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Abstract

Many local public goods are provided by coalitions and some of them

have network e¤ects. Namely, people prefer to consume a public good in a

coalition with more members. This paper adopts the Drèze and Greenberg

(1980) type utility function where players have preferences over goods as

well as coalition members. In a game with anonymous and separable net-

work e¤ect, the core is nonempty when coalition feasible sets are monotonic

and players�preferences over public goods have connected support. All core

allocations consist of connected coalitions and they are Tiebout equilibria as

well. We also examine the no-exodus equilibrium for games whose feasible

sets are not monotonic.
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1 Introduction

Network e¤ects appear in the consumption of many goods. The utility derived

from consumption is higher as there are more people consuming the same good.

Katz and Shapiro (1985) describe three major sources of this type of consumption

externalities. First, the consumption of some goods constitutes physical networks

like telephones, fax machines, and email. The users form a network that links all

users together. Having more users makes the good more valuable to any single

user. Second, the utility from a hardware platform depends on the availability

of software, and the availability of software in turn depends on the number of

people using the same platform. Third, a durable good can provide longer use

if maintenance services are accessible, and a company will provide more service

stations if it has more customers. The literature addresses the interactions among

�rms including issues such as price and quantity competitions, technology sharing,

and standardization (see, for example, Church and Gandal 1992 and Economides

1996). Network e¤ects, on the other hand, are less explored in the context of

public goods. However, people form coalitions to provide local public goods and

many public goods do have network e¤ects. The following economic applications

are examples of local public goods with network e¤ects: (i) Buyers choose among

di¤erent insurance policies in the market. Having more people purchasing the

same contract ensures better risk-sharing. (ii) Political parties promote their pol-

icy platforms, and people prefer to join a larger party for a better chance of wining.

(iii) Clubs form in order to provide entertainment for members. People may pre-

fer to socialize with more members with common interest. (iv) Professors join

academic departments to obtain research resources, and a larger faculty provides

better interactions among scholars.

Cooperative coalition formation with nontransferable utility and no external-

ities among coalitions has been �rst studied in the characteristic function form.

Aumann and Dréze (1975) adapt for coalition structures solution concepts origi-

nally designed for the grand coalition, such as the core, von Neumann-Morgenstern

stable set, and the bargaining set. Kaneko andWooders (1982) develop conditions,

based on Scarf�s (1967) balancedness condition, that guarantee the nonemptiness

of the core independent of the payo¤ function. Le Breton, Owen and Weber

(1992) study communication games on graphs where only connected coalitions

are e¤ective. The term �hedonic coalition�describes the situation that players
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have preferences over coalition members. Dréze and Greenberg (1980) �rst con-

sider the hedonic aspect where players derive utility from the consumption of

private and public goods, as well as coalition members. Subsequent works focus

on local public goods provided by coalitions. Guesnerie and Oddou (1981) and

Greenberg and Weber (1986) show the nonemptiness of the core in local public

economies where coalitions decide on levels of public expenditures that were �-

nanced by taxes. The notion of a consecutive game is developed in the latter.

Greenberg and Weber (1993) and Demange (1994) study more abstract models.

A stronger notion of stability, core allocations that are also Tiebout equilibria,

is obtained. Their existence is shown in the former when preferences are single-

peaked on a line and in the latter when preferences are intermediate on a tree

graph. Coalition feasible sets are assumed to be monotonic in both. Pure hedonic

coalitions where utility is solely derived from members are recently investigated

by the following authors: Banerjee, Konishi and Sönmez (2001) show that the

core is empty when several common assumptions are applied. However, the weak

top-coalition property guarantees the nonemptiness of the core. Bogomolnaia and

Jackson (2002) study the same model and obtain the existence of individually

stable and Nash stable partitions. In a related work on strategic form games,

Konishi, Le Breton and Weber (1997) study group formation with positive exter-

nalities from group size. A coalition is a set of players choosing the same pure

strategy. A Nash equilibrium exists when preferences over strategies dominate

group size e¤ect. Demange and Wooders (2005) and Demange (2004) present

comprehensive surveys of these issues.

This paper investigates the situation where players derive utility from public

goods and coalition size. This is a special case of the Drèze and Greenberg (1980)

type utility function.1 We focus on a type of network e¤ect that is anonymous

and separable; preferences over members are represented by a separate increasing

function. We impose a preference structure called �connected support.�It requires

that there is a tree graph linking players together such that the set of players whose

utility di¤erence from a pair of public goods is strictly bigger than any given

constant is connected. When coalition feasible sets are monotonic and player�s

preferences over public goods satisfy connected support, the core is nonempty.

