 2 at any date can change between consecutive dates by
at most 2M(1 ¡ ±) < ²=6 for ± > 1¡ ²=12M = 1¡ ²=36; likewise the RHS of the inequality de¯ning N
given above is within ²=6 of 3=4 if ± > 1 ¡ 9

24²; on the other hand ±
N cannot be below 3=4 or else 2's

constraint would be violated. Consequently for ± > ±¤(²) := 1¡ ²=36; ±N 2 [3=4; 3=4 + ²=3]:
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Figure 1: Payo®s to type 1 and player 2

is type 1; then from the start of the following period an equilibrium of ©1(±) is played in

which, to ensure type 1's indi®erence, the payo® to type 1, say x; satis¯es (1¡ ±)1+ ±x =
±N3; and player 2 gets 4¡ x (on the frontier of feasible set). Consequently payo®s at this
equilibrium to type 1 and player 2 are (3±N ; (±N +(1¡ ±)3+ ±(4¡x))=2) = (3±N ; 2¡ ±N);
after substitution for x: The purpose of the randomization is to increase the payo® that

player 2 receives so as to relax his incentive compatibility constraint, thus allowing further

plays of (T;R): The equilibrium just described (see point D in the ¯gure) now replaces

the initially described pooling equilibrium in a repetition of the argument. N 0 rounds of

(T;R) are added at the start until again player 2's individual rationality constraint binds:

(1 ¡ ±N 0
)0 + ±N

0
(2 ¡ ±N) ¸ (1 ¡ ±)3 + ±3=4: Repeating the argument given earlier, for

± > ±¤(²); ±N
0
(2 ¡ ±N ) is within ²=3 of 3=4: Again add an initial randomization of say

q0 of playing B by type 1 so that p01q
0 = 0:5, where p01 is player 2's prior at the start

of the period, and an equilibrium of the complete information game played by type 1

and player 2, which we denote ©1(±); with payo®s (y; 4 ¡ y) to follow. Payo®s are then
(3±N+N

0
; (±N

0
(2¡ ±N) + (1¡ ±)3 + ±(4¡ y))=2) = (3±N+N 0

; 2¡ 2±N+N 0
+ ±N

0
); which for
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² < e² for some e² > 0 and ± > ±¤(²), lie above the 45o line being su±ciently close to

(27=20; 17=10).4 A further repetition of the argument, so that more plays of (T;R) are

appended at the beginning, then implies that the payo® of type 1 will reach 3=4 before

that of player 2 does, so that the latter constraint no longer prevents type 1 receiving

a low payo®. By choosing ² < e² small enough, type 1 can be held as close to 3/4 as
desired provided ± > ±¤(²). Observable deviations cannot be optimal as all continuation

payo®s are above punishment levels: this is clear for type 1 and for player 2; type 2 gets

a continuation payo® of (1 ¡ ±n)1 + ±nc where there are n periods to go before the ¯nal
pooling equilibrium, and ±n ¸ 1=4 by type 1's individual rationality; whereas deviation

yields at most ±(3+c)=4. We also need to check that type 2 cannot bene¯t from mimicking

type 1 revealing her type; since the equilibria with payo®s (x; 4¡x) and (y; 4¡y) involve
play °uctuating between (T;L) and (B;R) with less weight on the former than on the

equilibrium path, mimicking cannot be pro¯table. As there were two randomizations (at

each of which the total probability of player 1 revealing herself to be type 1 is 1=2), the

strategies above are an equilibrium of ¡ (p; ±) provided p1 ¸ 3=4: To obtain higher payo®s
to type 1; it is only necessary to stop the above process earlier; to obtain arbitrary payo®s

to player 2, we append an initial randomization by type 1, as described earlier, but in

which the equilibrium of ©1(±) gives player 2 close to the desired payo®s. Provided type 1's

probability is su±ciently close to 1, this will provide any desired degree of approximation.

In what follows, we shall split the above constructions into two steps, ¯rst ignoring

type k = 2 and constructing the equilibrium as an equilibrium of a complete information

game, before introducing the possibility of a second type. Finally we deal with more than

two types.

4.1 An Equilibrium of the Complete Information Game

The ¯rst step in our argument is the construction of an equilibrium of the complete

information game played by type 1 and player 2, ©1(±). In Lemma 4 we construct a

particular type of equilibrium where any feasible and strictly individually rational payo®

4Speci¯cally, given that ±N 2 [3=4; 3=4 + ²=3]; and ±N 0 ¢ (2 ¡ ±N) · 3=4+ ²=3; it follows that ±N
0 ·

3=5 + 32²=5(15¡ 4²) ´ 3=5 + ¢: Thus type 1's payo® ±N+N 0 ¢ 3 · 3(3=4 + ²=3) (3=5 +¢) ; while player
2's payo® 2¡ 2±N+N 0

+ ±N
0 ¸ 17=10¡¢; and thus there exists e² > 0 such that for ² < e² payo®s lie above

the 45o line.

14



to type 1 can be obtained as an equilibrium payo®. In Section 4.2 we shall use these

equilibrium strategies to construct an equilibrium of a two-type incomplete information

game.

Some additional notation is now necessary. De¯ne the set of feasible and (uniformly

for a given ²) strictly individually rational payo®s for the complete information game

between type k and player 2: Gk(²) := f(Ak(¼); B(¼))jAk(¼) ¸ âk + ²; B(¼) ¸ b̂+ ²; ¼ 2
¢IJg, k 2 K. Next de¯ne ¹ak(²) to be the largest payo® to type k in Gk(²) and ak(²) to
be the smallest such payo®, that is ¹ak(²) := maxf ak j (ak; b) 2 Gk(²) g, and ak(²) :=
minf ak j (ak; b) 2 Gk(²) g. Also de¯ne ¹a := (¹a1; :::; ¹aK) 2 <K; where ¹ak = ¹ak(0):

We also use M to denote an upper bound on the absolute magnitude of the players'

payo®s, so that M ¸ jAk(i; j)j; jB(i; j)j, for all (i; j), k. De¯ne the function f , where
f : [a1(0); ¹a1(0)] ! <, to be the maximum feasible payo® to player 2 given that type 1

receives the payo® a1, that is, f(a1) := maxf b j (a1; b) 2 G1(0) g. The function f(:) is
made up of a ¯nite number of linear segments. De¯ne S to be the maximum absolute

value of the slopes of these segments (this is ¯nite).

We start with two preliminary results. The ¯rst is an approximation result which al-

lows correlated strategies to be approximated by average behaviour along deterministic

sequences of action pro¯les.

Result 2 Let ² > 0 be given. There is a ±̂(²) < 1 such that if ± > ±̂(²) and given any

correlated strategy ¼ 2 ¢IJ , then there exists a sequence of actions f(it; jt)g1t=0 such that:
Ak(¼) = (1 ¡ ±)P1

t=0 ±
tAk(i

t; jt), for all k 2 K, and B(¼) = (1 ¡ ±)P1
t=0 ±

tB(it; jt);

moreover¯̄̄̄
¯ (1¡ ±)

1X
t=s

±t¡sAk(it; jt)¡Ak(¼)
¯̄̄̄
¯ · ²=2 s = 0; 1; 2; :::; 8k 2 K;¯̄̄̄

¯ (1¡ ±)
1X
t=s

±t¡sB(it; jt)¡B(¼)
¯̄̄̄
¯ · ²=2 s = 0; 1; 2; ::: :

The proof of Result 2 can be adapted from the proof of Lemma 2 in Fudenberg and

Maskin (1991). It follows immediately that given ² > 0, there is a ±(²) ¸ ±̂(²) such that
(ak; b) 2 Gk(²) are equilibrium payo®s for any ± > ±(²).

Next, consider the following strategies, which will be used to construct an equilibrium
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in which a single randomization occurs. The proof of Lemma 4 will require the iteration

of this construction. Take ² > 0 to be given and also a sequence f(̂{t; |̂t)gT¡1t=0 and an

arbitrary (a¤1; b
¤) 2 G1(3²) and (x; f(x)) 2 G1(2²). Assume that ± > ±(²).

Type 1 : In period 0 play {̂0 with probability 1/2 and ~{ 6= {̂0 with probability
1/2. If (̂{0; |̂0) is played in period zero, continue to play the sequence f{̂tgT¡1t=0

n times and then in period nT begin playing the equilibrium strategy to get

the payo®s (a¤1; b
¤) 2 G1(3²). If (~{; |̂0) is played in period zero, play the in¯nite

sequence of stage-game actions, determined by Result 2, to get the payo®s

(x; f(x)) 2 G1(2²). (Both payo®s are equilibrium payo®s by the assumption

that ± > ±(²).) Minmax all deviations by player 2.

Player 2 : In period 0 play |̂0. If (̂{0; |̂0) is played in period zero continue to

play the sequence f|̂tgT¡1t=0 n times and then in period nT begin playing the

equilibrium strategy to get the payo®s (a¤1; b
¤) 2 G1(3²). If (~{; |̂0) is played

in period zero play the in¯nite sequence of stage-game actions, determined

by Result 2, to get the payo®s (x; f(x)) 2 G1(2²). Minmax all deviations by
player 1.

Call the strategies de¯ned above ¾̂(n; a¤1; b
¤; x) for type 1 and ¿̂ (n; a¤1; b

¤; x) for player

2 (we suppress the implicit dependence of the continuation equilibria on ±). Also de¯ne

the strategies ^̂¾(n; a¤1; b
¤) for type 1 and ^̂¿ (n; a¤1; b

¤) for player 2, which are the same

as ¾̂(n; a¤1; b
¤; x) and ¿̂(n; a¤1; b

¤; x) except that they do not involve a randomization in

period 0, that is, type 1 always plays {̂0 in period zero. De¯ne payo®s when there are

n complete rounds of the sequence to be played as a1(n) := (1 ¡ ±nT )Â1 + ±nTa¤1 and
b(n) := (1¡ ±nT )B̂ + ±nT b¤. We will now establish the following result.

Lemma 3 Let ² > 0 be given; also let f(̂{t; |̂t)gT¡1t=0 and ±¤(²) < 1 be so that Â1 :=

((1¡±)=(1¡±T ))PT¡1
s=0 ±

sA1(̂{
s; |̂s) < â1+² for 1 > ± > ±

¤(²), and let (a¤1; b
¤) 2 G1(3²) with

a1(2²)+² < a
¤
1 < ¹a1(2²)¡²=2, also be given. If ± > maxf±(²); ±¤(²); [4M=(²+4M)]1=Tg then

(i) there exists (x; f(x)) 2 G1(2²) so that (¾̂(n; a¤1; b¤; x); ¿̂ (n; a¤1; b¤; x)) is an equilibrium
of ©1(±), where n ¸ 1 is the largest integer satisfying

b(n) > b̂+ 2²;(14)
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a1(n) > a1(2²) + ²=2;(15)

(ii) (^̂¾(n; a¤1; b); ^̂¿(n; a
¤
1; b)) is an equilibrium of ©1(±).

