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1 Introduction

A long-standing tenet in the received wisdom of baseball is that having “last ups” confers
a strategic advantage on the team that bats last. The origins of this belief can be traced
back at least as far as pioneering baseball writer Henry Chadwick, who, describing an

American Association game played by the Brooklyn club in Louisville in 1888, wrote:!

The Brooklyn team won their first game of their Western tour today, after a
close and exciting contest, in which the rule of being last at the bat was
again shown to be of conspicuous advantage... The home team had but one
inning left to play, while Brooklyn - owing to being last at the bat - had
two, and the confidence the knowledge of this fact gave them was inspiring,

and on this occasion, as on others, it gave them the victory.

The belief is so firmly ingrained that invoking it requires no explanation today. For
example, New York Yankees manager Joe Torre said after a loss to the Anaheim Angels
on August 21, 2002, “It’s tough to lose in an extra-inning game at home because you have
the advantage of batting last, but we didn’t get the hits when we needed them.”

Since the official rules of baseball were fully recodified in 1950, the visiting team has
been designated to bat in the top halves of innings. This is set out in Rule 4.02, which

pertains to how a game begins:3

The players of the home team shall take their defensive positions, the first
batter of the visiting team shall take his position in the batter’s box, the

umpire shall call “Play” and the game shall start.

Prior to 1950, however, the rules for determining which team batted first varied. Orig-

inally, the order in which the teams batted was determined by a coin toss, except in 1877,

1. Brooklyn Eagle, June 29, 1888.
2. http://www.usatoday.com/sports/scores102/102233/20020821AL--NYYANKEES-Onr . htm/
3. The official rules of baseball are available online at the website of Major League Baseball,

http://www.mlb. com.



when the home team batted first. Starting in 1885 in the American Association and in
1887 in the National League, the home team was given the choice of batting first or last.
(Note that the 1888 contest described in Chadwick’s quote featured the visiting club,
Brooklyn, batting last.) It quickly became the custom for the home team to bat last,
although isolated instances of home clubs batting first persisted into the twentieth cen-
tury.4

In view of Chadwick’s argument, why might clubs in the early days of professional
baseball have chosen at times to bat first? A comment published in the Detroit News in

1914 gives this reason:®

Right now all clubs go to the field first when on the home grounds; the
custom has become firmly rooted, and no manager ever thinks of changing.

Yet, many years ago, it was equally the rule for the home team to bat first,
and the argument on which the managers maintained the system was the

supposed advantage of ‘getting the first crack at the new ball!’

When the game was played with only one ball, and was held up till that ball
came back after every journey, a hard-hitting club could, very often, get a
flock of runs by starting right in at the jump, taking first bat and collecting
hits before the other team had any chance. By the time that ball was
turned over to the other club it was black and hard to hit - hence an actual
and indisputable advantage for the team first at bat. But when the statute
was introduced providing a fresh white ball whenever the original ball van-

ished, this advantage was destroyed.

So, looking back at baseball history, while there was disagreement as to whether batting
first or batting last was an advantage, it appears that, whenever clubs did choose to bat

first, it may have been to trying to take advantage of having a more resilient ball to hit.

4. See NEMEC [7] for a complete chronology of this rule.
5. Detroit News, September 1, 1914.



The assertion that batting last gives a strategic advantage at the end of the game seems
to be largely unquestioned. Chadwick’s theory, espoused frequently in his writings on
baseball, suggests a belief that the extra information available to the club batting last,
specifically, the realized score of the other club in the inning, is useful in determining how

to play their half of the inning.

This paper addresses this question using the tools of game theory. Numerical analysis
of an equilibrium model of strategic choice indicates it is unclear whether the informa-
tional advantage Chadwick cited is paramount. If the defense has sufficient strategic
power, theory suggests that batting first may yield a higher winning percentage; in addi-
tion, whether a club would prefer to bat first or last may depend on details of the charac-
teristics of the players, and not just the rules of the game. Regardless, the magnitude of
the advantage, whichever club it favors, is miniscule; in the models to be considered here,

strategic advantages are on the order of one extra victory per ten seasons of play.