With the above assumptions, we characterize the core as follows. An allocation is

1Greenberg and Weber (1986) have another application where the utility from group size is

derived indirectly through a tax sharing rule.
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in the core if and only if it is not blocked by any connected coalition and it is a

Tiebout equilibrium. Moreover, a core allocation consists of connected coalitions.

Monotonicity appears in all previous results of public good models even though

di¤erent preference structures are used (such as in Guesnerie and Oddou 1981,

Greenberg and Weber 1986, 1993, and Demange 1994). It looks benign but there

are no results without assuming it. When monotonicity is not assumed, individu-

ally stable allocations may not exist even if players have intermediate preferences

that are also single-peaked. We examine another stability notion that is relaxed

from the core, the �no-exodus equilibrium.�When feasible sets are not monotonic,

it strictly contains the core. It captures the idea of free migration into a country

that welcomes all newcomers. Still, there may not exist a no-exodus equilibrium

without monotonicity.

Section 2 introduces the model and presents the results. Section 3 introduces

the no-exodus equilibrium. Section 4 concludes.

2 The model

The set of players is denoted by N and the set of public goods is denoted by X.

Each player i 2 N has preferences over X that are represented by a continuous

function ui : X ! R. A coalition is a subset S � N . The set of feasible

public goods of coalition S is � (S) where � : 2N ! 2X is called a feasibility

correspondence. A coalition may have an empty feasible set. We assume that

there exists an S � N such that � (S) 6= ? to eliminate triviality. The network

e¤ect is anonymous and separable. Utility function vi : 2N �X represents player

i�s preferences over pairs of coalition and public good. If player i consumes public

good x 2 X in coalition S, her utility is

vi (S; x) = ui (x) + f (jSj)

where ui is continuous, and f is nonnegative and strictly increasing. The pair

(S; x) is called a coalition public good pair. Using an identical function f for

every player only has a normalizing e¤ect since preferences are ordinal. The

pro�le of utility functions of N is denoted by (vi)i2N . A public good game with

network e¤ect
�
N;X; �; (vi)i2N

�
consists of a set of players, a set of public goods,

a feasibility correspondence, and utility functions where N is �nite, X is closed,

and � is compact-valued.
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A coalition structure � � 2N is a partition of N such that � (S) 6= ? for

all S 2 �. An allocation a : N ! 2N � X assigns a coalition public good

pair a (i) to individual i. Allocation a is feasible if there is a coalition structure

and a list of public goods
�
�a; (xS)S2�a

�
with xS 2 � (S) for all S 2 �a such

that a (i) = (S; xS) for all i 2 S and all S 2 �a. To simplify notation, we

denote vi (a (i)) = vi (S; xS). In many cases, a coalition can do more if it has

more members. The feasibility correspondence � is assumed to be monotonic:

� (S) � � (S 0) for all S; S 0 2 2N , S � S 0.
Previous works impose preference structures over public goods such as single-

peaked preferences and intermediate preferences. These structures link players on

a line or a tree graph and regulate players�preferences to change gradually over

the line or the tree. However, the network e¤ect in our model invalidates these

preference structures: a player�s desire for a bigger coalition size can dominate

preferences over public goods. For example, suppose player i prefers x to y in any

coalition and the network e¤ect has f (3)� f (2) > ui (x)� ui (y). Then, i prefers
to consume y in a three-person coalition than x in a smaller coalition. Hence,

previous results are not valid when the network e¤ect is not negligible and tips

over preferences over public goods in an arbitrary way. We resort to a stronger

restriction that regulates gradual changes in the relative strength of preferences

over public goods and sizes.

� Players�preferences over public goods satisfy connected support (G)2 if there
is a tree graph G on N such that for any pair x; y 2 X and any t 2 R the
set fi 2 N j ui (x)� ui (y) > tg is connected on G.