Proof: We will ¯rst show that n ¸ 1. We have

a1(1)¡ a1(2²)¡ ²=2 = a¤1 ¡ a1(2²)¡ ²=2 + (1¡ ±T )(Â1 ¡ a¤1)
> a¤1 ¡ a1(2²)¡ ²=2¡ (1¡ ±T )2M:

By our assumption on a¤1 and (1¡ ±T )2M < ²=2 by the assumption on ±, the bottom line

is positive. A similar argument shows b(1) > b̂+ 2².

To prove (i), the strategies are an equilibrium of ©1(±) provided: (a) type 1 is in-

di®erent when she randomizes in period zero, and (b) no player prefers to deviate when

playing out the sequence f(̂{t; |̂t)gT¡1t=0 n times. Part (ii) follows if (b) holds. Type 1 is

indi®erent in period zero if we can ¯nd an equilibrium with the payo®s (x; f(x)) 2 G1(2²)
where the payo® x satis¯es

x =
a1(n)

±
¡ (1¡ ±)

±
A1(~{; |̂

0):(16)

But (16) implies that ja1(n)¡ xj < 2M(1¡ ±)=± < ²=2, where the last inequality follows
from our assumptions on ±. This implies a1(2²) < x < ¹a1(2²); the lower bound follows as

a1(n) satis¯es a1(2²)+²=2 < a1(n), and the upper bound is true since x · a¤1+²=2 < ¹a1(2²).
So there exists a pair (x; f(x)) 2 G1(2²) where x satis¯es (16).

Type 1's expected payo® from continuing to play the sequence when there are t

periods of the current sequence and n0 · n repetitions of the sequence left to play satis¯es

(1¡ ±)
t¡1X
s=0

±sA1(̂{
T¡t+s; |̂T¡t+s) + ±ta1(n0) ¸ ¡M(1¡ ±T ) + ±Ta1(n)

¸ ¡M(1¡ ±T ) + ±T (â1 + 2²) :

This follows as a1(n
0) ¸ a1(n). Type 1's payo® from deviation is bounded above by (1¡

±T )M+±T â1, so a su±cient condition for deviation not to be pro¯table, ±
T (²+M) ¸M , is

given in the proposition. An identical argument using the fact that b(n0) ¸ minfb(n); b¤g
shows that player 2 also does not bene¯t from deviating when they are playing out the

sequence n times. Q.E.D.
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In the next lemma, we start with an equilibrium of ©1(±) with payo®s (a
¤
1; b

¤) close

to the maximum feasible and individually rational payo® to type 1 in G1(3²). Using this

equilibrium we ¯nd a new equilibrium with the payo®s (a1(n); (b(n) + (1 ¡ ±)B(~{; |̂0) +
±f(x))=2), where, by construction, a1(n) < a¤1. If the payo®s at this new equilibrium

satisfy (a1(n); (b(n) + (1¡ ±)B(~{; |̂0) + ±f(x))=2) 2 G1(3²) and the condition a1(2²) + ² <
a1(n) then it is possible to apply the lemma a second time to ¯nd a further equilibrium

of ©1(±) where type 1 receives the payo® a1(n + n
0) < a1(n) < a¤1. Again if this new

equilibrium gives payo®s in G1(3²) and satisfying the same condition, it will be possible

to iterate the lemma a third time, to ¯nd further equilibria of ©1(±) where type 1 receives

even lower payo®s, and so on.

We de¯ne (¾̂(N); ¿̂ (N)) to be the strategies that iteratively apply Lemma 3 to the

equilibrium with payo®s (a¤1; b
¤) where the sequence f(̂{t; |̂t)gT¡1t=0 is played out in total N

times; each iteration uses the strategies (¾̂; ¿̂) de¯ned above Lemma 3except for the last

which uses (^̂¾; ^̂¿) (so there is no initial randomization). (The dependence on ±, ² and

(a¤1; b
¤) is suppressed.) There is an upper bound on the number of times Lemma 3 can

be applied, and hence on N ; let Nmax be this upper bound on N . (We show that the

strategies (¾̂(Nmax); ¿̂(Nmax)) will imply that a1 is close to a1(4
1
16
²).) Randomizations by

player 1 occur at each new application of Lemma 3.

Lemma 4 Let ² > 0 and C > 0 be given and let f(̂{t; |̂t)gT¡1t=0 and ±
¤(²) < 1 be so that

Â1 := ((1¡ ±)=(1¡ ±T ))PT¡1
s=0 ±

sA1(̂{
s; |̂s) < â1 + ² for 1 > ± > ±

¤(²). There exists r > 0

and ~±(²) ¸ ±¤(²) such that: given (a¤1; b
¤) 2 G1(3²) which satis¯es ¹a1(2²) ¡ ²=2 > a¤1 >

¹a1(3²)¡C²; a1 2 [a1(4 116²)+²; ¹a1(3²)¡C²], and ± > ~±(²); then there exists an N such that

(¾̂(N); ¿̂ (N)) is an equilibrium of ©1(±) with a payo® to type 1 of a1(N) within ²=32 of

a1, and at this equilibrium type 1 departs from repeated play of the sequence f(̂{t; |̂t)gT¡1t=0

(by playing ~{ instead of {̂0 at the points of randomisation) with a total probability of at

most 1¡ r.

Proof: Let ~±(²) := maxf±(²); ±¤(²); [32M=(²+ 32M)]1=T ; 1¡ ²=[32M(S + 1)]g. This lower
bound on ± implies that if x and y are any two feasible payo®s for player i, then

jx¡ [(1¡ ±T )y + ±Tx]j = (1¡ ±T )jx¡ yj < (1¡ ±T )2M < ²=16:(17)
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We will ¯rst show that the payo® to type 1 at the equilibrium (¾̂(Nmax); ¿̂ (Nmax))

is no greater than a1(4
1
16
²) + ². It is impossible to apply Lemma 3 another time if

a1(Nmax) · a1(2²) + ², but in this case the result is proved. We will now suppose that

a1(Nmax) > a1(2²) + ², which implies that in the last feasible iteration of Lemma 3 the

constraint a1(n) > a1(2²) + ²=2 does not bind (cf. the argument in the ¯rst paragraph

of the proof of Lemma 3). Thus, instead, in the last feasible iteration of Lemma 3 the

constraint b(n) > b̂+ 2² binds and Lemma 3 cannot be reapplied because (a1(n); (b(n) +

(1¡ ±)B(~{; |̂0)+ ±f(x))=2) 62 G1(3²). There are now two separate cases to consider: (1) If
[b(n)+ (1¡ ±)B(~{; |̂0)+ ±f(x)]=2 > b̂+3², but (a1(n); [b(n)+ (1¡ ±)B(~{; |̂0)+ ±f(x)]=2) 62
G1(3²), then it must be that a1(n) < a1(3²). (2) If [b(n)+(1¡±)B(~{; |̂0)+±f(x)]=2 < b̂+3²,
then b(n) > b̂+ 2² implies

(1¡ ±)B(~{; |̂0) + ±f(x) < b̂+ 4²:(18)

Player 1's equilibrium payo® is a1(n) = (1 ¡ ±)A(~{; |̂0) + ±x, by indi®erence. The point
(a1(n); (1¡±)B(~{; |̂0)+±f(x)) is in the feasible set and is within ²=16 of the point (x; f(x)),
by (17). We know that f(x) < b̂ + 4 1

16
², from (17) and (18). It therefore follows that

x < a1(4
1
16
²). This and (17) applied again implies a1(n) < a1(4

1
16
²) + 1

16
².

The payo® to type 1 at the equilibrium (¾̂(Nmax); ¿̂ (Nmax)) is thus no greater than

a1(4
1
16
²) + ². Therefore, type 1's payo® at the equilibrium (¾̂(N); ¿̂(N)) ranges from less

than a1(4
1
16
²) + ² (for N large) to a¤1 > ¹a1(3²)¡ C² (for N = 0). By (17), type 1's payo®

at the equilibrium (¾̂(N); ¿̂ (N)) increases by at most ²=16 as N increases in integer steps.

Thus there must be a value N for which type 1's payo® is within ²=32 of any point in

[a1(4
1
16
²) + ²; a1(3²)¡ C²].

Fix a particular (a¤1; b
¤) satisfying the conditions of the lemma statement and a ± >

~±(²). The equilibrium (¾̂(Nmax); ¿̂(Nmax)) is well de¯ned, so: there are only a ¯nite number

of periods when the sequence f(̂{t; |̂t)gT¡1t=0 is played and there are only a ¯nite number

of occasions when type 1 randomizes over the actions {̂0 and ~{. Thus, there is a strictly

positive probability r of always playing {̂0 and not deviating from the sequence. We

now need to prove that the number of randomizations between n = Nmax and n = 0 is

bounded above by a number independent of ± and (a¤1; b
¤). For a given ± and (a¤1; b

¤), at

the equilibrium (¾̂(Nmax); ¿̂(Nmax)), let a1(n) and a1(n + n
0) be player 1's payo® at two

consecutive randomizations (assuming there are at least 2 randomizations). Recall that
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there is no randomization at the start of the last iteration, so n + n0 < Nmax. We must

have

b(n+ n0) = (1¡ ±n0T )B̂ + ±n0T 1
2
[b(n) + (1¡ ±)B(~{; |̂0) + ±f(x)] > b̂+ 2²;(19)

where x is chosen as in (16). (Note: if there are any randomizations, then B̂ < b̂ + 2².)

By de¯nition of there being a randomization at n + n0 the inequality in (19) must be

violated for n+ n0 + 1 (since the constraint a1(n+ n0) > a1(2²) +
1
2
² can only bind | in

the sense that additional play of the sequence f(̂{t; |̂t)gT¡1t=0 would lead to its violation |

at n + n0 = Nmax), and since ±T is bounded below by the assumption ± > ~± there is an

upper bound on ±Tn
0
:

(1 + ²=32M)(b̂+ 2²¡ B̂)
1
2
[b(n) + (1¡ ±)B(~{; |̂0) + ±f(x)]¡ B̂ > ±n

0T :

But Â1 < â1 + ², so the upper bound on ±
n0T gives an upper bound on a1(n+ n

0):

a1(n+ n
0)¡ Â1 < (a1(n)¡ Â1)

8<: (1 + ²=32M)(b̂+ 2²¡ B̂)
1
2
[b(n) + (1¡ ±)B(~{; |̂0) + ±f(x)]¡ B̂

9=; :
A su±cient condition for the term in braces to be strictly bounded below unity for all

± > ~±(²) is that there exists an ´ > 0 such that

1 +
²

32M
+ ´ <

1
2
[b(n) + (1¡ ±)B(~{; |̂0) + ±f(x)]¡ B̂

b̂+ 2²¡ B̂ ; 8 1 > ± > ~±(²):(20)

Subtracting unity from each side and then noticing that the denominator of the right is

strictly less than 2M gives the following su±cient condition

²

16
<
1

2
[b(n) + (1¡ ±)B(~{; |̂0) + ±f(x)]¡ b̂¡ 2²; 8 1 > ± > ~±(²):

Let f(a1) = G+Ha1 be the equation of the tangent to the frontier of the feasible set at

a1. Substituting this in for f(:) and then for x from (16) and multiplying by 2:

