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Comparative Statics with Never Increasing

Correspondences

Abstract

This paper studies models where the correspondences (or functions) under consideration are
never increasing (or weakly decreasing) in endogenous variables, and weakly increasing in
exogenous parameters. Such models include games of strategic substitutes, and include cases
where additionally, some variables may be strategic complements. It is shown that the equi-
librium set in such models is a non-empty, complete lattice, if, and only if, there is a unique
equilibrium. For a given parameter value, a pair of distinct equilibria are never comparable.
Moreover, generalizing an existing result, it is shown that when a parameter increases, no
new equilibrium is smaller than any old equilibrium. (In particular, in n-player games with
real-valued action spaces, symmetric equilibria increase with the parameter.) Furthermore,
when functions under consideration are weakly decreasing in endogenous variables, a suffi-
cient condition is presented that guarantees existence of increasing equilibria (symmetric or
asymmetric) at a new parameter value. This condition is applied to two classes of examples.



1 Introduction

Although comparative statics results for general games with strategic complements are well-

developed,2 results of similar generality are less commonly available for games with strategic

substitutes, or in games in which functions under consideration are non-increasing (or weakly

decreasing) in endogenous variables. As is well-known, games with strategic complements

and strategic substitutes are found in many areas of economics. Such games are defined in

Bulow, Geanakoplos, and Klemperer (1985), and as they show, models of strategic invest-

ment, entry deterrence, technological innovation, dumping in international trade, natural

resource extraction, business portfolio selection, and others can be viewed in a more unify-

ing framework according as the variables under consideration are strategic complements or

strategic substitutes. Moreover, the important class of examples of Cournot oligopolies can

be viewed as a model with strategic substitutes. Bargaining games can provide examples as

well.3 Additional classes of examples are described in Dubey, Haimanko, and Zapechelnyuk

(2006), and include games of team projects with complementary or substitutable tasks, and

tournaments.

For example, we are not aware of a general result for such games that can be applied

to show increasing equilibria in a simple, parametrized, asymmetric, Cournot duopoly with

2Some of this work can be seen in Topkis (1979), Lippman, Mamer, and McCardle (1987), Sobel (1988),

Vives (1990), Milgrom and Roberts (1990), Zhou (1994), Milgrom and Shannon (1994), Milgrom and Roberts

(1994), Shannon (1995), Villas-Boas (1997), Edlin and Shannon (1998), Echenique (2002), and Echenique

and Sabarwal (2003), among others. Extensive bibliographies are available in Topkis (1998) and in Vives

(1999).
3For example, consider a game where each player bids on a share of a fixed prize, and if the sum of the

bids is less than or equal to the prize, then each player gets her bid, else each player gets 0.
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linear demand, constant marginal cost, and the standard product order on strategy spaces.

Consider a linear inverse market demand curve given by p = a− bQ, with Q = q1 + q2, where

q1 is output of firm 1, and q2 of firm 2. Suppose each firm has constant marginal cost c.

Moreover, there is a subsidy of t ≤ c per unit, and this subsidy is split with an exogeously

specified and fixed share 3
5

for firm 1, and share 2
5

for firm 2.4 Thus, firm 1’s marginal cost

net of subsidy is c − 3
5
t, and that of firm 2 is c − 2

5
t. In this case, the unique equilibrium is

given by q∗(t) ≡ (q∗1(t), q
∗
2(t)) = (

a−c+( 9

5
−1)t

3b
,

a−c+(2− 9

5
)t

3b
), and it is increasing in t.

With the standard product order on strategy spaces, this example does not fit the

framework of Milgrom and Shannon (1994), because the profit functions are not quasi-

supermodular. (Denote profit of firm 1 at (q1, q2, t) by π1(q1, q2, t), and consider the values

a = 10, b = 1, c = 1, t = 0, and consider (q1, q2) = (3, 2), and (q′1, q
′
2) = (4, 3). Then,

π1(q
′
1, q2, t) ≥ π1(q1, q2, t), but π1(q

′
1, q

′
2, t) < π1(q1, q

′
2, t).) Moreover, this implies that this

game is not supermodular, and therefore, this example does not fit the framework of Topkis

(1979), Sobel (1988), or Vives (1990). If the order on one of the strategy spaces is reversed,

then it is known (see, for example, Milgrom and Shannon (1994), and a detailed application

in Amir (1996)) that this example is a quasi-supermodular game with the single crossing

property, and therefore, using Milgrom and Shannon (1994), equilibria are non-decreasing

(in the new order) in t. Of course, this does not imply that equilibria are increasing or weakly

increasing in the standard product order in t. Moreover, asymmetric Cournot conditions rule

out an application of Amir and Lambson (2000), and of the intersection point theorem of

4Alternatively, the parameter t can be thought of as technological improvement, and (3
5 , 2

5 ) can be thought

of as differential adaptation of technological improvement. A slightly more general example is presented later.
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Tarski (1955).5

One general result is available for games where best responses of endogenous variables

are weakly decreasing. As shown by Villas-Boas (1997), in such games, equilibria do not

decrease when the exogenous parameter increases. Moreover, for Cournot oligopolies, if

a new partial order can be chosen, then with some additional assumptions, there is a new

partial order such that equilibria are increasing in this new order. Additionally, some aspects

of non-monotone mappings that are increasing in some variables and decreasing in others

are explored in Roy (2002).