The rules of baseball naturally result in action taking place in more-or-less discrete
events which transform the state of the game. Thus, baseball is naturally suited to a
Markov process model. The operations research literature contains several studies imple-
menting this idea, with dynamic programming used to compute recommendations on the
advisability of certain strategies. The idea of using a Markov process representation of a
baseball game dates back in print at least to HOWARD’s [4] book. BELLMAN [1] explicitly
suggests dynamic programming as a solution concept for strategy questions, though he
does not pursue specific numerical examples in his exposition. TRUEMAN [8| applied a
Markov chain analysis, which modeled the outcome of batters’ times at bat similarly to
the present paper, to address the question of how a baseball team should sequence its bat-
ters in the batting order to maximize the production of runs, a topic revisited more

recently by BUKIET ET AL [2].

In order to address the question of whether it would be advantageous to bat first or

last, this paper extends Bellman’s idea and explicitly models strategic choice in baseball



as a two-player, zero-sum game, instead of a unilateral decision problem. Dynamic pro-
gramming is thus replaced as the solution concept by Markov-perfect Nash equilibrium.
By choosing a sufficiently rich definition of the state space of the game, it is possible to
solve backwards in time for optimal strategies in all innings except for the ninth (final)
inning of play. Since ties in baseball are resolved by playing an additional inning until
the tie is broken, these “extra” innings can be viewed as equivalent to the ninth inning,
and so a fixed-point problem is present. Even with a state space consisting of millions of
states, this structure permits equilibrium to be computed in less than a minute on a rea-

sonably modern computer.

The study of the advisability of individual baseball strategies was launched by
LINDSEY [5]. In the absence of large-scale computer databases on baseball play and cheap
computational resources for numerical calculation, Lindsey used a small sample of data to
give general advice on whether certain strategies were likely to increase or decrease run
scoring on average. The specific advisability of any strategy, however, often depends on
details of the state of the game. The program which generates the output presented
herein is capable of outputting these recommendations, but the size of the state space
ensures that the output is massive. Instead of summarizing these results, this paper will
instead consider the aggregate advantage, for example, the team that bats last enjoys by

the presence of the sacrifice bunt in a typical game.b

The word “strategy” in baseball denotes a concept somewhat different from its formal
definition in game theory as a complete contingent plan of action for a player. A “base-
ball strategy” is more akin in the parlance of game theory to a stage-game action, that is,

a choice available to a player at (a subset of) the states of the Markov game. These

6. The computer program will be made available on the author’s website,
http://econweb.tamu.edu/turocy, under the GNU General Public License. This may be of specific
interest to those readers wondering, for example, how often it makes sense to give an intentional walk to

Barry Bonds.



actions are taken precisely to manipulate the state of the game in a team’s favor, by modi-
fying the transition probabilities from the current state. In fact, many “baseball strate-
gies” employed by the offense are referred to as “one-run strategies,” since they increase the
probability of scoring at least one (more) run in an inning, at the cost of a decrease in the

likelihood of the rest of the inning resulting in two or more runs.

Of these “baseball strategies,” this paper selects three notable examples:

e The sacrifice bunt. A sacrifice bunt involves the batter deliberately striking the
ball softly (a “bunt”) in such a way that the defense causes him to be put out, so as

to advance runners on the bases towards their ultimate goal of scoring a run.

e The intentional walk. An intentional walk is issued when the pitcher deliberately
throws four unhittable pitches to the batter, allowing him to reach base safely, but

preventing him from obtaining a more damaging result (such as a home run).

e The stolen base. A stolen base is an advancement of a baserunner during a pitch
rather than a batted ball. For the purposes of this paper, a stolen base attempt is
modeled as a simultaneous move stage game between the offense and defense. This
game typically has a pursuer-evader structure, with a unique Nash equilibrium in

randomized strategies when viewed as a game in isolation.

Aside from a measure of prominence these three “baseball strategies” enjoy within the
sport, these have been selected as representing the possible range of actions available to
baseball teams. The sacrifice bunt is well-approximated by giving the offense the option
to advance a baserunner with probability one while giving up an out, also with probability

one;’ essentially, it reduces, in this conception, to a decision which may be unilaterally

7. Sacrifice bunt attempts do also result in failure for the offense, as well as failure by the defense in
putting out the batter, with a nontrivial frequency. This stylized modeling can be viewed as the model of

bunting which is most favorable to the team on offense.



made by the offense. Similarly, the intentional walk can be thought of as an action avail-
able to the defense also resulting in a state transition with probability one. The stolen
base represents an intermediate case, where both offense and defense take actions which

affect state transitions.