²

8
< G+Ha1(n)¡ b(n)¡ (1¡ ±)(G+HA1(~{; |̂0)¡B(~{; |̂0)) + 2(b(n)¡ b̂¡ 2²):(21)

The last term on the right is positive by (14). The second last term equals (1 ¡ ±)(G +
Hx¡B(~{; |̂0)+H(A1(~{; |̂0)¡x))), which is bounded above by (1¡±)(S+1)2M , as jHj · S.
By the assumption that ± > ~±(²); a su±cient condition for (21) and hence for (20) is

²

8
< G+Ha1(n)¡ b(n)¡ ²

16
:
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The construction of the strategies ensures that a1(n) · a¤1 < ¹a1(2²)¡ ²=2, so at a1(n) the
maximum feasible payo® to player 2 is at least b̂+2². The line G+Ha1 graphs payo®s to

player 2 that are weakly greater than his maximum feasible payo® so G+Ha1(n) ¸ b̂+2².
(17) ensures that b(n) is within ²=16 of b̂, so the right of the above expression is at least

2²¡ ²=16. We have shown that after the ¯rst randomization the value a1(n)¡ Â1 declines
(at least) exponentially with each randomization at some constant rate, say Ã < 1, so

a1(n+n
0)¡Â1 < Ã[a1(n)¡ Â1] (where n and (n+n0) refer to consecutive randomizations,

as before). Since Â1 < â1+ ² this implies a1(n+n
0)¡ (â1+ ²) < Ã[a1(n)¡ (â1+ ²)]. Thus

even if the ¯rst iteration (i.e., up to the ¯rst randomization) had an arbitrarily small e®ect,

and since a1 at the ¯rst randomization is bounded above by ¹a1, it follows that after h

randomizations a1(n)¡(â1+²) < Ãh¡1[¹a1¡(â1+²)]. If h¤ satis¯es Ãh¤¡1 < ²[¹a1¡(â1+²)]¡1
we can be certain that at most h¤ randomizations are required before a1(n) · a1(2²)+ 1

2
²,

and that there is a strictly positive lower bound r ¸ 2¡h¤ on the probability of sticking
to repeated play of the sequence f(̂{t; |̂t)gT¡1t=0 . Q.E.D.

The lemma asserts that the total probability with which player 1 departs from repetitions

of the sequence (by playing ~{ at one of the points of randomization) is bounded below

one. Lemma 4 is essential because we can adapt its construction to build an equilibrium

where player 1 is one of two di®erent types: type k always plays the ¯xed sequence of

actions and type 1 plays the sequence with occasional randomizations. By requiring the

probability of type k to be su±ciently small (in particular it must be less than r), and by

adjusting the probability that type 1 plays ~{, the actions of the two types will combine to

reproduce the strategy ¾̂(N) and the optimal response by player 2 thus remains ¿̂(N).

4.2 The Repeated Game of Incomplete Information

The de¯nition of individual rationality given in Section 3.1 applies to player 1's undis-

counted payo®s. In discounted games as the players become more patient, player 2 is able

to approximate these punishments arbitrarily closely. First we de¯ne the notion of ²-IR

payo®s.

De¯nition 2 Let ² > 0 be given. The vector x = (xk)k2K 2 <K is ²-individually rational
(²-IR) if the set f y 2 <K j y + ²1 · x g is approachable.
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(The notation 1 is used to denote a K¡ dimensional vector of 1's.) There is a lower
threshold on the discounting, ±², so that if ± > ±² then player 2 can hold player 1 down

any ²-IR payo® in ¡(p; ±). Let Cav a(p) be the (pointwise) smallest concave function

g(p) satisfying g(p) ¸ a(p) where a(p) is de¯ned in (1). Then Cav a(p) is the value for
the zero-sum repeated game of incomplete information with no discounting that is played

when player 2's payo®s are (¡Ak(i; j))k2K (e.g., Zamir (1992, p.126)). Now consider

the zero-sum discounted repeated game of incomplete information with the same payo®s.

The value function for this game, v±(p), exists and satis¯es 0 · v±(p) ¡ Cav a(p) ·
M
q
f(K ¡ 1)(1¡ ±)=(1 + ±)g (see Zamir (1992, pp.119-125)). This implies that as ± ! 1

the punishments that can be imposed in the discounted game converge uniformly to the

punishments that can be imposed in the undiscounted game (details of this ¯nal step

available on request).

The Folk Theorem for discounted repeated games of complete information, as usually

stated, applies only to strictly individually rational payo®s. Likewise, we shall assume (in

(A.1)) that we can ¯nd strictly (by a margin of at least ¹²) individually rational payo®s

for the repeated game of incomplete information ¡(p; ±).

(A.1) There exists (¼̧1; ¼̧2; :::; ¼̧K) 2 (¢IJ)K and ¹² > 0 such that (Ak(¼̧k))k2K
is ¹²-IR and B(¼̧k) > b̂+ ¹² for all k 2 K.

We de¯ne strict individual rationality by a strict inequality and approachability,

rather than in relation to the players' minmax levels. As in the complete information

case there are always weakly individually rational payo®s, that is, there exists (¼̧k)k2K 2
(¢IJ)K and an individually rational vector (!̧k)k2K so that: Ak(¼̧k) ¸ !̧k, B(¼̧k) ¸ b̂, for
all k 2 K, but A.1 requires more. In particular, it implies that the game of complete
information played between each type k and player 2 has strictly individually rational

payo®s (Gk(²) 6= ; for some ² > 0) and thus it cannot be the case, for example, that one
of player 1's types plays a zero-sum game with player 2. It is, nevertheless, a natural

extension of the implicit restriction made in the complete information case.

Using A.1 we can now describe a particular equilibrium, which we refer to as the

terminal equilibrium. The terminal equilibrium is revealing in the sense that there is an
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initial signalling phase, where each player signals her type with possible pooling, and no

information is revealed thereafter. In general the incentive compatibility conditions (that

each type should have no incentive to mimic another type) will bind most tightly at such

an equilibrium. We therefore choose the payo®s at the equilibrium so type k receives a

payo® close to ¹ak(²): (This was why, in Lemma 4, terminal payo®s were restricted to be

high.) The terminal equilibrium will serve to describe the players' long-run behaviour in

¡(p; ±), apart from on paths on which player 1 reveals herself to be type 1 earlier in the

game.

Lemma 5 Given A.1, there exists an ~² > 0 such that for all ² < ~²: there exists a ¹±(²) < 1

such that for all ± > ¹±(²) and all p 2 ¢K the game ¡(p; ±) has an equilibrium with payo®s,
((¹®1; :::; ¹®K); ¹̄), that satisfy:

(a) ¹ak(3²)¡ 1
2
² ¸ ¹®k > ¹ak(3²)¡C² for some constant C, independent of ² and ±, and for

k = 1; 2; :::;K;

(b) ¹̄ ¸ b̂+ 3².

Proof: We start by constructing correlated strategies that give the players payo®s close

to their maximum feasible and individually rational payo®s. Consider the convex set

D² :=
K\
k=1

f ¼ 2 ¢IJ j Ak(¼) · ¹ak(3²)¡ 3
4
²; B(¼) ¸ b̂+ 4²g:

D0 has a non-empty interior, by A.1. D² is de¯ned by K +1 linear inequalities which are

continuous in ² and become tighter as ² increases. De¯ne ²̂ > 0 to be the largest ² such

that D² 6= ; for all ² · ²̂. For k = 1; 2; :::; K and ² · ²̂, choose ¼¤k(²) to maximize Ak(:)
on the constraint set D²; obviously Ak(¼

¤
k(0)) = ¹ak(0). We will de¯ne ~² to be the largest

value of ² · ²̂ such that the vector (Ak(¼¤k(²))k2K) is 3²-IR.

We will now show that there exists a constant Co, independent of ² and ±, so that

Co² > ¹ak(3²)¡ Ak(¼¤k(²)); for ² · ~²; 8 k:(22)

Let k be given and let ¼o := ¼¤k(0). Also, for ¸ 2 [0; 1] de¯ne ¼¸ := ¸¼y + (1 ¡ ¸)¼o,
where ¼y 2 D~². By linearity B(¼

¸) ¸ ¸(b̂ + ²̂) + (1 ¡ ¸)b̂, so ¼¸ is a feasible solution to
maxf Ak(¼) j B(¼) ¸ b̂ + ¸²̂g. Thus ¹ak(¸²̂) ¸ Ak(¼

¸) = ¸Ak(¼
y) + (1 ¡ ¸)¹ak(0). Let
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¸ = ²=~² for 0 · ² · ²̂; then this implies

¹ak(²) ¸ ¹ak(0)¡ ²¹ak(0)¡ Ak(¼
y)

~²
; 8 ² < ~²:

De¯ne Ck to be the term that multiplies ²; then for ² < ~² and 8 k;

¹ak(²) ¸ ¹ak(0)¡ Ck²;(23)

and note that Ck is a constant independent of ² and ±. Consider again, for a ¯xed k; the

correlated strategy ¼¸. If ¸ ¸ ²=²̂, then ¼¸ satis¯es the constraint B(¼¸) ¸ b̂ + 4². If

¸ ¸ ²(3
4
+ 3Ck0)=(¹ak0(0) ¡ Ak0(¼y)) for all k0, then ¼¸ satis¯es the constraint Ak0(¼¸) ·

¹ak0(3²)¡ 3
4
² for all k0. This second condition follows from rearranging the below su±cient

condition for the constraint:

(1¡ ¸)¹ak0(0) + ¸Ak0(¼y) · ¹ak0(0)¡ Ck03²¡ 3
4
²(24)

(it is su±cient since the LHS of (24) is an upper bound for Ak0(¼
¸), while the RHS is

no greater than ¹ak0(3²) ¡ 3
4
² by (23)). Thus ¼¸ 2 D² if ¸ ¸ E², where E is a positive

constant. The value Ak(¼
E²) is, therefore, a lower bound on Ak(¼

¤
k(²)) for ² < 1=E. This

implies that

¹ak(3²)¡Ak(¼¤k(²)) · ¹ak(0)¡ Ak(¼E²) = E[¹ak(0)¡Ak(¼y)]²

for ² < x, for some x > 0, and thus a constant Cok exists such that for ² < x, Cok² >

¹ak(3²)¡ Ak(¼¤k(²)). It follows that on any compact interval for which ¹ak(3²)¡ Ak(¼¤k(²))
is de¯ned a linear upper bound exists with ¯nite slope, and in particular it has a linear

upper bound on [0; ~²], and (22) follows.