For the models considered here, this paper sheds light on some reasons for the failure

of the usual techniques to show increasing equilibria. Moreover, it generalizes an existing

result and applies it to show that symmetric equilibria are increasing in the parameter.

Furthermore, it provides a sufficient condition for existence of increasing equilibria that can

be applied to asymmetric equilibria.

5Tarski’s intersection point theorem applies to linearly ordered spaces. It is noteworthy that one trick

that can work for the special duopoly case is to compose the reaction functions of the two firms. This yields

an increasing function. In this case, an equilibrium can be shown to exist, and at least for one of the players,

equilibrium can be shown to be increasing, but (in asymmetric Cournot) not necessarily for the other player.

Indeed, as shown below, it is easy to formulate examples of simple Cournot duopolies where the equilibrium

is increasing for one player, and decreasing for the other. The same point applies to techniques that apply

when the best response of one player depends only on the aggregate best response of other players. Of course,

such techniques have been formulated primarily to prove existence theorems for Cournot oligopolies, and not

necessarily to show increasing equilibria. See, for example, Selten (1970), Roberts and Sonnenschien (1976),

Bamon and Fraysee (1985), Novshek (1985), Kukushkin (1994), and Amir (1996), and additional discussion

in Vives (1999).
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This paper considers models in which either (1) correspondences under consideration

are never increasing in endogenous variables,6 and weakly increasing in parameters, or (2)

functions under consideration are weakly decreasing in endogenous variables, and weakly

increasing in parameters.7

The first result shows that for models in which correspondences of endogenous variables

are never increasing, the equilibrium set is a non-empty, complete lattice, if, and only if, there

is a unique equilibrium. Indeed, for a given parameter value, a pair of distinct equilibria are

never comparable. Therefore, with multiple equilibria, some of the established techniques

for exhibiting increasing equilibria or computing equilibria that use the largest or smallest

equilibrium, or the lattice structure of the equilibrium set do not apply to such models.8

The second result generalizes to the case of never increasing correspondences, the result

by Villas-Boas (1997) for the case of weakly decreasing functions; that is, in such cases,

when a parameter increases, no new equilibrium is smaller than any old equilibrium. In the

particular case of n-player games with real-valued action spaces and symmetric equilibria,

this implies that when a parameter increases, each symmetric equilibrium increases as well.

Furthermore, it is shown by means of an example of a Cournot duopoly that in such models,

6Never increasing correspondences are a generalization of non-increasing functions in partially ordered

spaces, and weakly decreasing functions in linearly ordered spaces. This class of models includes those in

which best-response functions are increasing in some endogenous variables and decreasing in others. Thus,

it includes models in which endogenous variables are strategic substitutes for each other, and includes cases

where additionally, some endogenous variables may be strategic complements.
7This class of models includes those in which endogenous variables are strategic substitutes for each other.
8This results also shows that there are no ranked equilibria, and therefore, even with multiple equilibria,

these models do not have inefficiencies that arise purely from existence of ranked equilbria.
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in general, with asymmtric equilibria, (and with a fixed partial order,) increasing equilib-

rium selections may not exist, even when the product of best response functions is strictly

decreasing in endogenous variables, and strictly increasing in exogenous parameters, and for

every parameter value, there is a unique equilibrium.

The final result considers models in which the functions under consideration are weakly

decreasing in endogenous variables, and weakly increasing in exogenous parameters, and

presents a sufficient condition that guarantees existence of increasing equilibria at a new

parameter value. This result applies to asymmetric equilibria. Intuitively, in games of

strategic substitutes, there are two opposing effects of an increase in the parameter value.

The direct effect increases each player’s best response, but strategic substitutes imply that

an increase in the best response of other players has an additional indirect and opposite

effect on each player’s best response. At a new parameter value, if this indirect effect does

not dominate the direct effect, then a larger equilibrium exists.9 The condition here applies

to games with strategic substitutes, finite number of players, finite-dimensional strategy

spaces, and continuous best response functions. The condition is tight in the sense that with

a weakenened condition, the same result may not obtain. This result is applied to two classes

of examples; the first includes team projects with substitutable tasks, and second includes

tournaments; both classes are described in Dubey, Haimanko, and Zapechelnyuk (2006).

Notice that as shown by Villas-Boas (1997), in the case of a Cournot oligopoly, when

a new partial order can be chosen as well, then there exists a new partial order in which

equilibria are increasing. For a given partial order, it is not known under what conditions

a similar result obtains. There may be cases when a given partial order is a natural one

9Notably, in games with strategic complements, both effects work in the same direction.

5



for the model under consideration. For example, for a Cournot oligopoly, the product order

may be natural when considering the impact of taxes or subsidies on firm output. In games

of strategic complements, the product order is used commonly for the same reason; that is,

to investigate the impact of different parameters on each agent’s choice. The results here

apply to cases where a partial order is considered as fixed.

The paper proceeds as follows. Section 2 presents the model. Section 3 presents results for

never-increasing correspondences. Section 4 presents a sufficient condition for the existence

of increasing equilibria when the correspondences under consideration are weakly decreasing

functions of endogenous variables, and applies this condition to two classes of examples.

2 Model

Suppose (X,�) is a partially ordered set, and A and B are subsets of X. Then A is weakly

smaller than B, if for every a ∈ A, there is b ∈ B such that a � b, and for every b ∈ B,

there is a ∈ A such that a � b. A correspondence g : X ։ X is weakly increasing, if for

every x, y ∈ X with x � y, it is the case that g(x) is weakly smaller than g(y).