The paper proceeds as follows. Section 2 presents a model of a baseball game as a
two-player, zero-sum Markov game, and describes the variations and parameterizations of
interest. Section 3 describes numerical results quantifying the advantage in equilibrium to
batting first or last under a number of strategic treatments. Section 4 concludes with dis-

cussion and interpretation of the results.

2 The Model

The foundation of the model is a Markov chain approach to the progress of a baseball
game similar to that in BUKIET et al [2]. The game is conceptualized as a sequence of
transitions, each transition representing the net effect of a play on the state of the game.

The state is described by a 7-vector (¢, 7, \,w, 8, B1, B2) € X, with components

e . the current inning (1 through 9; extra innings to break ties are treated as the

ninth inning);

e 7: the half inning, denoting whether the team that bats first or second is currently

on offense;

e \: the lead (in runs) currently enjoyed by the batting team (if positive; their deficit

in runs if negative);
e w: the number of outs (0, 1 or 2) recorded so far in the half inning;

e 0: the set of bases currently occupied by baserunners (a subset of {1,2,3});



e [ the position in the batting order (one through nine) occupied by the next batter

scheduled to bat for each team ¢ (the first batter follows the ninth in the rotation).

Transitions between states are governed by matrices of transition probabilities which are
assumed to depend only on (,, the identity of the batter. In other words, batters may be
heterogeneous, with different batting abilities, but their performance is otherwise indepen-
dent of the game situation. The transition probabilities also obey all the rules of baseball.
This results in a sparse transition matrix; the number of states which can be reached with
positive probability in one transition ranges from 5 to 25.8

The two teams are modeled as unitary actors, each with the goal of maximizing the
probability the team eventually wins the game. The baseline model is a game only in a
trivial sense, in which the teams have at each state in ¥ only a single action. It is easy to
see that in this trivial game, if the teams are identical, each team will win with proba-
bility exactly one-half.

To this baseline model, additional actions representing “baseball strategies” are added.
The “baseball strategies” considered in this paper are the sacrifice bunt, the intentional
walk, and the stolen base; the presence or absence of these three features of the game
gives a total of eight possible treatments (including the baseline where all are absent).
Consideration of the equilibrium values (which are winning percentages) of the seven vari-
ants compared to the baseline of one-half then measures which team is favored by the
presence of the strategy, and by how much.

At each state, decisions are made in the following order. Where not explicitly noted,

state transitions occur in accordance with baseball rules.

e If intentional walks are permitted, in any state the defense may choose to inten-
tionally walk the batter. If this choice is made, the stage game ends, and the state

transitions with probability one.

8. The extreme cases are given by any state with § =0, and states with 6 = {1,2,3} and w =0, respec-

tively.



e If sacrifice bunts are permitted, and 6 € {{1}, {2}, {1, 2}},° the offense may choose
to bunt. If they do so, the stage game ends, and the state transitions with proba-
bility one reflecting a successful bunt: the number of outs w increments by one, and

baserunners each advance one base.

e If stolen bases are permitted, and 6§ = {1}, a simultaneous-move game is played.
The offense chooses between actions S, attempting a stolen base, and N, not
attempting a stolen base. The defense chooses between actions B, focusing atten-
tion on the batter, and R, focusing attention on the baserunner. The effect of
action R is to reduce the probability that an attempt to steal the base is successful,;
this is operationalized by assuming the probability of success is ng if the offense
plays S and the defense R, which is strictly smaller than the probability of success
mp which obtains if the defense plays B. On the other hand, playing R against N
results in an increase in the frequency with which the batter hits safely, changing
the transition probabilities favorably for the offense.l® In most cases, and for plau-
sible parameter values, this simultaneous-move game will have a unique equilibrium

in which both players randomize between their actions.