By Result 2, for any ± > ±̂(²) we can specifyK sequences of action pro¯les f(itk; jtk)g1t=0
such that

Ak0(¼
¤
k(²)) = (1¡ ±)

1X
s=0

±tAk0(i
t
k; j

t
k); 8k; k0 2 K;

B(¼¤k(²)) = (1¡ ±)
1X
s=0

±tB(itk; j
t
k); 8k 2 K:

By Result 2 we can also choose these sequences so that, for all k, k0, player k0's continuation

payo®s, if play follows fitk; jtk)g1t=0, are within ²=2 of Ak0(¼¤k(²)) at all future times. These
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sequences will be our equilibrium path actions. As (Ak(¼
¤
k(²))k2K) is 3²-IR there is a pro¯le

of IR payo®s (!̧k)k2K, satisfying !̧k + 3² < Ak(¼¤k(²)), and player 1 will be punished for

an observable deviation by being held down to !̧k + ² for all k:

In this proof we will choose ¹±(²) < 1 so that (i) ¹±(²) > ±̂(²), (ii) ¹±(²) > ±², (iii)

¹±(²) > [16M=(16M + ²)]1=K, (iv) ¹±(²) > [(b̂ + 3² +M)=(b̂ + 4² +M)]1=K for all k. The

second condition ensures that player 2 can hold the types of player 1 to within ² of any

IR payo®s. The third ensures that the loss from signalling is at most ²=8 and the last

condition will ensure that player 2 never gets less than b̂+ 3².

We now take ² < ~² to be given. We now show that the following strategies are an

equilibrium of ¡(p; ±): Player 2 begins by playing the ¯xed sequence of actions associated

with type 1, fjt1g, and if he observes player 1 deviating from her corresponding sequence

fit1g in period t, for t = 0; 1; :::; K ¡ 2, he interprets this move as a signal that player 1 is
type k = t+ 2. When type k is signalled he then begins to play out the sequence fjtkg1t=0
from the beginning and expects player 1 to play out the corresponding sequence fitkg1t=0.
If player 1 deviates from the sequence fit1g in period t > K ¡ 2, or deviates from the

sequence fitkg once type k has been signalled, then player 2 punishes these deviations by
holding her to the payo®s (!̧k)k2K + ²1 (de¯ned above). This is possible as ± > ±². Each

of player 1's types plays a best response to this strategy of player 2 and minmaxes player

2 if he deviates from the above strategy.

If type k signals truthfully, then her expected payo® is bounded below by ¹ak(3²) ¡
Co² ¡ 1

8
². (We have shown that Ak(¼

¤
k(²)) > ¹ak(3²)¡ Co² and the assumption 16M(1¡

±K) < ²±K implies that the payo®s over the ¯rst K ¡ 1 periods contribute at most ²=8
to her total payo®.) Thus the optimal response of type k to 2's strategy must give her a

payo®, ¹®k, satisfying ¹®k > ¹ak(3²)¡ (Co+ 1
8
)², since she always has the option of signalling

truthfully. Then once we have established equilibrium, the lower bound on equilibrium

payo®s to player 1 will be as required with C = Co + 1
8
. In general the optimal response

for type k will be to signal some type k0 (which may be k itself) and never to trigger

the punishment from player 2. Suppose this is false, so that it is optimal for type k to

signal type k0 and to trigger the punishment after s periods of mimicking type k0. Her

payo® from playing out the sequence f(itk0 ; jtk0)g1t=0 in its entirety can be decomposed into
her average payo® over the ¯rst s periods, x, and her average payo® over the remaining
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periods, y, that is, Ak(¼
¤
k0(²)) = (1 ¡ ±s)x + ±sy. By the construction of the sequence

of actions, at any point in time the continuation payo® satis¯es y ¸ Ak(¼
¤
k0(²)) ¡ ²=2.

These two facts imply an upper bound on x: (1¡ ±s)x · (1¡ ±s)Ak(¼¤k0(²)) + ±s²=2. Her
payo® (discounted to the period after the signal is sent) from mimicking type k0 and then

deviating in period s is thus bounded above by

(1¡ ±s)Ak(¼¤k0(²)) + ±s²=2 + (1¡ ±)±sM + ±s+1(!̧k + ²):(25)

If she prefers to be punished from time s, then Ak(¼
¤
k0(²)) · !̧k + 25²=16, because her

payo® from continuing to play fitk0g1t=0 is at least Ak(¼¤k0(²))¡²=2 by the construction of the
action sequences, and the deviation payo® is at most (1¡±)M+±(!̧k+²) · !̧k+²(1+1=16).
This upper bound for Ak(¼

¤
k0(²)) and the bound on ± implies that (25) is less than !̧k+2².

By the de¯nition of ~² the payo®s (Ak(¼
¤
k(²))k2K are 3²-IR, so this is strictly less than the

payo® from truthful revelation, described above, which gives a contradiction. Likewise,

an observable deviation during the signalling leads to a payo® of at most !̧k+²+
1
8
², which

is less than the payo® from truthful revelation. Type k's equilibrium payo®s can now be

broken down into a payo® from signalling and a payo® Ak(¼
¤
k0(²)) after signalling. This is

bounded above by (1¡ ±K)M + ±K(¹ak(3²)¡ 3
4
²), by de¯nition of ¼¤k0(²). Assumption (iii)

on ± ensures that this is less than ¹ak(3²)¡ 1
2
². The upper bound on equilibrium payo®s

is established.

Player 2's expected payo® is determined by playing at most K ¡ 1 arbitrary actions
followed by one of the ¯xed sequences f(itk; jtk)g. His equilibrium payo® is therefore no less
than (1¡ ±K)(¡M) + ±K(b̂+4²). This lower bound is strictly greater than b̂+3² (by the
fourth assumption on ±). This proves part (b) of the Lemma. His payo® from a deviation

is at most (1¡ ±)(M)+ ±b̂, so we have also shown that player 2 cannot pro¯tably deviate
from the strategy above. Q.E.D.

The next result determines K ¡ 1 correlated strategies (¼2; :::; ¼K) 2 (¢IJ)K¡1, and
each correlated strategy ¼k will be mimicked by the ¯nite sequence of actions played by

type k. It shows that: (a) each correlated strategy holds type 1 to her minmax level or

lower; (b) normalizing for the e®ect on type 1's payo®, each correlated strategy satis¯es

an incentive compatibility condition; (c) there is an individually rational point z 2 <K
where type 1 receives her minmax payo® and type k > 1 receives a convex combination

of her payo® ¹ak and the payo® she gets from playing the correlated strategy, that is
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¹ak + ¸k(Ak(¼k) ¡ ¹ak), where the weight ¸k is chosen to hold type 1 to her minmax level
when using the same correlated strategy, ¹a1 + ¸k(A1(¼k)¡ ¹a1) = â1.

Lemma 6 Assume A.1, then there exist correlated strategies (¼2; :::; ¼K) 2 (¢IJ)K¡1 such
that:

(a) A1(¼k) · â1 for all k = 2; 3; :::;K,
(b) (Ak(¼k)¡ ¹ak)=(¹a1 ¡ A1(¼k)) ¸ (Ak(¼k0)¡ ¹ak)=(¹a1 ¡ A1(¼k0))
for all k; k0 = 2; 3; :::;K,

(c) z is individually rational, where

z :=

Ã
â1; ¹a2 +

¹a1 ¡ â1
¹a1 ¡ A1(¼2)

(A2(¼2)¡ ¹a2); :::; ¹aK +
¹a1 ¡ â1

¹a1 ¡A1(¼K)
(AK(¼K)¡ ¹aK)

!
:

Proof: Consider the constrained optimization

max
¼2¢IJ

Ak(¼)¡ ¹ak
¹a1 ¡A1(¼) ; subject to A1(¼) · â1:(26)

As ¹a1 > â1, by assumption A.1, the maximand is well de¯ned. As the constraint set is non-

empty (by the Minimax Theorem) and compact there is a solution ¼k0 to the optimization

for all k0 > 1.

We aim to show that the point z, de¯ned above, is individually rational. We must,

therefore, show that the set fxjx · zg is approachable. By Zamir (1992), for example, it
is su±cient to show that for any q 2 <K with q ¸ 0 there exists a mixed action, g, for
player 2 such that

q((A1(i; g); :::; AK(i; g))¡ z) · 0; 8i 2 I:(27)

Let ĝ be a mixed strategy that ensures player 2 receives his minmax level (B(i; ĝ) ¸ b̂ for
all i 2 I) and let ĝ1 be a mixed strategy that minmaxes type 1 (A1(i; ĝ1) · â1 for all i 2 I).
We will show that for any q ¸ 0 either g = ĝ or g = ĝ1 will ensure (27) holds. If (27) holds
for all q when g = ĝ then there is nothing to prove. Suppose that for some q ¸ 0 (27) does
not hold with g = ĝ; then there exists i 2 I such that q((A1(i; ĝ); :::; AK(i; ĝ))¡ z) > 0.
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By the de¯nition of ¹a, ¹ak ¸ Ak(i; ĝ), and together with the fact that q ¸ 0, this implies
q(¹a¡ z) > 0. A substitution from the de¯nition of z shows this is equivalent to

(¹a1 ¡ â1)
Ã
q1 +

KX
k=2

qk
Ak(¼k)¡ ¹ak
A1(¼k)¡ ¹a1

!
> 0:(28)

We must show that if (28) holds, q((A1(i; ĝ1); :::; AK(i; ĝ1)) ¡ z) · 0 for all i 2 I. It
is su±cient to show q((A1(¼); :::; AK(¼)) ¡ z) · 0 for all ¼ such that A1(¼) · â1. A

substitution for z then gives

q((A1(¼); :::; AK(¼))¡ z)

= q1(A1(¼)¡ â1) +
KX
k=2

qk

Ã
Ak(¼)¡ ¹ak + (¹a1 ¡ â1)Ak(¼k)¡ ¹ak

A1(¼k)¡ ¹a1

!

= (A1(¼)¡ â1)q1 + (¹a1 ¡A1(¼))
KX
k=2

qk

Ã
Ak(¼)¡ ¹ak
¹a1 ¡A1(¼) +

¹a1 ¡ â1
¹a1 ¡A1(¼)

Ak(¼k)¡ ¹ak
A1(¼k)¡ ¹a1

!

· (A1(¼)¡ â1)
Ã
q1 +

KX
k=2

qk
Ak(¼k)¡ ¹ak
A1(¼k)¡ ¹a1

!
· 0 8¼such that A1(¼) · â1:

The ¯rst inequality arises because ¼ is replaced by ¼k in (Ak(¼)¡ ¹ak)=(¹a1 ¡ A1(¼)) and
this is therefore maximized on the set of ¼'s with A1(¼) · â1. The ¯nal inequality

then follows from (28). Thus if q((A1(i; ĝ); :::; AK(i; ĝ)) ¡ z) > 0 it must be true that

q((A1(i; ĝ1); :::; AK(i; ĝ1)) ¡ z) · 0. We can conclude that z is individually rational.

Q.E.D.

In Lemma 7 we de¯ne K ¡ 1 ¯nite sequences of actions that approximate the corre-
lated strategies (¼2; :::; ¼K).