A correspondence g : X ։ X is never increasing, if for every x, y ∈ X with x ≺ y,

for every x′ ∈ g(x), and for every y′ ∈ g(y), it is the case that x′ 6� y′. In other words, g is

never increasing, if regardless of which point (y′) we choose in the image of a higher point
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(y), this point is not higher than any point (x′) in the image of a lower point (x).10 11

The model space for endogenous variables is assumed to be a non-empty, compact, convex

subset of Euclidean space, denoted X. The space for exogenous parameters is assumed to

be a partially ordered set, denoted T . An admissible family of correspondences is a

correspondence g : X × T ։ X such that for every t, the correspondence g(·, t) is never

increasing, non-empty valued, compact-valued, convex-valued, and upper hemi-continous,

and for every x, the correspondence g(x, ·) is weakly increasing.

Assumptions other than those regarding correspondences that are never increasing in

10Notice that when g is a function, this definition coincides with the standard definition of a non-increasing

function; that is, x � y ⇒ g(x) 6� g(y), and moreover, for linearly ordered spaces, this definition coincides

with that of a weakly decreasing function. For purposes of application, non-increasing functions are likely

to be more useful than never-increasing correspondences. Indeed, we are not aware of particular economic

applications in which correspondences are never-increasing, as defined here. The results here show that at

least one extension to correspondences works, and our hope is that this version is available to researchers

thinking about more general cases.
11An idea of the extent of strategic complements permissible in this model can be formed as follows.

Consider a game with N ≥ 2 players, each with a one-dimensional strategy space, and each with a payoff

function, denoted πi(x), where x ∈ RN is a vector of endogenous variables, one component for each player.

For player i, a pair of endogenous variables (xj , xk), (j 6= k) are strategic complements if ∂2πi

∂xj∂xk
≥ 0, and

strategic substitutes if ∂2πi

∂xj∂xk
< 0. Suppose that best responses are functions, rather than correspondences,

each denoted gn. For each player, there are
(

N
2

)

pairs of variables that could be strategic complements or

substitutes, for a total of N
(

N
2

)

pairs of possible pairs that could be strategic complements or substitutes.

Consider the following condition: there is n0 such that for m 6= no,
∂2πn0

∂xm∂xn0

< 0, and there is m0 6= n0

such that
∂2πm0

∂xm0
∂xn0

< 0. In this case, it is easy to see that the product of gn is a non-increasing function,

and therefore, a maximum of N
(

N
2

)

− N pairs of variables can be strategic complements. Of course, other

estimates would depend on the particular situation under consideration.
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endogenous variables and weakly increasing in parameters are made to guarantee existence

of equilibrium via Kakutani’s theorem. Notably, both theorems of Tarski are not applicable

to the general case considered here. Moreover, as mentioned in Vives (1999) (page 42), a

general n-dimensional existence theorem for decreasing best responses does not appear to

be available even for the case of functions.12 Given existence of equilibrium, the results here

apply to arbitrary, partially ordered X.

Consider an admissible family of correspondences g, and define the following sets. Let

S
¯
(t) = {x ∈ X | ∃x′ ∈ g(x, t), x′ � x}, let S̄(t) = {x ∈ X | ∃x′ ∈ g(x, t), x � x′}, let min S

¯
(t)

be the minimal elements of S
¯
(t), let max S̄(t) be the maximal elements of S̄(t), and let

FP (t) = {x ∈ X | x ∈ g(x, t)} be the fixed points of g at t. Kakutani’s theorem implies that

for every t, FP (t) is non-empty.

3 Non-Lattice Equilibrium Sets and Nowhere Decreas-

ing Equilibria

It is useful to consider one particular reason for the failure of a standard proof of Tarski’s

theorem when correspondences are never-increasing.13 This particular failure is notable,

because it is related to a modification that does apply in the models considered here, and

this modification helps understand comparability of equilibria when correspondences are

never-increasing.

12Recent developments showing existence of equilibrium for aggregative games are given in Kukushkin

(1994), and in Dubey, Haimanko, and Zapechelnyuk (2006).
13For a version of the standard proof, see Topkis (1998), page 39.
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In a standard proof, the set S
¯
(t) has an infimum, inf S

¯
(t) ∈ S

¯
(t), and inf S

¯
(t) is the

smallest fixed point. Similarly, S̄(t) has a supremum, sup S̄(t) ∈ S̄(t), and sup S̄(t) is the

largest fixed point. Monotone increasing selections can then be exhibited by considering

these extremal fixed points. With never increasing correspondences, it is easily possible that

the set S
¯
(t) does not contain an infimum, and the set S̄(t) does not contain a supremum. In

such cases, the supremum and infimum cannot be fixed points. For example, consider figure

1, which gives best response functions of two agents. These functions can be viewed as best

responses in a Cournot duopoly where firm 1 has a lower marginal cost at a higher level

of output, and firm 2 has constant marginal cost. As shown, the product of best responses

is a weakly decreasing function. Moreover, S
¯
(t) is the area with lower boundary given by

ABDE, and it does not contain a smallest point, S̄(t) is the area with upper boundary

given by FBCDG, and it does not contain a largest point, inf S
¯
(t) 6∈ S

¯
(t), inf S

¯
(t) 6∈ FP (t),

sup S̄(t) 6∈ S̄(t), and sup S̄(t) 6∈ FP (t).