The transition probabilities between states generated by the outcome of batters’ times
at bat are generated using a two-step process, similar to the methods in TRUEMAN [§]
and BUKIET ET AL [2]. The basic outcome of each time at bat is modeled as a multino-
mial random variable, with seven possible outcomes: single, double, triple, home run,
walk, strikeout, and generic out (which includes all other events where the batter is put

out after hitting the ball). The frequencies of these outcomes form a vector (¢i%,

9. Thus, the “squeeze” bunt, which attempts to score a runner from third base, is not considered, in

particular because modeling this play as being successful with probability one is unrealistic.

10. This model is discussed in more detail in a companion paper, TUROCY [9], including a calibration

of model parameters to Major League Baseball data.



b, O, dHr, P8R, dto, d5uT) of probabilities representing, essentially, the batting abilities

of batter ¢ on team ¢. Conditional on the realization of this outcome, state transitions
occur according to the aggregate empirical frequencies observed in Major League Baseball
during the seasons 1973 through 1992, inclusive. For example, during the period, there
were 111,017 singles hit with no outs (w = 0) and no runners on base (6 = 0). Of these,
108,434 (97.67%) resulted in a state with w=0 and 8= {1}; 1436 (1.29%) in w=0 and 0 =
{2}; 261 (0.24%) in w =0 and 6 = {3}; 873 (0.79%) in w =1 and § = §; and 13 in w =0,
6 = 0, and a run scoring. These frequencies then determine the state transition probabili-

ties in the model conditional on a single being hit in that situation.!!

The solution concept for the game is Markov perfect equilibrium. The state space of
the game is in principle infinite, since there is no bound on the lead a team may achieve.
For computational tractability, the game is modified such that there is an upper bound A
such that a team achieving a lead of at least A wins the game with probability one.12 The
value of A should be chosen sufficiently large that solving the baseline game results in a
game value that is satisfactorily close to one-half; the results reported in the next section

use a value of A =30.13

With this modification, the stochastic game has a finite number of states, and a finite
number of actions, and so Markov perfect equilibrium does exist (see, for example,
FUDENBERG AND TIROLE [3], Theorem 13.1). From a theoretical perspective, the ques-

tion of whether a minimax theorem holds for this game, thus guaranteeing that the con-

11. The effects of errors and baserunners being put out attempting advancement are thus incorpo-
rated in the model. Events that result in a state change but do not result in the termination of a batter’s
time at the plate, including wild pitches, passed balls, and balks, are infrequent enough to have a small

effect and are omitted for simplicity.

12. This implements a “mercy rule” similar to those often used to terminate lopsided games in youth

and recreational baseball.

13. No Major League Baseball team has even scored 30 runs in a single game since the nineteenth

century.

10



cept of the value of the game is well-defined, is open. The game is similar to the binary
Markov game of WALKER AND WOODERS [10], for which a minimax theorem holds. How-
ever, the theorem does not apply here since each state can transition directly into more
than two states.

Because players bat in a fixed order, and because each player who comes to bat will
eventually be put out, score a run, or be on base when the defense records the third out,
there is a partial ordering > of the states in innings one through eight such that s; > sy if
and only if state s; can occur before state so. Therefore, for these innings, it is possible to
solve for equilibrium backwards in time, starting with the end of the eighth inning and
ending with the beginning of the game. The process of computing the equilibrium thus
spends most of its time solving the fixed-point problem involving the ninth inning, as the
value of a tie game at the end of the ninth inning is equal to the value of a tie game at the
beginning of the ninth inning, everything else being equal. Value-function iteration on the
ninth inning converges very rapidly for the examples presented. Iteration was stopped
when the value of a tie game at the beginning of the ninth inning changed by less than
10~* in successive iterations; this threshold was generally reached within 15-20 iterations.
Therefore, equilibrium can be computed accurately and efficiently, even though the game
as specified features a state space with 2,134,512 elements. This iterative process was ini-
tiated with different initial conditions, each resulting in equilibrium winning percentages
within the given tolerance. As such, numerical analysis suggests the notion of the value of

the game is well-defined in the versions of the games reported.