Connected support requires that there is a tree graph linking players together

such that the set of players whose utility di¤erence from any pair of public goods

is strictly bigger than any given constant is connected. It says that there is a

way to link players on a tree according to their preferences, and players with

similar preferences are connected on the tree. A related preference structure is

intermediate preferences (Grandmont 1978, Demange 1994) which requires that,

with respect to a tree and for any pair of public goods, the following two sets of

players are connected: players with the same strict preferences and players with

the same weak preferences. So, in other words, intermediate preferences requires

that strict and weak preferences change gradually over a tree, while connected

2The parenthesis, (G), denotes �with respect to G.�
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support requires that the strength of strict preferences change gradually over a

tree. We illustrate this type of preferences with a simple example: the Euclidean

utility function is ui (x) = kx� aik where x; ai 2 R and constant ai is player i�s
idea point. For x; y 2 X and a real number t, the set fi 2 N j ui (x)� ui (y) > tg
is equivalent to fi 2 N j ai > (x� y + t) =2g and it is connected.3

The local public good literature focuses on the following two stability notions.

The core is the set of allocations where no group of players can break away while

improve every member�s payo¤. A Tiebout equilibrium is an allocation such that

no one wants to move to another coalition.

A feasible allocation a is in the core if there is no coalition public good pair

(S; x) such that x 2 � (S) and vi (S; x) > vi (a (i)) for all i 2 S.
A feasible allocation a is a Tiebout equilibrium if vi (a (i)) � vi (a (j)) for all

i; j 2 N .4

We have the following characterization of the core which is not obtained in

models without network e¤ect.

Proposition 1. In a public good game with network e¤ect where preferences

satisfy connected support (G) and feasible sets are monotonic, a is in the core if

and only if (i) a is not blocked by connected (G) coalitions, and (ii) a is a Tiebout

equilibrium. Moreover, if a is in the core, a consists of connected (G) coalitions.

Proof. (1) In the �rst part of the proof, we show that conditions (i) and (ii)

characterize the core. First, suppose a satis�es (i) and (ii). We will show that no

coalition can block. Suppose S blocks with x and S is not connected. Let T be

the minimal connected set containing S. That is, S � T 2 2N and there is no

connected T 0 2 2N , T 0 6= T such that S � T 0 � T . For all h 2 TnS, we can �nd
i; j 2 S such that h is on the path linking i and j. Denote a (h) = (S 0; y). We have
vi (S; x) > vi (a (i)) � vi (S 0; y) and vj (S; x) > vj (a (j)) � vj (S 0; y) because a is
a Tiebout equilibrium. Since the set fk 2 N j uk (x)� uk (y) > f (jS 0j)� f (jSj)g

3Examples of utility functions satisfying intermediate preferences used in Demange (1994, p.

50) also satisfy connected support.
4This version of Tiebout equilibrium coincides with envy-freeness, which is a notion of fairness

(Foley 1967).

6



is connected, vh (S; x) > vh (S 0; y) as well. vi (T; x) > vi (S; x) for all i 2 T since
T is larger than S. Moreover, x 2 � (T ) by monotonicity. Thus, T is a connected
coalition that blocks a; this is a contradiction.

Since condition (i) is implied by the core, what remains is to show that a core

allocation is also a Tiebout equilibrium. This is done via the following property

which is satis�ed by all core allocations: any edge linking two adjacent coalitions

divides players into two groups with the opposite weak preferences.

A feasible allocation a has the separation property (G) if for any linking edge

ij of two adjacent coalitions on a tree G,

vh (a (i)) � vh (a (j)) for all h 2M (ij) ;

vh (a (j)) � vh (a (i)) for all h 2M (ji) ;

where M (ij) = fh 2 N j ij 62 p (i; h)g.

Lemma 1. If a feasible allocation a satis�es the separation property (G), it is

a Tiebout Equilibrium.

Proof. Each pair i; j 2 N are linked on G by a unique path that passes through

adjacent coalitions. Let i0 = i, ik = j and p (i; j) = fi0i1; i1i2; :::; ik�1ikg. For
all m = 1; :::; k, either im�1 and im belong to the same coalition and a (im�1) =

a (im), or im�1im links two adjacent coalitions and i 2 M (im�1im), which means

vi (a (im�1)) � vi (a (im)). So, vi (a (i0)) � vi (a (ik)).

Lemma 2. When preferences satisfy connected support (G) and feasible sets are

monotonic, any core allocation a has the separation property (G).