Lemma 7 For any ² > 0 there exists ±0(²) < 1, a ¯nite integer T > 0 and K ¡ 1
sequences of actions f(̂{sk0 ; |̂sk0)gT¡1s=0 , for k

0 = 2; 3; :::;K, such that for all 1 > ± > ±0(²):

(a) jÂk;k0 ¡ Ak(¼k0)j < ²=2 for k 2 K, k0 = 2; 3; :::; K; (b) jB̂k0 ¡ B(¼k0)j < ²=2 for

k0 = 2; 3; :::; K; where

Âk;k0 :=
1¡ ±
1¡ ±T

T¡1X
s=0

±sAk(̂{
s
k0; |̂

s
k0); B̂k0 :=

1¡ ±
1¡ ±T

T¡1X
s=0

±sB(̂{sk0 ; |̂
s
k0):(29)

Proof: For k0 = 2; 3; :::;K, let ¼(k0) be a rational approximation to the correlated strat-

egy ¼k0 , such that k¼k0 ¡ ¼(k0)k < ²=4 for k0 = 2; 3; :::;K. There exists a positive integer

28



T such that T¼(k0)ij is an integer for all k0 = 2; 3; :::; K, i 2 I and j 2 J , (where ¼(k)ij
denotes the ijth element of the correlated strategy ¼(k)). Choose the K ¡ 1 sequences
so that the action pair (i; j) appears T¼(k0)ij times in the sequence f(isk0 ; jsk0)gT¡1s=0 . Con-

tinuity then ensures that there exists ±0(²) such that for all ± > ±0(²) the result holds.

Q.E.D.

We now prove our main result. It contains three main elements. The ¯rst element

of the proof is an investigation of the two-type game where only type 1 and type k are

given positive probability by player 2. We describe an equilibrium of this game where the

combined actions of the players (i.e., using the priors over player 1's types) replicate the

strategies (¾̂(N); ¿̂(N)), described in Lemma 4: type k repeatedly plays the ¯nite sequence

of Lemma 7, while type 1 occasionally randomizes. As there is strictly positive probability

that this sequence is played out in full, provided the probability of type k is less than r,

it is possible for the combined actions of the types to replicate the strategy ¾̂(N). And if

the sequence is played out in full the players settle down at the equilibrium described in

Lemma 5. In this construction we will use Lemma 6 to de¯ne punishments. By Lemma 4

we can therefore deduce that, provided type 1 is given su±ciently high probability, there

is an equilibrium where type 1's payo® is arbitrarily close to any a1 2 [a1(0); ¹a1(0)].

The second step is to add an initial random move by type 1 in the two-type game. At

this random move type 1 reveals herself with a high probability and after this plays out an

equilibrium of the full information game where player 2 receives the payo® b. Provided the

probability of type 1 is su±ciently high, this allows us to ¯nd an equilibrium of the two-

type game where, for given º > 0; and given any pair (a1; b) 2 G1(º); type 1's equilibrium
payo® is close to a1 and player 2's payo® is close to b. The ¯nal step in the construction is

an initial signalling phase where the types k0 > 1 of player 1 signal their type and type 1

randomly mimics one of the types k0 > 1. This is not simple to implement, because type

1 must be made indi®erent between mimicking all other types. To ensure her indi®erence

it is necessary that player 2 randomizes in the period that type k signals and that the

outcome of player 2's randomization determines the equilibrium of the two-type game

that is subsequently played.

Theorem 3 Assume A.1 and let º > 0 be given. Then there exists ±º < 1, p
º
1 < 1 such
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that for all p with p1 > p
º
1 and for all ± > ±º, given any (a1; b) 2 G1(º) the game ¡(p; ±)

has an equilibrium with the payo®s ((®1; :::; ®K); ¯) 2 <K+1 which satisfy

k(®1; ¯)¡ (a1; b)k < º:(30)

Proof: Some de¯nitions and notation: Choose Q > 0 to be a linear upper bound on

the di®erence between ¹ak(²) and ¹ak for all ² 2 (0; ¹²) and for all k (where ¹² is de¯ned in
Assumption 1); in particular, choose Q so that

¹ak ¡ ¹ak(3²) + 3²=4 < Q² 8k 2 K; 0 < ² < ¹²:(31)

(See, e.g., the argument for (23) in Lemma 5.) We will also de¯ne a non-negative constant

R as follows (where ¼k is de¯ned in Lemma 6):

R := max
k

?????¹ak ¡ Ak(¼k)¹a1 ¡ A1(¼k)

????? :(32)

From Lemma 6(b) we have that

Ak(¼k)¡ ¹ak
¹a1 ¡ A1(¼k)

¸ Ak(¼k0)¡ ¹ak
¹a1 ¡A1(¼k0)

; 8k; k0 = 2; 3; :::;K:(33)

We will begin by assuming that this inequality is strict when k 6= k0, that is,
Ak(¼k)¡ ¹ak
¹a1 ¡A1(¼k)

>
Ak(¼k0)¡ ¹ak
¹a1 ¡A1(¼k0)

; 8k; k0 = 2; 3; :::;K; k 6= k0:(34)

(We will deal with the case of k 6= k0 satisfying (33) with equality at the end of the proof.)
Finally, Y is de¯ned to be the slope (with 2's payo®s in the numerator) of G1(0) when

this set is a line segment (IntG1(0) = ;) and when IntG1(0) 6= ; we de¯ne Y = 1. Y is

bounded above and strictly positive by Assumption A.1.

Let ¶ > 0 be given, where ¶ < ¹². Choose ² > 0 so that: (i) 3² < ¶; (ii) for all

k; k0 = 2; 3; :::;K with k 6= k0 it is true that for all ± > ±0(²)

Âk;k ¡ ¹ak
¹a1 ¡ Â1;k

>
Âk;k0 ¡ ¹ak
¹a1 ¡ Â1;k0

+ (2 +R)²;(35)

where Âk;k0 and ±
0(²) are as de¯ned in Lemma 7; (iii) ¸ 2 [0; 1] such that ¸â1+(1¡¸)¹a1 >

â1 + ¶ ¡ ²=2 implies ¸z + (1 ¡ ¸)¹a is (2 + (Q + 2)(R + 1))²-IR; (iv) a1(4 116²) + ² <
a1(¶) < ¹a1(3²) ¡ C² where C is de¯ned in Lemma 5 (a1(¶) < ¹a1(0), because G1(¹²) is
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non-empty by Assumption 1 and ¶ < ¹²; so the last inequality holds for small ²); (v)

¶ > [8(9=8)K¡2 ¡ 7]²maxfY; 1g. ((ii) is possible as we have assumed (34) and the payo®s
from playing out the action sequences can be made arbitrarily close to the payo® from

playing the correlated strategies ¼k, jÂk;k0 ¡Ak(¼k0)j < ²=2, by Lemma 7. (iii) is possible
because the sets of ²-IR payo®s are convex and these sets converge to the set of IR payo®s

as ²! 0. So (a) as the point ¹a is (2+(Q+2)(R+1))²-IR for ² su±ciently small, (b) the set

of ²-IR payo®s is convex and converges to the set of IR payo®s as ²! 0, and (c) the point

z is IR, the convex combination (1¡¸)z+¸¹a, for a given ¸ < 1 will be (2+(Q+2)(R+1))²-
IR provided ² is su±ciently small.) Given this value for ², let T and ±0(²) be as de¯ned in

Lemma 7, and setting ±¤(²) = ±0(²), let ~±(²) be as de¯ned in Lemma 4 (each of the K ¡ 1
¯nite sequences speci¯ed in Lemma 7 satis¯es the conditions of Lemma 4; ~±(²) depends

on them only through T ). Choose ±¶ = maxf~±(²); ±²; ¹±(²); (4M=(4M + ²)1=Kg, where ±² is
de¯ned below De¯nition 2 and ¹±(²) is de¯ned in Lemma 5.

1. The Game with Two Types : arbitrary payo® for type 1

Let some type k > 1 be given. Recall that Lemma 4 de¯ned an equilibrium (¾̂(N); ¿̂(N))

of the complete information game where, with occasional randomizations, type 1 and

player 2 play out a ¯nite sequence of actions N times and then settle on an equilibrium.

Recall also that type 1's average payo® over the ¯nite sequence of actions f(̂{sk; |̂sk)gT¡1s=0

(de¯ned in Lemma 7) is not greater than â1 + ² for all ± > ±
0(²), and for all ± > ¹±(²) that

the equilibrium de¯ned in Lemma 5 has payo®s, (¹®1; ¹®2; :::; ¹®K; ¹̄), that satisfy ¹̄ ¸ b̂+3²
and ¹a1(3²)¡ ²=2 ¸ ¹®1 > ¹a1(3²)¡ C². Let a01 2 [a1(¶); ¹a1(3²)¡ C²] be given (this interval
is non-empty by (iv) above); then by Lemma 4 with (a¤1; b) = (¹®1; ¹̄); and by (iv), for all

± close to 1, there exists N and strategies which we denote as (¾̂(k;N); ¿̂ (k;N)) which

constitute an equilibrium of ©1(±), in which type 1 gets a payo® within
1
32
² of a01. At this

equilibrium the sequence f(̂{sk; |̂sk)gT¡1s=0 is played N times with occasional randomizations

by type 1 and ¯nally, if 1 has not deviated from the sequence, play settles on an equilibrium

of ©1(±) where the players receive the payo®s (¹®1; ¹̄). By Lemma 4, there is a probability

of at least r, independent of ±, that type 1 ends up playing the equilibrium with payo®s

(¹®1; ¹̄).

Let p with 0 < p1 <
1
4
and pk0 = 0 for all k0 6= 1; k be given. We will now show
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there exists a p0, satisfying p01 ¸ p1, p0k · pk and p0k0 = 0 for all k0 6= 1; k, such that the
following strategies, or a slight modi¯cation explained below, are an equilibrium in the

game ¡(p0; ±):

Type k plays out the ¯nite sequence f(̂{sk; |̂sk)gT¡1s=0 N times and then plays out the strategy

(for k) in the equilibrium of ¡(p; ±) with the payo®s (¹®1; :::; ¹®K ; ¹̄) given above. Deviations

by player 2 from his equilibrium strategy are minmaxed.

Type 1 plays a strategy so that from player 2's perspective the combined actions of types

1 and k over the ¯rst TN periods replicate the strategy ¾̂(k;N), de¯ned above, and,

after TN periods of playing the sequence, type 1 settles down to play the equilibrium

of ¡(p; ±) given above. Thus, in periods where ¾̂(k;N) requires player 1 to randomize

with probability 1=2, type 1 actually deviates from the sequence with probability more

than 1=2 to compensate for the fact that type k never deviates from the sequence. If r

(where r > r) is the total probability that player 1 does not deviate from this sequence,

then after TN periods player 2 has the prior (r ¡ (1 ¡ p01))=r that player 1 is type 1.
Provided we chose p0 such that p1 = 1¡ (1¡p01)=r, or p01 = 1¡r(1¡p1), then playing the
continuation equilibrium is feasible. Deviations by player 2 from his equilibrium strategy

are minmaxed.