Nevertheless, as shown in the following lemma, equilibrium points are minimal elements

of S
¯
(t), and maximal elements of S̄(t). These properties are useful in trying to understand

when are equilibria comparable, and when is the equilibrium set a lattice.

Lemma 1. Let g : X × T ։ X be an admissible family of correspondences.

If x∗ ∈ FP (t), then x∗ ∈ min S
¯

(t) ∩ max S̄(t).

Proof. Let x∗ ∈ FP (t). Then x∗ ∈ g(x∗, t), and x∗ � x∗, so x∗ ∈ S
¯
(t). Suppose, by way

of contradiction, there is x̂ ∈ S
¯
(t) with x̂ 6= x∗, and x̂ � x∗; that is, x̂ ≺ x∗. As x̂ ∈ S

¯
(t),

there is x′ ∈ g(x̂, t) such that x′ � x̂. In other words, x̂ ≺ x∗, and there exist x′ ∈ g(x̂, t)

and x∗ ∈ g(x∗, t) such that x′ � x∗, contradicting the fact that g is never increasing.
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q1

q2

response function of player 1

response function of player 2

S(t)

S(t)
q∗2(t0)

q∗∗2 (t0)

q∗1(t0) q∗∗1 (t0)

Figure 1: maxS(t), min S(t) and Non-lattice Equlibrium Sets

Similarly, x∗ ∈ FP (t) ⇒ x∗ ∈ S̄(t). If x∗ 6∈ max S̄(t), then there is x̂ ∈ S̄(t) such that

x∗ ≺ x̂. Consequently, there is x′ ∈ g(x̂, t), and x∗ ∈ g(x∗, t) such that x∗ � x′, contradicting

the fact that g is never increasing.

In the example provided in figure 1, the minimal elements of S
¯
(t) are given by the

boundary depicted by ABDE, and maximal elements of S̄(t) are given by the boundary

depicted by FBCDG, and each of the two equilibria satisfies the conclusion of the lemma.

This lemma is useful in proving the following sets of results; presented in theorems 1 and 2.

Theorem 1. Let g : X × T ։ X be an admissible family of correspondences.

1. If x∗, x̂ ∈ FP (t), and x∗ 6= x̂, then x∗ and x̂ are non-comparable.

2. The following are equivalent:
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(a) FP(t) is a non-empty lattice,

(b) FP(t) is a singleton, and

(c) FP(t) is a non-empty, complete lattice.

Proof. The first statement follows from the lemma above, as follows. If x∗ and x̂ are distinct

fixed points of g at t, then these are maximal elements of S̄(t), and hence, these are non-

comparable. The only part of the second statement that needs to be checked is that the first

sub-statement implies the second. (The other implications are trivial.) Suppose FP (t) is a

non-empty, complete lattice, and suppose it contains at least two distinct points, say x∗ and

x̂, with x∗ 6= x̂. Then it contains the join and meet of these points, the join and meet are

distinct points, and the join and meet are comparable, contradicting part (1) above.

This theorem shows that for a given parameter value, a pair of distinct equilibria are

always non-comparable. In particular, in contrast to equilibria in games with complemen-

tarities, this theorem implies that models considered here do not have ranked equilibria. A

graphical example with two equilibria is presented in figure 1.

Moreover, as compared to the complete lattice structure of the equilibrium set when

functions of endogenous variables are increasing, (see Zhou (1994),) the equilibrium set here

is a non-empty, complete lattice exactly in the trivial case of a unique equilibrium. Otherwise,

the equilibrium set is totally unordered. (A graphical example with two equilibria, and in

which the equilibrium set is not a lattice is provided in figure 1.) Consequently, with multiple

equilibria, techniques using the lattice structure of the equilibrium set, or the existence of a

smallest and largest equilibrium do not apply to models considered here.

Furthermore, this result implies that in the special case when X is linearly ordered, there

11



is a unique equilibrium for every parameter value.

Theorem 2. Let g : X × T ։ X be an admissible family of correspondences.

For every t1, t2 ∈ T , if t1 � t2, x∗ ∈ FP (t1), x∗∗ ∈ FP (t2), and x∗ 6= x∗∗, then x∗∗ 6� x∗.

Proof. When t1 = t2, the result follows from part (1) of Theorem 1. Suppose that t1 ≺ t2,

and consider distinct fixed points x∗ ∈ FP (t1), x∗∗ ∈ FP (t2), and suppose x∗∗ � x∗. Recall

that x∗ ∈ FP (t1) ⊂ min S
¯
(t1) ⊂ S

¯
(t1). Moreover, g(x∗∗, ·) is weakly increasing in t implies

that g(x∗∗, t1) is weakly smaller than g(x∗∗, t2). As x∗∗ ∈ g(x∗∗, t2), let x′ ∈ g(x∗∗, t1) be such

that x′ � x∗∗. Then x∗∗ ∈ S
¯
(t1), contradicting the fact that x∗ is a minimal element of S

¯
(t1).

This theorem generalizes to the case of never increasing correspondences, the result by

Villas-Boas for the case of decreasing functions; that is, in such cases, when a parameter

increases, no new equilibrium is smaller than any old equilibrium. Thus, equilibria are

nowhere decreasing in t.

In particular, this result implies that in the models considered here, there are no decreas-

ing selections of equilibria.