3 Results

3.1 Games played between identical teams

To investigate how the presence or absence of the “baseball strategies” under consideration
affect the equilibrium value, this section considers equilibrium in games played between

two typical teams. The notion of “typical” is operationalized by creating a lineup where

11



the vector ¢! is given by the empirical frequency of each of the seven outcomes of a
batter’s time at bat, given that the batter occupied the ith position in his team’s batting
order. While an individual player may, and does often, occupy different positions in the
batting order in different games in a season, the general structure of a team’s batting
order does not change substantially, and the structure of batting orders across teams fol-
lows some general customs. So, these aggregate constructed lineups share most of the
general structure one would find in a typical lineup of a randomly-selected team.

The vectors ¢ are derived from batting performance over twenty seasons of Major
League Baseball, from 1973 to 1992 inclusive. The vectors ¢ are computed separately for
the American League and National League. During the period of the sample, the Amer-
ican League made use of the designated hitter, which permits teams to nominate a player,
generally a talented batter, to bat instead of the pitcher; the National League required
pitchers to bat. Since pitchers are selected for their pitching, and not batting, abilities,
pitchers are as a group by far the worst batters, and so equilibrium strategies are different
when the pitcher is at bat or scheduled to bat soon.!4

The two teams are taken to be identical in all respects; that is, ¢'* = ¢% for all batters
i. Table 1 presents the probability the team batting last (the home team under current
rules) wins the game, in equilibrium, for each of the eight strategic environments under

consideration.15

14. For example, in the calculated equilibria, by far most of the situations where the sacrifice bunt is
advisable occur when the pitcher is batting. Similarly, some of the most opportune situations for the
defense to issue the intentional walk arise when the pitcher is scheduled to bat next. Both equilibrium

features concur with general baseball practice.

15. For the environments including the stolen base, the parameters 7 =.9 and 7z = .1 are used, and
the improvement in performance enjoyed by the batter in the contingency where (IV, R) is played is opera-
tionalized by doubling the frequency of hitting a single. These parameters are chosen as representative
based on TUROCY [9], as resulting in equilibrium predictions that approximate aggregate observed data.

The qualitative results survive across other parameterizations.

12



SB | IBB | SH | American League | National League
no | no | no .50000 .50000
yes | no | no .49990 49989
no | yes | no 49983 49974
yes | yes | no 49972 49961
no | no |yes .00056 .00068
yes | no |yes .50044 .50048
no | yes |yes .50017 .50015
yes | yes |yes .50005 49995

Table 1. Probability the last-batting team wins a game between identical teams, given the set of stage-

game actions available (SB=stolen base, IBB=intentional walk, SH=sacrifice bunt).

13



Result 1. The magnitude of the strategic advantage is small.

The winning percentages in Table 1 suggest that for teams of approximately equal
strength, which team bats last has only a small effect on the relative likelihoods of even-
tual victory. For a sense of scale in interpreting these and subsequent winning percent-
ages, note that the schedule of a Major League Baseball team consists of 162 games, 81 of
which are played at the team’s home park. So, a difference in winning percentage of .001
corresponds to one extra victory or defeat per six seasons overall. Restricting considera-
tion to only the home portion of a team’s schedule, imagining, perhaps, a club asking per-

“volunteer” to bat first even when at home, that winning percentage margin

mission to
of .001 would amount to one extra victory or defeat in twelve seasons of play. The per-
centages quoted in Table 1 differ from the baseline winning percentage of one-half by less

than that margin.

Chadwick’s arguments in favor of an advantage for batting last are based on the
ability of the team batting last to use the information of how many runs were scored in
the top of the inning. The most pivotal case is the bottom of the ninth inning, in which
the game is tied; in this situation, the batting team knows that scoring one run will result
in victory with probability one. Equilibrium calculations, however, indicate this knowledge
is not that valuable; the equilibrium strategies do not differ greatly in the top and bottom
of the same inning (that is, they do not vary greatly with 7), holding the other aspects of
the state vector constant. While the team batting last in a tie game in the ninth may
know one run will win the game with probability one, the team batting first in the same
inning can be sure one run will win the game with high probability (around .85 for these
parameterizations).