Player 2 will play out the strategy ¿̂ (k;N) on the equilibrium path over the ¯rst TN

periods with the terminal equilibrium of ¡(p; ±) given above being played thereafter, or

one of the revealing equilibria if type 1 has revealed her type. However, if player 1 uses

a pure action that deviates from her equilibrium strategy (i.e., a probability zero action),

then player 2 responds in the following way. He ¯rst calculates type 1's expected payo®

if she were to continue playing out her strategy (and player 2 plays the actions described

above); call this c. Then he takes the convex combination ¸z + (1 ¡ ¸)¹a, of the point
z (de¯ned in (??)) and the point ¹a (de¯ned in Lemma 6), that gives type 1 exactly the

payo® c, that is, ¸ = (¹a1 ¡ c)=(¹a1 ¡ â1). By the construction above (point (iii) below
(35)), since c > â1 + ¶ ¡ ²=2 then this convex combination is (2 + (1 + R)(2 + Q))²-IR.5

5At the equilibrium strategy for type 1 described above, type 1's payo® at the start of each ¯nite
sequence is a convex combination of Â1;k and the terminal equilibrium payo® ¹®1 : (1¡±nT )Â1;k+±nT ¹®1,
for some integer n · N . The integer n = N is chosen so that her equilibrium payo® (i.e., at the start of
the ¯rst round of the ¯nite sequence) is within ²=32 of a01 ¸ â1+ ¶; and hence at least â1+ ¶¡ ²=32: The
payo® ¹®1 is at least ¹a1(3²)¡C² > â1 + ¶ (by the assumption on ²): Allowing for the small integer e®ects
which arise when playing out the ¯nite sequence of actions, it is thus the case that her continuation payo®
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That is, there exists a vector of IR payo®s (!1; ::::; !K) 2 <K such that

(!1; :::; !K) + (2 + (1 +R)(2 +Q))²1 · ¸z+ (1¡ ¸)¹a
=

Ã
c; ¹a2 ¡ (¹a1 ¡ c)¹a2 ¡ A2(¼2)

¹a1 ¡ A1(¼2)
; :::; ¹aK ¡ (¹a1 ¡ c)¹aK ¡ AK(¼K)

¹a1 ¡ A1(¼K)
!
:(36)

Player 2 responds to a deviation of player 1 by holding each type k to a payo® of at most

!k + ², which is possible as ± > ±².

To show that these strategies form an equilibrium of the game ¡(p0; ±) which gives

positive probability only to types f1; kg, it is su±cient to show that type 1 and type

k do not bene¯t by deviating from their equilibrium strategy.6 Some deviations are not

observed by player 2. We will ¯rst concern ourselves with deviations that are immediately

detected by player 2. It will be convenient to let c (as above) and d denote, respectively,

type 1 and type k's equilibrium continuation payo®s at the start of the period in which the

observed deviation occurred. We will ¯rst show that type 1 does not bene¯t by deviating.

By the construction above, if ± > ±² then type 1's expected payo® from deviation is

at most (1 ¡ ±)M + ±(!1 + ²), whereas her expected payo® from continuing, c, satis¯es

c > !1 + 3²; our assumption on ± is su±cient to ensure a deviation is suboptimal.

Next, we show that type k cannot pro¯tably deviate from these strategies. Type k

can make unobservable deviations from the equilibrium by mimicking type 1 revealing

her type (by playing ~{ at a point of randomization), and then by continuing to mimic

type 1, playing out an equilibrium of the game ©1(±). It is possible that such a deviation

is pro¯table. A small re-working of the players' strategies gives an equilibrium with the

same payo® to type 1 and a greater payo® to type k, if this is the case. Let t denote

the ¯rst time at which this unobservable deviation is pro¯table for type k. Rede¯ne

the players' equilibrium strategies, so that before time t all players use exactly the same

actions and at time t both types play ~{ (the revealing action) and play out the strategies

of the equilibrium of the game ©1(±). (Player 2's strategy is exactly the same as before.)

This does not change type 1's equilibrium payo® because she was indi®erent at ~{. It raises

type k's equilibrium payo®, because she prefers the deviation to the equilibrium. Player

2's payo®s also increase because the continuation equilibrium after ~{ was chosen to reward

c at any point always exceeds â1 + ¶¡ ²=16.
6Lemma 4 guarantees that type 1 is indi®erent between the positive probability actions in periods

when she must randomize, and that player 2 is playing an optimal response to types 1 and k.
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him for playing out the iterations of the ¯nite sequence and he now receives this reward

with higher probability. Finally, to verify that this is an equilibrium we must show that

type k will not bene¯t from making an observable deviation at some later stage from the

equilibrium of ©1(±). We will address this in the parentheses after case (b) below.

Now, we consider observable deviations by k from the equilibrium, which result in

player 2 punishing player 1. By (36) there exists a vector of punishment payo®s ! such

that

!k + (2 + (1 +R)(2 +Q))²

· ¹ak ¡ (¹a1 ¡ c)¹ak ¡ Ak(¼k)
¹a1 ¡ A1(¼k)

= f(1¡ ±TN 0
)Âkk + ±

TN 0
¹®k ¡ dg+ ±TN 0f¹ak ¡ ¹®kg+ (1¡ ±TN 0

)fAk(¼k)¡ Âkkg
+
¹ak ¡ Ak(¼k)
¹a1 ¡ A1(¼k)

n
(1¡ ±TN 0

)[Â1k ¡ A1(¼k)] + [c¡ (1¡ ±TN 0
)Â1k ¡ ±TN 0

¹®1]

¡±TN 0
[¹a1 ¡ ¹®1]

o
+ d

< d+ f(1¡ ±TN 0
)Âkk + ±

TN 0
¹®k ¡ dg+Q²+ ²=2

+
¹ak ¡ Ak(¼k)
¹a1 ¡ A1(¼k)

n
²=2¡ (1¡ ±TN 0

)Â1k ¡ ±TN 0
¹®1 + c+Q²

o
:(37)

The ¯nal inequality follows from (31), Ak(¼k)¡ Âkk < ²=2 and Â1k¡A1(¼k) < ²=2 (which
follows from Lemma 7). Type 1's continuation payo®, c, is determined either by (a)

continued playing out of the sequence f(̂{sk; |̂sk)g followed by the terminal equilibrium (in

this case type k's deviation is detected immediately), or by (b) her payo® from continued

playing out the revealing equilibrium (relevant when type k made an undetected deviation

by playing ~{ and then later made an observable deviation). Let us deal ¯rst with a

deviation by type k in case (a). If type 1 has N 0 complete repetitions of the sequence

left to perform, then, analogously with the derivation of (17), type 1's payo® c satis¯es

j(1 ¡ ±TN 0
)Â1k + ±

TN 0
¹®1 ¡ cj · ²

16
and type k's continuation payo®, d, satis¯es j(1 ¡

±TN
0
)Âkk + ±

TN 0
¹®k ¡ dj · ²

16
. These inequalities, and (32), substituted in (37), imply

that !k + (3 + R)² < d; thus a deviation for type k is not pro¯table in this case (by

the assumption on ±). Now let us consider case (b). Assume the observed deviation

occurred t periods after ~{ was played, so an equilibrium of ©1(±) has been played for the

last t periods. Let the sequence f(is; js)g1s=0 have as an initial point the move (~{; |̂0) and
then include the sequence of actions played by the two players at this equilibrium. Let
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!02 = (1¡ ±)ak+(1¡ ±)!2 denote k's payo® in the period she deviates and the subsequent
payo®s from the punishment. Her continuation payo® from playing ~{ and then making an

observable deviation satis¯es

(1¡ ±)
t¡1X
s=0

±sAk(i
s; js) + ±t!02 = (1¡ ±t)(1¡ ±)

1X
s=0

±sAk(i
s; js) + ±t!02

+±t(1¡ ±)[
1X
s=0

±sAk(i
s; js)¡

1X
s=t

±s¡tAk(is; js)]:

Let d0 denote type k's continuation payo® from not playing ~{, but from abiding by her

equilibrium strategy. The unobservable followed by the observable deviation is optimal

only if d0 < (1¡ ±)Pt¡1
s=0 ±

sAk(i
s; js) + ±t!02. The above implies that this is equivalent to

d0 ¡ !02 <
1¡ ±t
±t

[(1¡ ±)
1X
s=0

±sAk(i
s; js)¡ d0] + (1¡ ±)[

1X
s=0

±sAk(i
s; js)¡

1X
s=t

±s¡tAk(is; js)]:

By the above construction of a pooling equilibrium, we can assume that the ¯rst term

on the RHS is non-positive. The ¯nal term on the RHS is less that ( 1
16
+ 1

2
)², because

the strategies ¾̂(k;N), de¯ned above Lemma 4, used Result 2 to ensure that play after

~{ gives all types within ²=2 of their continuation payo® at ~{ at all future times and the

playing of ~{ can change the payo® by at most 1
16
². Thus, this condition can only be true

if d0 < !02 +
9
16
², or d0 < !2 + ( 916 +

1
16
)² because of the assumption on ±. The punishment

payo®, !2, is determined by (36) and (c; d) (the continuation payo®s at the point of the

observed deviation by type k). Since: (c; d), !2 satisfy (37) and (c; d) is within 10²=16 of

the continuation payo®s (c0; d0) at the time of the unobserved deviation, we can deduce

from (37) that !2 +
1
2
(5 + R)² < d0. This is a contradiction as d0 < !2 + (10=16)².

[In the pooling equilibrium, described in the previous paragraph, type k and type 1

each play out the equilibrium of ©1(±). Type k bene¯ts by a subsequent observable

deviation if (1 ¡ ±)P1
s=0 ±

sAk(i
s; js) is less than (1 ¡ ±)Pt¡1

s=0 ±
sAk(i

s; js) + ±t!02. This

implies !02 > (1¡ ±)
P1
s=t ±

sAk(i
s; js) = d. The above then implies !2 + ²=16 > d

0 ¡ ² 9
16
.

We can then use (37) to get a contradiction again.]

2. The game with two types : arbitrary payo® for type 1 and player 2

The strategies above are an equilibrium, so, given any ± > ±¶, a
0
1 2 [a1(¶); ¹a1(3²)¡C²] and

terminal priors p satisfying 0 < p1 <
1
4
and pk0 = 0 for all k

0 62 f1; kg, there exists p0 (with
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p01 = 1¡ r(1¡ p1)) and an equilibrium of the game ¡(p0; ±) with the payo®s (~®1; ~̄) where
type 1's payo®, ~®1, satis¯es j~®1 ¡ a01j < 1

32
². We use this result to show that there exists

an r0 > 0 such that if ± > ±¶, p001 > 1¡ r0 and p00k0 = 0 for all k0 62 f1; kg, then ¡(p00; ±) has
an equilibrium with the payo®s (®¤1; ¯

¤) that satisfy k(®¤1; ¯¤)¡ (a1; b)k < ² for any pair
(a1; b) 2 G1(¶) with a1 < ¹a1(3²)¡ C². To do this it is necessary to alter the period zero
strategies of the equilibrium described in part 1. Now type 1 randomizes in period zero |

with probability 1¡¹ she plays out the equilibrium just described where a01 is set equal to
a1, and with probability ¹ she reveals her type by playing ~{ 6= {̂0, and play then follows an
equilibrium of the complete information game in which ¯rst-period actions are (~{; |̂0). As

in the previous part, we can choose the equilibrium in the complete information game so

that type 1 is indi®erent between the two ¯rst-period actions ~{ and {̂0. Let (~a1;~b) 2 G1(²)
denote the payo®s, discounted to period 0, type 1 and player 2 receive conditional on ~{

being played in the ¯rst period. As type 1 randomizes in the ¯rst period ~a1 = ~®1, so ~a1 is

within 1
32
² of a1 and we can therefore also chose ~b to be within

1
32
² of b (since (a1; b) 2 G1(¶)

and ² < ¶). The arguments above imply that this will also be an equilibrium for ± > ±¶,

provided player 2 has the priors p0 after {̂0 is observed in the ¯rst period. Type 1 and

player 2's expected payo®s from these strategies are (®¤1; ¯
¤) = (~®1; p001¹~b+(1¡ p001¹) ~̄), so

j¯¤ ¡ bj = jp001¹~b+ (1¡ p001¹) ~̄¡ ~b+~b¡ bj
· j ~̄¡ ~bj(1¡ p001¹) + j~b¡ bj · 2M(1¡ p001¹) +