Moreover, combined with the previous theorem, it follows that if X is linearly ordered,

then there is a unique equilibrium for every t, and this equilibrium selection is increasing in

t. In particular, for games with real-valued strategies, symmetric equilibria are increasing,

as formalized in the following corollaries.14

14As discussed in the introduction, with decreasing best responses, symmetric equilibria can be shown to

be increasing using Tarski’s intersection point theorem (see, for example, Milgrom and Roberts (1994)). The

corollaries here present another proof as an application of the previous theorem, and this proof does not

require Tarski’s theorem.
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Corollary 1. Consider a game of n-players, each with a non-empty, compact, convex strategy

space Xi ⊂ ℜ, X = ×n
i=1Xi, a parameter space T , and g : X × T ։ X a product of best

response correspondences, and g is never-increasing. Say that an equilibrium x∗ ∈ FP (t)

is a symmetric equilibrium if for all i, j, x∗
i = x∗

j . Let SE(t) be the (possibly empty) set of

symmetric equilibria. In this case, the following is true.

For every t0, t̂ ∈ T , if t0 � t̂, x∗ ∈ SE(t0), and x∗∗ ∈ SE(t̂), then x∗ � x∗∗.

Proof. We know that x∗∗ 6� x∗. Therefore, there is i such that x∗
i ≤ x∗∗

i . As x∗, x∗∗ are

symmetric equilibria, this implies that x∗ � x∗∗.

Thus, in the class of games with non-increasing best response functions and symmetric

equilibria, equilibria are increasing. Indeed,

Corollary 2. Suppose the same class of games as in the previous corollary. Then the

following is true.

If for every t, SE(t) 6= ∅, then every selection from SE(t) is a (weakly) increasing selection.

More generally, with asymmetric players, the conclusion of the theorem and corollaries

above cannot be strengthened to conclude the existence of increasing equilibria, even when

there is always a unique equilibrium, as shown in the following example.

Example 1. Consider a standard Cournot duopoly with a linear inverse market demand

curve given by p = a − bQ, with Q = q1 + q2, where q1 is output of firm 1, and q2 of firm 2.

Suppose each firm has constant marginal cost c, but firm 1 gets a subsidy of t ≤ c per unit,

so that firm 1’s marginal cost net of subsidy is c − t. Then best response function of firm 1

is g1(q2, t) = a−c+t
2b

− q2

2
, and that of firm 2 is g2(q1, t) = a−c

2b
− q1

2
. It is easy to check that

g(q1, q2, t) ≡ (g1(q2, t), g2(q1, t)) is a strictly decreasing correspondence in (q1, q2), it is strictly

13



increasing in t, and the unique equilibrium at t is q∗(t) ≡ (q∗1(t), q
∗
2(t)) = (a−c+2t

3b
, a−c−t

3b
).

Consequently, and as shown figure 2, there are no increasing equilibria, regardless of the

parameter value t ≤ c.

0 q1

q2

g1,t0

g1,t

g2,t0

q∗2(t0)

q∗2(t)

q∗1(t0) q∗1(t)

Figure 2: Non-existence of Increasing Equilibria

Notice that the lemma and two theorem in this section apply as stated when X is an

arbitrary, partially ordered set.

4 Existence of Increasing Equilibria

This section considers functions that are weakly decreasing in endogenous variables, and

weakly increasing in parameters, and provides a sufficient condition, which when satisfied at

a new parameter value, guarantees existence of increasing equilibria for the new parameter

14



value. This condition is applied to two classes of examples to show existence of increasing

equilibria.

To develop a better understanding of the general result, it is helpful to view it explicitly

in the special case of a game with two agents, each with a decreasing best response function,

each with a one-dimensional action space, and with the partial order determined by the

product order. This case is considered below, and for additional insight, in this case, a direct

proof is provided as well.

Consider a game with two agents, indexed i = 1, 2. Agent i’s action space is a non-empty,

compact, convex interval Ii of the real numbers, and there is a partially ordered parameter

space T . Agent i’s response function is gi : Ij ×T → Ii, with i 6= j. For each i and t, suppose

that gi(·, t) is strictly decreasing, and for each i, and for each xj ∈ Ij , suppose that gi(xj , ·)

is strictly increasing. Let X = I1 × I2, and with the product order (denoted ≤). Suppose

g(x1, x2, t) ≡ (g1(x2, t), g2(x1, t)) is a continuous function in (x1, x2), and let FP (t) be the set

of fixed points of g at t.15 For notational convenience, let gi,t(·) ≡ gi(·, t), and gt(·) ≡ g(·, t).

Theorem 3. Fix t0 ∈ T , let x∗ = (x∗
1, x

∗
2) ∈ FP (t0), and consider t̂ ∈ T with t0 � t̂ such

that (1) x∗
2 ≤ g2,t̂(g1,t̂(x

∗
2)), and (2) x∗

1 ≤ g1,t̂(g2,t̂(x
∗
1)).

Then there is x̂ = (x̂1, x̂2) ∈ FP (t̂) such that x∗ ≤ x̂.