Note that the fact that the equilibrium winning percentages stay close to one-half does
not imply that strategy is irrelevant to success in baseball. For example, results in
TurOoCY [9] indicate that unilateral commitment to never stealing a base (that is,

strategy IN) would cost a typical team about two victories in a 162-game season. Similar

14



results can be obtained for intentional walks and sacrifice bunts. So, the small advantages
afforded in equilibrium by these “baseball strategies” does not arise because the strategies
are useless; nonoptimal play (for example, by choosing to commit to never sacrificing,
giving an intentional walk, or stealing a base) would result in a noticeable number of fore-

gone wins in even a season.

Result 2. The direction of the advantage is related to the relative strategic strengths of
offense and defense; batting last is generally better if the offense has more “strategic
power.”

The discussion so far, motivated by Chadwick’s hypothesis, has made no mention of a
role for the defense. The treatment most favorable to the foregoing argument is the one
featuring only the sacrifice bunt, insofar as this is the only game considered where only
the team on offense makes any nontrivial choices.

In Table 1, every pairwise comparison of a treatment with the sacrifice bunt, an offen-
sive strategy, versus the one without, holding the availability of other strategies equal,
results in an increase of the winning percentage of the team batting last. On the other
hand, making pairwise comparisons between treatments with and without the intentional
walk, a defensive strategy, results in an increase of the winning percentage of the team
batting first.

This observation indicates a modification of Chadwick’s theory: the team that gets
to “go last” has the advantage. Since many choices are made within each half-inning of a
baseball game, “going last” is intended to mean “playing the side with more strategic
options.” If the defense has more, or more valuable, strategic options at its disposal, then
being on defense in the bottom of the last inning would be advantageous.

This reinterpretation of Chadwick’s ideas may not be unreasonable. The rules of base-
ball evolved substantially during the nineteenth century; in fact, the game played
by “major league” teams in the early 1880s would resemble a modern game of medium-

pitch softball in a good amateur tournament.!6 In this environment, the balance of

15



strategy may have been very different; indeed, it might have been a reasonable approxima-
tion of the game to think of only the offense as having any choices of consequence to
make.

The early results of LINDSEY [5] suggested that the sacrifice bunt is advisable only
within a very limited number of situations. As such, it would be unexpected for the
advantage of the sacrifice bunt to be extremely large. The inclusion of basestealing is
intended to mitigate this by including another “baseball strategy” often thought to favor
the team batting last. However, the presence of basestealing on average favors the team
batting first. Basestealing is modeled with both offense and defense playing active
strategic roles. It turns out that, in a tie game in the top of the last inning (that is, t =9,
7 =1, and A = 0) the team batting first is able to use the stolen base to increase their
chances of getting a lead; when they do so, the stolen base becomes less attractive to the
team batting in the bottom of the inning. The defense, in that situation, is able to

exploit its lead strategically.

Result 3. The direction of the advantage is not solely a function of the rules; it may also
depend on characteristics of the players.
Consider the winning probabilities of the last-batting team in the full model containing

” When the model is calibrated to a typical American League

all three “baseball strategies.
lineup, the team batting first wins in equilibrium slightly less than one-half of the games;
on the other hand, when calibrated for the National League in the same period, the team
batting first enjoys a small advantage in equilibrium. This can be understood by remem-
bering the rule difference between the leagues: in the National League, the pitcher, a very

weak hitter, takes a turn at bat. This means that it becomes more attractive to give an

intentional walk to the batter who bats before the pitcher. So, when the team batting

16. For example, until 1884 the motion the pitcher could use to deliver a pitch was very restricted;
even in 1884, the pitcher still was required to throw underhand, and from a distance closer to the plate

(and similar to that in softball today).

16



first holds a small lead in the last inning, the intentional walk is a more valuable strategic

weapon in the National League than the American.

This specific example highlights an important assumption in the model: no substitu-
tions are permitted. In practice, a club would always put in a substitute batter for the
pitcher in such a situation. The model can be extended in principle to accommodate this;
the complications involved are discussed in Section 4. However, this example illustrates
that it may not be possible to answer the question of whether a club would prefer to bat
first independent of knowledge about the details of the teams involved; the answer may

differ from team to team, or opponent to opponent.

Result 4. The advantages in Table 1 arise from endgame effects.