²

32
:

If ¹ can be chosen to satisfy ¹ ¸ (1¡ ²=(6M))=p001, we can ensure that ¯¤ is within ²=2 of
b. If {̂0 is observed in the ¯rst period player 2's posterior for type k is (1¡ p001)=(1¡ ¹p001),
so to play the equilibrium of part 1, ¹ must also satisfy 1¡ p01 = (1¡ p001)=(1¡ ¹p001). As
1 ¡ p01 = r(1 ¡ p1) (where r is the probability that player 1 does not deviate from the

¯xed sequence in the equilibrium of part 1) we can re-write this condition as 1 ¡ p001 =
r(1 ¡ p1)(1 ¡ ¹p001). For any p00 and ¹ 2 [0; 1] that satisfy ¹ ¸ [1 ¡ ²=(6M)]=p001 and
1¡ p001 = r(1¡ p1)(1¡ ¹p001), we have found an equilibrium where type 1 and player 2 get

payo®s close to (a1; b). Given a p
00
1; a value for ¹ > 0 can be found to satisfy these two

conditions provided 1 ¡ p001 < r(1 ¡ p1)²=6M . We chose p1 < 1
4
and by Lemma 4, r > r,

where r > 0 is independent of ± and a1, so a su±cient condition for this is 1¡p001 < r 34²=6M .
Provided p001 > 1¡ r0 where r0 := r 34²=6M we have found an equilibrium of ¡(p00; ±) with

the desired properties. (If type k prefers to mimic the revelation action of type 1 at date
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0; then the strategies can be amended as in part 1 to re-establish equilibrium.) When

K = 2 the choice of ¶ = minfº; ¹²=2g proves the Theorem.

3. The game with many types K > 2

We now describe the players' strategies in the repeated game of incomplete information

¡(p; ±) where all types are given positive probability, and show that these strategies are an

equilibrium with payo®s satisfying (30). The play in the game is divided into a signalling

phase, where all types are given positive probability, and a payo® phase where only two

types of player 1 are given positive probability.

Periods t=0,1,...,K-3 : The Signalling Phase: The players use the following

strategies: Type k, where k = 2; 3; :::;K¡1, plays action it = 1 in periods t = 0; 1; :::; k¡3
and in period t = k ¡ 2 she plays action i = 2 to signal her type. Type K plays action

it = 1 in periods t = 0; 1; :::; K¡ 3. Type 1 chooses a type k = 2; 3; :::; K with probability

Ák and mimics her signalling strategy. (All of the types of player 1 minmax player 2 if she

chooses a pure action that is not played with positive probability in the signalling phase.)

Player 2 plays action j = 1 with probability q0 and action j = 2 with probability 1¡ q0
in period zero. If, in period t < K¡ 2, player 1 used action i = 1 in all past periods, then
player 2 plays action j = 1 with probability qt(ht¡1) and action j = 2 with probability

1¡ qt(ht¡1), where ht¡1 is the history of player 2's past actions up to t¡ 1. (If player 2
observes a deviation in period t · K ¡ 3 then he plays the punishments described above
for the 2-type game with the types f1; t+ 2g.)

After the signalling: At the end of the signalling phase only two types of player 1,

f1; kg, will be given positive probability by player 2. The players then play an equilibrium
described in part 2 of the proof; however, the equilibrium they play will depend on the

entire sequence of actions player 2 plays during the signalling phase; ht¡1.

We will begin by considering the case where IntG1(0) 6= ;. Let (a1; b) be a point in
G1(¶) that satis¯es the condition U [(a1; b); ¶; ¶] ½ G1(¶) \ f(x; y)jx < ¹a1(3²)¡ C²g (¶ will
be chosen su±ciently small to ensure this is possible). Here we introduce notation for the

open rectangle centred at the point (x; y) with width W and height H, that is,

U [(x1; x2);W;H] := f (x; y) 2 <2 j jx¡ x1j < 0:5W; jy ¡ y1j < 0:5H g:
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We will show how the continuation equilibria after the signalling can be chosen to give

the players incentives to randomize. We will also show that after the signalling phase

player 2's posterior beliefs will still attach positive probability to type 1, and as p1 ! 1

these posteriors give arbitrarily high probability to type 1. Thus, it is possible to choose

p1 su±ciently high for the equilibrium (described above) of the game with two types can

be played after the signalling phase. We also show that the signalling strategies give the

players payo®s close to (a1; b).

Let (®k;j1 ; ¯
k;j) denote the continuation equilibrium payo®s to type 1 and player 2

when player 1 signals type k and player 2 plays action j in the period the signal was sent.

We will start in the ¯nal signalling period t = K ¡ 3. We will choose the continuation
equilibria in period K ¡ 3 with payo®s that satisfy

(®K;11 ; ¯K;1); (®K¡1;21 ; ¯K¡1;2) 2 U [(ay1 ¡ ²; by ¡ ²); ²; Y ²];(38)

(®K;21 ; ¯K;2); (®K¡1;11 ; ¯K¡1;1) 2 U [(ay1 + ²; b
y + ²); ²; Y ²];(39)

where (ay1; by) is chosen so that U [(a
y
1; b

y); 3²; 3Y ²] ½ U [(a1; b); ¶; ¶]. (Recall that Y = 1

when IntG1(0) 6= ;, as assumed for the moment; however it will be convenient to retain
the general notation for the case when IntG1(0) = ;.) It is possible to choose such

continuation equilibria, because the sets on the right of (38) and (39) are in IntG1(¶) \
f(x; y)jx < ¹a1(3²)¡C²g and part 2 of the proof, therefore, applies. Continuation equilibria
satisfying (38) and (39) can be found, because (by (17) and part 1) type 1's payo® can

be approximated to within ²=16 and by part 2 player 2's payo® can be approximated to

within ²=2. Given this choice of continuation equilibria in period K¡ 3 we will show that
players' expected payo®s at the start of period K ¡ 3 (potential continuation equilibria
for period K ¡ 4) lie in the set U [(ay1; by); ²½; Y ²½], where ½ = 1 + 1

8
. This will furnish an

inductive step. In period K ¡ 3 type 1 randomizes between i = 1 and i = 2. Her payo®s
from these actions are:

(i = 1) (1¡ ±)A1(1; qK¡3) + ±[qK¡3®K;11 + (1¡ qK¡3)®K;21 ];

(i = 2) (1¡ ±)A1(2; qK¡3) + ±[qK¡3®K¡1;11 + (1¡ qK¡3)®K¡1;21 ]:

(A1(i; q
K¡3) is an abuse that denotes type 1's stage-game payo® from action i when player

2 plays (qK¡3; 1¡ qK¡3) .) Player 1 is indi®erent between these two actions if
1¡ ±
±
[A1(1; q

K¡3)¡A1(2; qK¡3)] = qK¡3[®K¡1;11 ¡ ®K;11 ] + (1¡ qK¡3)[®K¡1;21 ¡ ®K;21 ]:(40)
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Let (¹; 1¡¹) denote the probability player 1 plays i = 1 and i = 2 in period K ¡ 3 given
the observed history. If we abuse our notation in a similar fashion as before, player 2 is

indi®erent between action j = 1 and j = 2 when

1¡ ±
±
[B(¹; 1)¡B(¹; 2)] = ¹[¯K;2 ¡ ¯K;1] + (1¡ ¹)[¯K¡1;2 ¡ ¯K¡1;1]:(41)

We can ¯nd qK¡3 2 [0; 1] and ¹ 2 [0; 1] to make both players indi®erent. First, the

LHS of (40) is less than ²=16 (by our assumption on ±) and the LHS of (41) is less than

Y ² 1
16
in absolute value (2M is the maximum variation in player 1's payo®s so 2YM is the

maximum variation in player 2's). The assumption on the continuation equilibria implies

that the RHS of (40) [respectively (41)] is a linear function of qK¡3 [respectively ¹] that

includes in its range ¡² [respectively ¡Y ²] to ² [respectively Y ²]. Thus there exist qK¡3
and ¹ that solve (40) and (41). There are upper and lower bounds on the value of ¹ for

which (41) holds. As the LHS is less than Y ² 1
16
, the ¯rst square bracket on the RHS is

in (Y ²; 3Y ²) and the second is in the interval (¡3Y ²;¡Y ²), we get 3
4
+ 1

64
> ¹ > 1

4
¡ 1

64
.

Also, by taking the minimal and maximal continuation payo®s we can show that type

1's and player 2's expected payo®s at the start of K ¡ 3 lie in the set U [(ay1; by); ²½; Y ²½],
where ½ = 1 + 1

8
.

The paragraph above describes potential continuation equilibria after period K ¡ 4
of the signalling phase (assuming type K¡2 is not signalled). We will use this to describe
an equilibrium for period K ¡ 4 onward with payo®s in U [(ay1; by); ²½2; Y ²½2], provided

U [(ay1; b
y); (2 + ½+ ½2)²; S(2 + ½+ ½2)²] ½ U [(a1; b); ¶; ¶]:(42)

To build this equilibrium it is ¯rst necessary to describe behaviour in period K ¡ 3.
Repeat the argument of the previous paragraph with the sets in (38) and (39) replaced

by U [(ay1; by)¡ (²½; Y ²½)§ (²; Y ²); ²; Y ²], to ¯nd a period K ¡ 3 equilibrium with payo®s

in U [(ay1; by) ¡ (²½; Y ²½); ²½; Y ²½] ((42) is su±cient for this to be possible). This is the
equilibrium played if (i; j) = (1; 1) in period K ¡ 4. A similar procedure can be followed
to ¯nd a period K¡3 equilibrium with payo®s in U [(ay1; by)+(²½; Y ²½); ²½; Y ²½] and again
(42) is su±cient; this is played if (i; j) = (1; 2) in period K ¡ 4. If player 1 plays i = 2 in
periodK¡4 we can use the argument in part 2 and (42) to ¯nd two continuation equilibria
of the game with the types f1; K ¡ 2g with payo®s in U [(ay1; by)¡ (²½; Y ²½); ²½; Y ²½] and
U [(ay1; by) + (²½; Y ²½); ²½; Y ²½], which are played when (i; j) equals respectively (2; 2) or
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(2; 1) in periodK¡4. Now consider the randomizations in periodK¡4. We can apply the
argument of the previous paragraph to show that the probability player 1 randomizes is

again in [1
4
¡ 1
64
; 3
4
+ 1
64
] and that type 1's and player 2's period K¡4 expected equilibrium

payo®s are in U [(ay1; by); ²½2; Y ²½2]. ( It is necessary to replace ² by ²½.)