Proof. Notice that by (2), at x∗
1, g2,t̂(x

∗
1) ≤ g−1

1,t̂
(x∗

1). Moreover, g2,t̂(g
−1
2,t̂

(x∗
2)) ≥

g−1
1,t̂

(g−1
2,t̂

(x∗
2)), because

g−1
1,t̂

(g−1
2,t̂

(x∗
2)) ≤ g−1

1,t̂
(g1,t̂(x

∗
2)) = x∗

2 = g2,t̂(g
−1
2,t̂

(x∗
2)),

15For reference, notice that this game allows for multiple equilibria. (An example to show this can be

constructed from figure 1.) Moreover, this games allows for agent conditions to be asymmetric.
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where the weak inequality follows from (1) and the fact that g−1
1,t̂

(·) is decreasing. Further-

more, x∗
1 ≤ g−1

2,t̂
(x∗

2), because g2,t0(x
∗
1) = x∗

2 ⇒ x∗
1 = g−1

2,t0
(x∗

2) ≤ g−1
2,t̂

(x∗
2), where the

last inequality follows from the fact that g−1
2,t̂

(·) is weakly increasing in t.

By continuity, there is x̂1 ∈ [x∗
1, g

−1
2,t̂

(x∗
2)] such that g2,t̂(x̂1) = g−1

1,t̂
(x̂1). Let x̂2 = g2,t̂(x̂1),

and notice that g1,t̂(x̂2) = g1,t̂(g
−1
1,t̂

(x̂1)) = x̂1, whence x̂ = (x̂1, x̂2) ∈ FP (t̂).

Finally, by the fact that x̂1 ∈ [x∗
1, g

−1
2,t̂

(x∗
2)], we conclude that x∗

1 ≤ x̂1, and moroever,

x̂1 ≤ g−1
2,t̂

(x∗
2) implies that x̂2 = g2,t̂(x̂1) ≥ g2,t̂(g

−1
2,t̂

(x∗
2)) = x∗

2, whence x∗ ≤ x̂.

The conditions in this theorem can be viewed explicitly, as follows. Starting from an

existing equilibrium, x∗ = (x∗
1, x

∗
2) at t = t0, an increase in t has two effects on g2,t(·). One

effect is an increase in g2,t, because response functions are increasing in t. (This is a direct

effect of an increase in t.) The other effect is a decrease in g2,t(·), because an increase in t

increases g1,t(x
∗
2), and x1 and x2 are strategic substitutes. (This is an indirect effect arising

from the response of player 1 to an increase in t.) Similar statements are valid for player

1 as well. Taken together, conditions (1) and (2) say that for each player, as long as the

indirect strategic substitute effect does not dominate the direct parameter effect, there is a

new equilibrium that is larger than x∗ = (x∗
1, x

∗
2). A graphical illustration of these conditions

is presented in figure 3.

It is useful to note that if either condition is not satisfied, this theorem may not necessarily

apply. This can be seen in the following generalized version of example 1, and graphically in

figure 4, where condition (1) is violated but (2) is satisfied, and in figure 5, where the reverse

is true.

Example 2. Consider a standard Cournot duopoly with a linear inverse market demand

curve given by p = a − bQ, with Q = q1 + q2, where q1 is output of firm 1, and q2 of firm
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0
q1

q2

g1,t0

g1,t

g2,t0

g2,t
q∗2(t0)

g2,tg1,t(q
∗
2(t0))

q∗1(t0) g1,tg2,t(q
∗
1(t0))

Figure 3: Existence of Increasing Equilibria

2. Suppose each firm has constant marginal cost c. Moreover, there is a subsidy of t ≤ c

per unit, and this subsidy is split with share ξ ∈ [0, 1] for firm 1, and share 1 − ξ for firm

2. (Example 1 is the case where ξ = 1, and the example in the introduction is the case

where ξ = 3
5
.) Thus, firm 1’s marginal cost net of subsidy is c − ξt, and that of firm 2 is

c − (1 − ξ)t. Then best response function of firm 1 is g1(q2, t) = a−c+ξt−bq2

2b
, and that of firm

2 is g2(q1, t) = a−c+(1−ξ)t−bq1

2b
. It is easy to check that g(q1, q2, t) ≡ (g1(q2, t), g2(q1, t)) is a

strictly decreasing correspondence in (q1, q2), it is strictly increasing in t, and the unique

equilibrium at t is q∗(t) ≡ (q∗1(t), q
∗
2(t)) = (a−c+(3ξ−1)t

3b
,

a−c+(2−3ξ)t
3b

). Consequently,

ξ < 1
3

⇔ q∗1(t) is decreasing in t, and q∗2(t) is increasing in t,

1
3
≤ ξ ≤ 2

3
⇔ q∗1(t) is increasing in t, and q∗2(t) is increasing in t, and

2
3

< ξ ⇔ q∗1(t) is increasing in t, and q∗2(t) is decreasing in t.
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0
q1

q2

g1,t0

g1,t

g2,t0

g2,t

q∗2(t0)
g2,tg1,t(q

∗
2(t0))

q∗1(t0) g1,tg2,t(q
∗
1(t0))

Figure 4: Violation of condition (1)

Moreover, for t0 ≤ t̂, g2,t̂(g1,t̂(q
∗
2(t0))) = 1

12b
[4(a−c)+(6−9ξ)(t̂−t0)+(8−12ξ)t0], whence for

t0 ≤ t̂, q∗2(t0) ≤ g2,t̂(g1,t̂(q
∗
2(t0))) ⇔ ξ ≤ 2

3
. Similarly, for t0 ≤ t̂, g1,t̂(g2,t̂(q

∗
1(t0))) = 1

12b
[4(a−

c) + (9ξ − 3)(t̂ − t0) + (12ξ − 4)t0], whence for t0 ≤ t̂, q∗1(t0) ≤ g1,t̂(g1,t̂(q
∗
1(t0))) ⇔ ξ ≥ 1

3
.