Proof. Suppose a (i) = (S; x) and a (j) = (T; y). Suppose vj (S; x) � vj (T; y).
Then vj (S [ fjg ; x) > vj (T; y) and vi (S [ fjg ; x) > vi (T; y) by network ef-

fect. Moreover, x 2 � (S [ fjg) by monotonicity, and this means that a is
not in the core. So, vj (T; y) > vj (S; x); by the same argument, vi (S; x) >

vi (T; y). Suppose there is h 2 M (ij) such that vh (T; y) > vh (S; x), then

j; h 2 fk 2 N j uk (y)� uk (x) > f (jSj)� f (jT j)g. Since i is on the path link-
ing j; h, the above set is not connected, and this violates connected support. So,

there is no h 2 M (ij) such that vh (â (j)) > vh (â (i)). By the same argument,

there is no h 2M (ji) such that vh (a (i)) > vh (a (j)).
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(2) In this part of the proof, we show that a consists of connected coali-

tions if a is in the core. Suppose there is a coalition S 2 �a which is not

connected. Let T be the minimal connected coalition containing S. Take any

i 2 TnS. Note that all i 2 TnS is on a path linking two players in S. Then,
vj (T; xS) > vj (S; xS) � vj (a (i)) for all j 2 S and all i 2 TnS by network ef-
fect and Tiebout equilibrium respectively. Denote a (i) = (T 0; y). Since the set

fk 2 N j uk (xS)� uk (y) > f (jT 0j)� f (jSj)g is connected, vi (S; xS) > vi (a (i))

for all i 2 TnS. Moreover, vi (T; xS) > vi (a (i)) for all i 2 TnS by network e¤ect.
Finally, xS 2 � (T ) by monotonicity. So, T blocks with xS, and this contradicts
with a being in the core.

In a model without network e¤ect, Demange (1994) show that conditions (i)

and (ii) together with that a consist of connected coalitions imply the core. The

network e¤ect brings a stronger result: the core also implies the above three

conditions. In a core allocation, every player prefers own coalition to another, and

each coalition is composed of players with similar preferences. A core allocation

also has a diversity property: no two coalitions choose the same public good. If

there are two such coalitions, they would join together because of the network

e¤ect. We present the nonemptiness result in the following.

Theorem 1. When preferences satisfy connected support (G) and feasible

sets are monotonic, a public good game with network e¤ect has a nonempty core.

Proof. An algorithm that constructs a core allocation is de�ned in the follow-

ing.5 Take r 2 N to be the root. Rooted tree Gr assigns priorities to players.

The distance between player i and r is � (r; i) = k if r and i are linked by a path

of length k. We say that i has priority-(k + 1). Let �k = maxi2N � (r; i) be the

maximal length on Gr. Let N i denote the subtree originated from i that contains

i and players with lower priorities. Note that N i \ N j = ? if i; j have the same

priority.

For the convenience of the construction, we temporarily assign a null public

5This algorithm is based on a chapter of my dissertation, Kung (2002). Several hierarchical

algorithms can be found in Demange (2004) for games without preference structures where only

coalitions that are connected on a hierarchy can form.
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good � to coalitions that have empty feasible sets and ui (x) > ui (�)+ f (jN j) for
all x 2 X and all i 2 N . � is the least preferred for all players. Let X 0 = X [f�g.
We will show later that the �nal construction does not involve �.

Next, we de�ne the top choice set Ci for player i.

Ci = argmax
n
vi (S; x) j (S; x) 2 ~N i and vj (S; x) � �vj;8j 2 Sni

o
where �vj = vj (S�; x�) for some (S�; x�) 2 Cj and

~N i =
n
(S; x) 2 2N i �X j x 2 � (S) ; i 2 S; S is connected

o
:

Set Ci consists of player i�s most preferred coalition public good pairs among

all feasible coalition public good pairs that consist of connected coalitions on i�s

subtree N i containing i and give other coalition members utility levels no worse

than their top choice sets. The next lemma shows that the top choice set is

well-de�ned.

Lemma 3. Ci 6= ? for all i 2 N .

Proof. First, let Ri (S; �vi) = f(T; x) 2 fSg �X j x 2 � (T ) ; vi (T; x) � �vig de-
note i�s upper contour set with utility no less than �vi when in coalition S. Let

Di = [fSj(S;x)2 ~N ig
�
\j2SniRj (S; �vi) \ f(S; x) j x 2 � (S)g

�
:

Then, Di is the set of all feasible coalition public good pairs that consist of con-

nected coalitions on i�s subtree N i containing i and give other coalition members

utility levels no worse than their top choice sets. Ci is the set of i�s most preferred

pairs in Di. Since player i can always form a one-person coalition, the set Di 6= ;.
All Ri (S; :) and � (S) are compact, and the set

n
S j (S; x) 2 ~N i

o
is �nite. Thus,

Di is the union of �nitely many compact sets. Since vi is continuous, Ci 6= ?.