To verify that the deviations from winning percentages of one-half are effects created
by the finite length of the game, as opposed to a systematic, inning-by-inning advantage,
one can imagine modifying the rules of baseball to have more than nine innings. Consid-
ering the full model with all strategies available, if the game were 20 innings long instead
of nine, the team batting last would win with probability .50003 in the American League,
and .49996 in the National. For games of 100 innings, the probabilities are .50001

and .49999, respectively.

3.2 Games with a home field advantage

What about games between unequal opponents? In fact, the “median” game of baseball
takes place between opponents who can be expected to perform differently. Empirically,
offensive statistics for home teams in baseball are better than those of visitors, taken in
aggregate. Over the course of the seasons 1973-1992, the home team outperformed the
visitors in most categories (singles, doubles, and so forth) by about 3 percent (that is, the
home team hits singles at a rate 3% higher than the visitors, etc.). Here the model is dis-

tinguishing between a home field advantage, which is improved performance due to better

17



rest, familiar surroundings, or fan support, and an advantage to batting last, which is
strategic in nature.

To approximate this in the model, Table 2 reports winning percentages for the home
team when batting first or last, where the home team produces better offensive statistics
than the visitors. For these data, this is accomplished by increasing the home team’s pro-

ductivity by 1.5%, and decreasing the visiting team’s by the same percentage.l”

17. Since the model deals in observed frequencies of events, this difference may arise due to better
offense at home, inferior defense on the road, or a combination of the two. The origin of the difference in

performance is not important for the conclusions of the model.
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American League | National League
SB |[IBB |SH | last first last first
no | no | no | .52891 | .52891 | .52789 | .52789
yes| no | no | .53141 |.53161 | .53046 |.53068
no | yes | no | .52874 |.52907 | .52763 |.52816
yes | yes | no | .53123 |.53179 | .53018 |.53096
no | no |yes| .52939 | .52827 |.52846 | .52711
yes | no |yes| .53188 | .53099 |.53096 | .52999
no | yes |yes| .52899 | .52866 |.52793 | .52763
yes | yes |yes| .53148 | .53138 | .53042 |.53052

Table 2. Winning percentage of home team when batting last or first, respectively, for each of the combi-

nations of stage-game actions available. Cells in bold indicate the higher winning percentage.
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Result 5. The assumption of symmetric teams is not crucial to the results of section 3.1.

In Table 2, cells in boldface indicate the higher winning percentage for the home team
for each treatment. These cells follow the same pattern of advantages as in Table 1, indi-
cating that the preferred choice of batting first or last is robust to the introduction of
asymmetries between the teams.

The winning percentages for the home team are noticeably higher in the treatments
with stolen bases. This arises because the advantage to the offense in the contingency
where (N, R) is played is operationalized by a percentage increase in the batter’s perfor-
mance. Since the home team batters are already in this model hitting singles at a higher
rate than the visitors’ batters, the percentage increase is larger, ceteris paribus, for the
home team. A model with an additive increment to this frequency would preserve the
qualitative results, while resulting in winning percentages closer to the baseline treatment

with no strategy.

4 Conclusions

The game of baseball involves far more strategic choice than the rather simple model
studied in this paper. The type and location of each pitch thrown (high or low, fastball
or curve), the batter’s preparation for the pitch (expect fastball, expect curve), and the
positioning of fielders (bring the infield in, play the third baseman close to the foul line)
are all important parts of the game. It would be computationally challenging to analyze a
model rich enough to encompass these choices explicitly. But, importantly, it would be
difficult to even specify such models in a satisfactory way, since doing so would require an
understanding of how each of these choices affect performance. While the present model
by necessity abstracts from many of these details, the results are instructive, if not in
giving a definitive answer to the question in the title, at least in understanding what char-

acteristics of the game are likely to be relevant in determining the answer.
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For it to matter in a measurable way whether a team bats first or last, it will be neces-
sary that optimal strategy in the top of an inning differ substantively from optimal
strategy in the bottom of the same inning. However, for the models in this paper, this
does not hold: the risks and rewards of choices are in approximately the same proportion.
Even with strategies that result in state transitions with certainty, the overall effect on
winning percentage is small. Most of the unmodeled choices enumerated in the previous
paragraph only modify state transitions in a cruder, probabilistic fashion; taken individu-

ally, they each would have only a tiny effect on the equilibrium value.