Thus, if ξ > 2
3
, then condition (1) is violated, but (2) is satisfied, and if ξ < 1

3
, then condition

(1) is satisfied, but (2) is violated.

A similar tradeoff between direct and indirect effects is useful in proving a more general

theorem. Consider an admissible family of correspondences, g : X × T ։ X, where for

each t ∈ T , g(·, t) is a weakly decreasing function, and for each x ∈ X, g(x, ·) is a weakly

increasing function. To distinguish this from the general case of correspondences, denote

this family by g : X × T → X. For notational convenience, let gt(·) ≡ g(·, t).
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0 q1

q2

g1,t0

g1,t

g2,t0

g2,t

q∗2(t0)

g2,tg1,t(q
∗
2(t0))

q∗1(t0)g1,tg2,t(q
∗
1(t0))

Figure 5: Violation of condition (2)

Theorem 4. Consider g : X × T → X as above, fix t0 ∈ T , and let x∗ ∈ FP (t0). Consider

t̂ ∈ T such that t0 � t̂, and let ŷ = gt̂(x
∗).

If x∗ � gt̂(ŷ), then there is x̂ ∈ FP (t̂) such that x∗ � x̂.

Proof. Notice that as g is weakly increasing in t, x∗ � ŷ. Moreover, for every x in [x∗, ŷ],

gt̂(x) ∈ [x∗, ŷ], and this can be seen as follows. Suppose x∗ � x � ŷ. Then x � ŷ implies

that gt̂(x) � gt̂(ŷ) � x∗, where the first inequality follows from the fact that gt̂(·) is weakly

decreasing, and the second follows from the condition in the theorem. Moreover, x∗ � x

implies that gt̂(x) � gt̂(x
∗) = ŷ, where the inequality follows from weakly decreasing gt̂(·),

and the equality follows from definition of ŷ. Therefore, the restriction of gt̂ to [x∗, ŷ] is a

map from [x∗, ŷ] to [x∗, ŷ]. By Kakutani’s theorem, there is x̂ ∈ [x∗, ŷ] such that gt̂(x̂) = x̂,

and consequently, there is x̂ ∈ FP (t̂) such that x∗ � x̂.

Notice that for the special case considered in theorem 3, the conditions here specialize
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to those in theorem 3. The intuition for the general case is the same as for the special case.

Suppose gt is a product of best response functions of finitely many players, and consider an

equilibrium x∗ at t0. Then for each given player, a rise in t has two opposing effects. The

direct effect leads to an increase in the best reponse of the given player. The indirect effect

leads to a decrease in the best response of a given player, because responses of each player

are strategic substitutes for every other player. At a new parameter value, if the indirect

effect does not dominate the direct effect, then there is a new equilibrium larger than x∗.

Notice that existence of increasing equilibria is shown here starting from an arbitrary

equilibrium point. Therefore, this result applies to any equilibrium point that is selected

by some theory of equilibrium selection. If a different equilibrium point is selected by a

different theory of equilibrium selection, then the condition in this theorem applies to the

different equilibrium point. Moreover, with finitely many equilibria at a parameter value t0,

there are finitely many conditions, one for each equilibrium, such that if all conditions are

satisfied, then regardless of which equilibrium obtains at t0, there is a larger equilibrium.

Furthermore, a condition that applies with potentially infinite number of equilibria, and that

is independent of a theory of equilibrium selection is given in the corollary below.

Corollary 3. Consider g : X × T → X as in the theorem above, fix t0 ∈ T , and let

x∗ ∈ FP (t0). Consider t̂ ∈ T such that t0 � t̂, and suppose x̃ =
∨

x∗∈FP (t0) x∗ and ŷ =

∨

x∗∈FP (t0)
gt̂(x

∗) are both in X.

If x̃ � gt̂(ŷ), then there is x̂ ∈ FP (t̂) such that x∗ � x̂.

This corollary can be proved by following the proof of the previous theorem, and noticing

that for every x∗ ∈ FP (t0), gt̂(x̃) � gt̂(x
∗) � ŷ.
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The idea of competing direct and indirect effects helps relate the conditions here to those

that arise in models with strategic complements. In those models, the direct and indirect

effects work in the same direction, and therefore, once a parameter increases, both effects

serve to move the new equilibrium set higher. Moreover, in those models, once increasing

equilibria have been demonstrated, additionally higher parameter values serve to further

increase equilibria, and do not reverse any increases. When direct and indirect effects work

in opposite directions, increasing equilibria are no longer guaranteed. Moreover, even when

the tradeoff between indirect and direct effects implies a larger equilibrium at a higher

parameter value, that tradeoff might not necessarily hold at additionally higher parameter

values, and therefore, a demonstration of a favorable tradeoff at a parameter value does not

necessarily imply increasing equilibria at additionally higher parameter values.

The following examples apply the condition in the previous theorem to exhibit increas-

ing equilibria in cases where equilibria may be asymmetric, and might not necessarily be

computable analytically.

Example 3. Consider games of team projects with substitutable tasks, as follows.16 Suppose

a project is to be accomplished by a team of n ≥ 2 players, each choosing task (or effort)

xi ∈ [0, 1], with probability of success xi. The quadratic cost of effort xi is ci

2
x2

i , and is allowed

to be asymmetric across players. Tasks are substitutable in the sense that each player by

herself can make the project successful. The probability of success is 1 −
∏n

j=1(1 − xj). If

the project is successful, player i receives a parameterized reward (or utility) f(t) > 0 (with

0 ≤ t ≤ T , and f ′(t) > 0.)17 Otherwise, the player receives zero. Therefore, the payoff to

16The version used here is the one presented in Dubey, Haimanko, and Zapechelnyuk (2006).
17The parameter t can be viewed as technological improvement or subsidy provided or reward provided
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player i is

f(t)(1 −
n

∏

j=1

(1 − xj)) −
ci

2
x2

i .