In the following, we construct an allocation â using top choice sets. Given a

collection of pairs f(Si; xi)gi2N such that (Si; xi) 2 Ci for all i 2 N , we assign
coalition public good pairs sequentially starting from r. Let L0 = frg.
â (i) = (Sr; xr) for all i 2 Sr. Let L1 = fj 2 NnSr j /9h 2 NnSr s:t: � (r; h) < � (r; j)g.
â (i) = (Sj; xj) for all i 2 Sj and all j 2 L1.
.........................
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Suppose â (i) is assigned for all i 2 Sj and all j 2 Lm�1.
Let Ŝ (m� 1) = [i2[m�1k=0 L

kSi and

Lm =
n
j 2 NnŜ (m� 1) j /9h 2 NnŜ (m� 1) s:t:� (r; h) < � (r; j)

o
:

â (i) = (Sj; xj) for all i 2 Sj and all j 2 NnLm.
.........................

Since N is �nite, there is an integer �l � �k � 1 such that L�l+1 (r) = ?.
Note that all coalitions that have been assigned are connected. Let L =

[k=0;:::;�lLk (r). Thus, fSigi2L is a partition ofN . The collection of pairs f(Si; xi)gi2L
constitute allocation â.

Lemma 4. vi (â (i)) � �vi for all i 2 N .

Proof. For all i 2 N , either i 2 L and â (i) = (Si; xi) 2 Ci, or i 62 L, i 2 Sj for
some j 2 L, then, â (i) = (Sj; xj) and vi (Sj; xj) � �vi.

Next, we show that â does not involve the null public good �.

Lemma 5. For all i 2 N , â (i) 6= (S; �) for any S � N .

Proof. Suppose there is a coalition S that consumes �. Suppose there is a

coalition T that is adjacent to S and T consumes a public good x 6= �. We will
show that every T adjacent to S must also consume �.

Suppose ij is the linking edge of S and T , and i 2 S, j 2 T . First, suppose i
has a higher priority than j. Thus, T � N i and for all h 2 T , vh (T [ fig ; x) >
vh (â (h)) � �vh. By monotonicity, x 2 � (T [ fig). Therefore, (T [ fig ; x) 2 Di.

Since (S; �) = â (i), lemma 3 implies vi (S; �) > �vi > vi (T [ fig ; x); this is a
contradiction.

Second, suppose j has a higher priority than i. Suppose g is the player of

the highest priority in T (this g is unique). Thus, (T; x) = (Sg; xg) 2 Cg. Then
vh (T [ S; x) > vh (T; x) � �vh for all h 2 T and vh (T [ S; x) > vh (S; �) � �vh

for all h 2 S. By monotonicity, x 2 � (T [ S). This means (T [ S; x) 2 Dg and

(T; x) 62 Cg; this is a contradiction.
Since every coalition is adjacent to another, all coalitions must consume �.

Note that there exists S 2 2N such that � (S) 6= ?. So, there is x 2 � (N)
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and x 6= �. Moreover, vi (N; x) > vi (â (i)) � �vi for all i 2 Nnr. This means
(N; x) 2 Dr; a contradiction.

So far, we have shown that â is well-de�ned. The next lemma shows that â

has the separation property and, then, it is a Tiebout equilibrium.

Lemma 6. â satis�es the separation property (G).

Proof. Since â consists of connected coalitions, there is a unique linking edge

ij of two adjacent coalitions S and T . Suppose i 2 S, j 2 T , S consumes x,
and T consumes y. Without loss of generality, suppose i has a higher priority

than j. First, y 2 � (T [ fig) and (T [ fig ; y) 2 Di, so we have vi (â (i)) �
vi (T [ fig ; y) > vi (â (j)) because of â (i) 2 Ci and the network e¤ect. Sec-

ond, suppose vj (â (i)) � vj (â (j)); then, vj (â (i)) � �vj. By monotonicity, x 2
� (S [ fjg). Let g be the player of the highest priority in S. Then, (S [ fjg ; x) 2
Dg which means (S; x) 62 Cg; a contradiction. So, vj (â (j)) > vj (â (i)). Fi-

nally, suppose there is h 2 M (ij) such that vh (â (j)) > vh (â (i)), then j; h 2
fk 2 N j uk (y)� uk (x) > f (jSj)� f (jT j)g. Since i is on the path linking j; h,
the above set is not connected and this violates connected support. So, there is

no h 2M (ij) such that vh (â (j)) > vh (â (i)). By the same argument, there is no

h 2M (ji) such that vh (â (i)) > vh (â (j)).