Also, the games studied here suggest that the offense must have, in some sense, a
richer strategic portfolio in order for batting last to be advantageous. In any event, in
order for the overall advantage (or disadvantage) to batting last to be measurable, the
unmodeled strategic choices must overwhelmingly favor either the offense or defense.
While an answer to this question may not be in principle obtainable, it is worth noting
that throughout baseball history, the general policy has been to institute changes in the
rules to more or less keep offense and defense balanced, at least in a subjective sense.
Insofar as this balancing process tightens or relaxes restrictions on play as offense or
defense, this is suggestive that a balance of strategic power may exist between offense and

defense as the game is played today.

There is one missing, yet important, source of choices in the model. The concept
of “strategy” in this model has been strictly one of strategy on the field. Specifically, any
modeling of player substitution is not included. Yet, as noted, there are situations where
player substitution would clearly be indicated. The magnitude of this omission is not
clear. As noted, one reason the effect of the modeled actions on winning percentage is
small is that there is an almost-symmetry in optimal choices in the top and bottom of
innings. However, player substitutions in baseball have an asymmetric aspect. The
strategic substitution of players in the later innings of a game generally involves the inser-

tion of players with specialized talents suited for the game situation at hand. A very vis-
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ible example is substituting a better batter in place of the pitcher in the National League.
To pick up the discussion from section 3, if the pitcher is due to bat in the bottom of the
ninth of a tie game, he will likely be removed and replaced with a superior batter. In the
top half of the inning, it is likely the same will occur. But, since baseball’s rules do not
permit a player to re-enter a game once removed, the team that bats first will need to
insert a new pitcher into the game for the bottom of the ninth inning, while the team that

bats last, should they win the game, would not need to insert a substitute.

The model can in principle be extended to cover substitutions by including in the
description of the Markov state the status of all players on rosters - available, currently in
the game, or already removed. Such an analysis is impractical for rosters containing more
than two or three substitutes at most. It may also be difficult to obtain general conclu-
sions for the value of substitution, since the value likely depends on the specific profile of
talents possessed by the available substitutes. Further, while the previous paragraph dis-
cussed substitutions on offense, the defense too may engage in tactical substitutions of
pitchers. While analysis of such an expanded model falls outside the scope of the present
paper, the principles suggested by the results indicate the answer depends on whether
substitutions on offense or defense are more effective, and whether the optimal timing of

substitutions differs greatly between the top and the bottom of an ininng.

Finally, in revisiting Chadwick’s quote that opened this paper, note the use of words
like ‘confidence’ and ‘inspiring.” Not included in these models are any considerations of
psychology. Despite the analysis presented here, the belief that batting last is an advan-

tage is deeply ingrained in the beliefs of baseball players and managers at every level.!®

18. In the spirit of full disclosure, this includes the author. In testing the program used to compute
equilibrium for this model, the author became interested in the advantage the stolen base yielded to the
home team. After obtaining the conclusion presented here, that the visiting team actually won more fre-
quently when stolen bases were included in the game, the author was convinced the program was incor-

rect. In fact, the program is correct, but it took several weeks to become convinced.

22



As an empirical regularity, baseball teams playing at home, on aggregate, perform about
three percent better in every measurable category. Some, perhaps much, of this effect is
physiological. Baseball teams tend to stay at home for a week or more at a time,
affording a more regular schedule, dining habits, and the comforts of home, and therefore
are able to simply perform better. It is conceivable, however, that some of the perfor-
mance improvement could derive from confidence in the belief that having the “last up”
always gives them one more chance to win the game. Since the natural experiment of
randomly assigning the order in which teams bat is not feasible, the question remains
unanswerable.l? However, such an advantage could not be reasonably said to derive from
strategic considerations, as the advantage would not survive the “publication-proof” test

(e.g., MCKELVEY AND RIDDIHOUGH |[6]).
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19. Another experiment is possible in principle. If all players and managers were presented with and
convinced of the results in this paper, would the observed performance of the home teams decrease?

Alas, this experiment is even more implausible in practice than the one mentioned in the text.
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