It is easy to calculate that the best response of player i is

xi =
f(t)

ci

∏

j=1,...,n;j 6=i

(1 − xj),

and this best response is decreasing in other player actions, and increasing in t. Denote by

gi,t(x−i) the best response function of player i when parameter is t and other player actions

are x−i. Let the equilibrium at t = t∗ be given by (x∗
1, . . . , x

∗
n). Then it is easy to check that

gi,t(x
∗
−i) = f(t)

f(t∗)
x∗

i . Consequently, for player 1,

g1,t(g2,t(x
∗
−2), g3,t(x

∗
−3), . . . , gn,t(x

∗
−n)) =

f(t)

c1

n
∏

j=2

(1 −
f(t)

f(t∗)
x∗

j ).

For ease of computation, let φj(t) = (1− f(t)
f(t∗)

x∗
j ), and let Φ(t) =

∏n

j=2 φj(t). Then the above

can be re-written as

g1,t(g2,t(x
∗
−2), g3,t(x

∗
−3), . . . , gn,t(x

∗
−n)) =

f(t)

c1

Φ(t).

When viewed as a function of t, the derivative of this function18 evaluated at t∗ is

Φ(t∗)
f ′(t∗)

c1
(1 −

n
∑

j=2

x∗
j

1 − x∗
j

).

This expression is positive when
∑n

j=2

x∗j
1−x∗

j

< 1. One sufficient condition for this to hold is

that for all j, x∗
j ≤

1
n
, with strict inequality for one player. A similar condition holds for the

other players as well. Thus, an increasing equilibrium obtains, if for every j, x∗
j < 1

n
.

that can induce an increase in effort (or probability) of task completion. As shown below, the best response

function depends on f(t)
ci

, where ci measures player i’s costs, and therefore, f(t) can be viewed as a relative

reward enhancement parameter, relative to a player’s costs.

18Note that Φ′(t) = Φ(t)(
∑n

j=2

φ′

j(t)

φj(t)
).
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Example 4. Consider games of tournaments.19 Suppose a tournament has 3 players, where

a parametrized reward f(t) (with 0 ≤ t ≤ T , and f ′(t) > 0)20 is shared by the players

who succeed in the tournament. If one player succeeds, he gets f(t) for sure, if two players

succeed, each gets f(t) with probability one-half, and if all players succeed, each gets f(t)

with probability one-third. Expected reward for player i is

f(t)xi(1 − xj)(1 − xk) +
f(t)

2
xixj(1 − xk) +

f(t)

2
xixk(1 − xj) +

f(t)

3
xixjxk.

The quadratic cost of effort xi is ci

2
x2

i , and is allowed to be asymmetric across players. The

payoff to player i is expected reward minus cost of effort. It is easy to calculate that the

best response of player i is

xi =
f(t)

ci

(1 −
1

2
(xj + xk) +

1

3
xjxk),

and this best response is decreasing in other player actions, and increasing in t. Denote by

gi,t(x−i) the best response function of player i when parameter is t and other player actions

are x−i. Let the equilibrium at t = t∗ be given by (x∗
1, x

∗
2, x

∗
3). Then it is easy to check that

gi,t(x
∗
−i) = f(t)

f(t∗)
x∗

i . Consequently, for player i,

gi,t(gj,t(x
∗
−j), gk,t(x

∗
−k)) =

f(t)

ci

(1 −
1

2

f(t)

f(t∗)
(x∗

j + x∗
k) +

1

3
(

f(t)

f(t∗)
)2x∗

jx
∗
k).

When viewed as a function of t, the derivative of this function evaluated at t∗ is

f ′(t∗)

ci

(1 − (x∗
j + x∗

k) + x∗
jx

∗
k) =

f ′(t∗)

ci

(1 − x∗
j )(1 − x∗

k).

19The version used here is the one presented in Dubey, Haimanko, and Zapechelnyuk (2006).

20As shown below, the best response function depends on f(t)
ci

, where ci measures player i’s costs, and

therefore, f(t) can be viewed as a relative reward enhancement parameter, relative to a player’s costs.
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Given the domain restriction of strategies to the unit interval, this expression is positive

exactly when either x∗
j < 1 or x∗

k < 1. Similar results hold for players j and k. Consequently,

if the equilibrium is not degenerate, (that is, no player wins the tournament for sure,) then

equilibrium increases with the parameter. The analogous result holds for the n-player case.

Its notationally intensive details are available from the authors, if desired.

The idea of both examples is that if an estimate of an equilibrium is available (perhaps

because we observe a particular equilibrium under given economic conditions), then it can be

concluded whether an increase in economic conditions will increase the equilibrium. Similar

applications of the theorem can be made when an estimate of an equilibrium is available,

and best response functions are computable. In particular, an application of this theorem

does not require that best response functions have analytically closed forms. Therefore, from

a practical point of view, this theorem can have broader applications.

One limitation of this work is the current absence of conditions on the payoff functions

that guarantee the sufficient conditions of the last theorem. This remains a subject of

continuing work.
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