Now we can iterate this argument working backwards to the ¯rst round of signalling

at time zero | all the time getting bounds on player 1's randomization. When there

are K ¡ 2 periods of signalling it is necessary to be able to ¯nd equilibria in period
K ¡ 3 that lie in the sets U [(ay1; by) § (1 + ½ + ::: + ½K¡3)(²; Y ²); ²; Y ²]. This is possible
if (a1; b) = (a

y
1; b

y), (v) holds and U [(a1; b); ¶; ¶] ½ G1(¶) \ f(x; y)jx < ¹a1(3²) ¡ C²g. The
construction of the signalling phase ensures period zero's expected payo®s are in the

interval U [(a1; b); ²½
K¡2; Y ²½K¡2] ½ U [(a1; b); ¶; ¶].

When IntG1(0) = ; the above argument will work virtually unchanged, because of
the inclusion of Y . However, it is necessary to replace the open rectangles U [(a1; b); x; Y x]

with the open line segment between the points (a1; b)§ 0:5(x; Y x) (this is the diagonal of
the rectangle above). By the de¯nition of Y , this lies in the feasible set and replaces the

open rectangles as a measure of a neighbourhood in the one dimensional set.

The construction gives type 1 and player 2 period-zero expected payo®s in the set

U [(a1; b); ¶; ¶]. We must check that in all the continuation equilibria p1 is su±ciently large.

Given the lower bounds on player 1's probabilities derived above, each possible history of

player 1's signalling-phase actions occurs with at least probability (1
4
+ 1

64
)K¡1. Provided

pk < r
0(1
4
+ 1
64
)K¡1 it is possible to apply Part 2 of the proof and play continuation equilibria

satisfying (38) and (39). The required lower bound on p1 is thus 1¡ r0(14 + 1
64
)K¡1 (since

this implies pk < r
0(1
4
+ 1

64
)K¡1 for all k > 1).

We now show that no player wishes to deviate from her/his equilibrium strategies in

the equilibrium with many types. As argued, under the assumption on ± and (a1; b) player

2's continuation payo® is within ¶ of b during the entire signalling phase and hence greater

than b̂+¶, whereas a deviation yields at most b̂+²=2, which by ² < ¶=2 is thus unpro¯table.

Thereafter, whichever types are signalled player 2 does not bene¯t from deviating by

Lemma 4. A similar argument coupled with part 2 of this proof ensures that type 1

does not bene¯t by deviating from the strategies described above and neither does type k
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bene¯t by deviating when she has signalled that she is type k, because the losses during the

signalling phase are su±ciently small. The four possible extra deviations that can arise

when there are many types are: type k mimics type k0 (unobservable), type k mimics

type k0 and then deviates to take a punishment (unobservable then observable), type k

mimics type k0 and later she plays ~{ and then mimics type 1 at a revealing equilibrium

(unobservable), or type k mimics type k0, later she plays ~{ and then mimics type 1 before

¯nally deviating from the revealing equilibrium to take a punishment (unobservable then

observable). We will begin by showing that these deviations are not pro¯table when the

strategy of type k0 is to play the strategy described and then treat the case when the

amended strategies are followed, as described in part 1 of the proof. Suppose type k

sends the signal of type k0 and then plays out her ¯nite sequence N 0 times before settling

at the equilibrium described in Lemma 5. From (29) her payo® from this, discounted to

the period after the signalling is ¯nished, is (1¡ ±TN 0
)Âk;k0 + ±

TN 0
¹®k, whereas her payo®

from playing her equilibrium strategy can be written as (1 ¡ ±TN)Âk;k + ±TN ¹®k. At an
equilibrium type 1 will mimic type k and type k0 with positive probability. Let c be type

1's expected equilibrium payo® from mimicking type k and c0 be her expected payo® from

mimicking type k0, that is,

c = (1¡ ±TN)Â1;k + ±TN ¹®1 = (1¡ ±TN)(Â1;k ¡ ¹®1) + ¹®1;(43)

c0 = (1¡ ±TN 0
)Â1;k0 + ±

TN 0
¹®1 = (1¡ ±TN 0

)(Â1;k0 ¡ ¹®1) + ¹®1:(44)

The following will be a su±cient condition to rule out the ¯rst form of deviation described

above:

(1¡ ±TN)Âk;k + ±TN ¹®k > (1¡ ±TN 0
)Âk;k0 + ±

TN 0
¹®k + 2²;

or equivalently

(1¡ ±TN)(Âk;k ¡ ¹®k) > (1¡ ±TN 0
)(Âk;k0 ¡ ¹®k) + 2²;

or
Âk;k ¡ ¹®k
¹®1 ¡ Â1;k

(¹®1 ¡ c) > Âk;k0 ¡ ¹®k
¹®1 ¡ Â1;k0

(¹®1 ¡ c0) + 2²;

where the last inequality follows from substitution for (1¡±TN) from (43) and for (1¡±TN 0
)

from (44). Type 1 randomizes between mimicking type k and type k0 in equilibrium. The

signalling phase payo® plus c and the signalling phase payo® plus c0 give type 1 identical
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payo®s. The signalling phase payo®s contribute at most ²=2, so jc ¡ c0j < ². Also (35)

applies, so the above inequality holds and it is optimal for type k to play her equilibrium

strategy. We can now consider the second form of deviation. Suppose that type k mimics

type k0 and then deviates (before N 0 iterations are played) when type 1's continuation

payo® is c. The strategies described in part 1 of the proof impose the same punishment

on type k as the punishment she would have received if she had truthfully signalled her

type and then deviated when type 1's continuation payo® was c (she can get the same

deviation payo® by signalling truthfully). A repetition of the above argument shows that

this latter option is strictly preferred to the former, and hence a fortiori type k prefers

to use her equilibrium strategy. If the third type of deviation gives type k more than

her equilibrium payo® a small emendation of the above strategies restores an equilibrium.

To do this replace type k's strategy with her mimicking player k0 and then playing ~{ in

this way and remove the stage of the signalling phase where type k is signalled. This

new equilibrium increases player 2's expected payo® when type k0 is signalled and so will

increase his willingness to abide by his equilibrium strategy (if there are more than two

types for which this deviation is pro¯table, each type can likewise play the signal which

she prefers). If the fourth type of deviation is optimal then type k must bene¯t from

an observable deviation from the equilibrium of the complete information game after ~{

was signalled. In this case the argument in parentheses at the end of part 1 of this proof

applies mutatis mutandis.

Now we must deal with the amended strategies and consider what occurs if type k0 at

some point plays a pooling equilibrium with type 1, rather than continuing to reveal her

type. (This change was introduced at the end of part 1 of the proof.) If type k0 and type

1 play the pooling equilibrium, then the possible deviations available to type k mimicking

type k0 or type 1 were available to her above also. Thus the argument above applies to

this case also.

Now we return to the condition (34), that has been assumed to hold. This condition

guaranteed that the types k > 1 strictly preferred to play the iterations of their ¯nite

sequence, f(̂{sk; |̂sk)g, rather than another type's sequence, before settling on the terminal
equilibrium. (This condition will fail if, for example, the payo®s of type k are a linear

transformation of the payo®s of type k0 and so ¼k = ¼k0.) Suppose, now, that there exist
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k and k0 so that
Ak(¼k)¡ ¹ak
¹a1 ¡A1(¼k)

=
Ak(¼k0)¡ ¹ak
¹a1 ¡A1(¼k0)

:(45)

In this case we can choose ¼k = ¼k0 and the sequence f(̂{sk; |̂sk)g to be the same as f(̂{sk0; |̂sk0)g.
A small change to the above strategies restores an equilibrium. Change type k's equilib-

rium strategy so that she plays exactly the same actions as type k0 until the ¯nal playing

of the equilibrium described in Lemma 5, that is, so that both k and k0 signal at the same

time (and in the same way) and so that the period in the signalling phase where type

k was signalled is removed. Note that conditions (a)-(c) of Lemma 6 still apply when

¼k is replaced by ¼k0; so the previous argument can be repeated mutatis mutandis. Any

remaining indi®erences can be handled in exactly the same way.

Let R(¶) denote the set of points (a1; b) in the relative interior of G1(¶)\ f(x; y)jx <
¹a1(3²) ¡ C²g that are distance at least ¶ from the boundary of the relative interior of

G1(¶) \ f(x; y)jx < ¹a1(3²) ¡ C²g. We have shown that there exists a ±¶ < 1 and p¶1 < 1
such that for all p with p1 > p

¶
1 and ± > ±¶, given any (a1; b) 2 R(¶) the game ¡(p; ±) has

an equilibrium with payo®s that satisfy k(®1; ¯) ¡ (a1; b)k < ¶: By choosing ¶ < º and

su±ciently small the Theorem follows.

Q.E.D..

References

Bergin, J. (1989): \A Characterization of Sequential Equilibrium Strategies in In¯nitely Re-
peated Incomplete Information Games," Journal of Economic Theory, 47, 51{65.

Blackwell, D. (1956): \An Analog of the Minmax Theorem for Vector Payo®s," Paci¯c
Journal of Mathematics, 65, 1{8.

Cripps, M. W., K. M. Schmidt, and J. P. Thomas (1996): \Reputation in Perturbed
Repeated Games," Journal of Economic Theory, 69, 387{410.

Forges, F. (1992): \Non-Zero-Sum Repeated Games of Incomplete Information," inHandbook
of Game Theory, ed. by R. J. Aumann and S. Hart. Amsterdam: North Holland.

Fudenberg, D., and D. K. Levine (1992): \Maintaining a Reputation when Strategies are
Imperfectly Observed," Review of Economic Studies, 59, 561{579.

Fudenberg, D., and E. Maskin (1991): \On the Dispensability of Public Randomization in
Discounted Repeated Games," Journal of Economic Theory, 53, 428{438.

Hart, S. (1985): \Nonzero-Sum Two-Person Repeated Games with Incomplete Information,"
Mathematics of Operations Research, 10, 117{153.

43



Jordan, J. S. (1995): \Bayesian Learning in Repeated Games," Games and Economic Behav-
ior, 9, 8{20.

Kalai, E., and E. Lehrer (1993): \Rational Learning Leads to Nash Equilibrium," Econo-
metrica, 61, 1019{1045.

Koren, G. (1988): \Two-Person Repeated Games with Incomplete Information and Observable
Payo®s," M.Sc. Thesis, Tel-Aviv University.

Lehrer, E., and L. Yariv (1999): \Repeated Games with Incomplete Information on One
Side: The Case of Di®erent Discount Factors," Mathematics of Operations Research,
24, 204{218.

Shalev, J. (1994): \Nonzero-Sum Two-Person Repeated Games with Incomplete Information
and Known-Own Payo®s," Games and Economic Behavior, 7, 246{259.

Sorin, S. (1999): \Merging, Reputation and Repeated Games with Incomplete Information,"
Games and Economic Behavior, 29, 274{308.

Zamir, S. (1992): \Repeated Games of Incomplete Information: Zero Sum," in Handbook of
Game Theory ed. by R. J. Aumann and S. Hart. Amsterdam: North Holland.

44