By Lemma 1, â is a Tiebout equilibrium. Next we show that no connected

(G) coalition can block. Suppose there is a pair (S; x) such that x 2 � (S) and
vi (S; x) > vi (â (i)) for all i 2 S and S is connected. Then, vi (S; x) > vi (â (i)) �
vi (S

i; xi) for all i 2 S. Suppose g is the player of the highest priority in S; then
S 2 N g, (S; x) 2 Dg, and vg (S; x) > vg (Sg; xg); a contradiction. Consequently, a

well-de�ned allocation â is in the core by Proposition 1.

The following example illustrates how the algorithm works. Core allocations

in general are not e¢ cient. The constructed allocation may have a better chance

of achieving e¢ ciency since it allows some players to choose the most preferred

coalitions and public goods. However, as shown in the following example, it can

still be ine¢ cient when monotonicity and connected support are satis�ed. In

the example, the decision-maker is indi¤erent between two public goods, and the
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coalition forgoes a chance to improve e¢ ciency.

Example 1. Consider a three-player game: N = f1 2 3g, X = fx y zg, � (1) =
fyg, � (2) = � (3) = fzg, � (1 3) = � (2 3) = fy zg, and � (1 2) = � (N) = X.

Their utility functions are the following: f (n) = n=5

u1 (x) = 2; u1 (y) = 2; u1 (z) = 1;

u2 (x) = 3; u2 (y) = 2; u2 (z) = 1;

u3 (x) = 3; u3 (y) = 1; u3 (z) = 2:

Link players according to their labels 1 � 2 � 3; thus, connected support is
satis�ed. Let 1 be the root. We have C3 = ((f3g ; z)), C2 = ((f2 3g ; y)), and
C1 = ((f1 2g ; x) ; (f1 2g ; y)). Take (S1; x1) = (f1 2g ; y), and (S3; x3) = (f3g ; z),
we have allocation (ff1 2g ; f3gg ; (y; z)). This is not e¢ cient since f1 2g can
switch to x and make player 2 strictly better o¤.

3 Non-monotonic feasible sets

Although di¤erent preference structures are used, the monotonicity assumption

appears or is implied in all previous results of public good models (Guesnerie and

Oddou 1981, Greenberg andWeber 1986, 1993, and Demange 1994). Monotonicity

looks benign but there are no positive results for the core without assuming it. In

this section, two stability notions weaker than the core are examined.

First, individually stable allocation requires that no player can join another

coalition and makes every member of the new coalition strictly better o¤ (Dréze

and Greenberg 1980, Bogomolnaia and Jackson 2002). Even though preferences

over public goods are intermediate and also single-peaked, there may not exist

an individually stable allocation when feasible sets are not monotonic. This is

demonstrated in Example 2.

Player�s preferences over public goods are single-peaked if there is a linearly

order> onX such that for all i 2 N , there exists xi 2 X such that for all y; y0 2 X,
xi > y > y

0 and y0 > y > xi respectively implies ui (xi) > ui (y) > ui (y0).

Players�have intermediate preference (G) over public goods if there is a tree

graph G on N such that for any pair x; y 2 X, the sets fi 2 N j ui (x) > ui (y)g
and fi 2 N j ui (x) � ui (y)g are connected on G.
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A feasible allocation a is an individually stable allocation if there is no i 2 N ,
S � �a [ f;g, and x 2 � (S [ fig) such that vj (S [ fig ; x) > vj (a (j)) for all

j 2 S [ fig.

Example 2. Consider a three-player game: N = f1 2 3g, X = fx y z � wg,
� (f1g) = � (f2g) = � (f3g) = f�g, � (f1 2g) = fxg, � (f2 3g) = fyg, � (f1 3g) =
fzg, and � (N) = fwg. For simplicity, let the network e¤ect be negligible in
the sense that it will not tip over preferences over public goods.6 Their utility

functions are the following:

u1 (x) > u1 (y) > u1 (z) > u1 (�) > u1 (w)

u2 (y) > u2 (z) > u2 (x) > u2 (�) > u2 (w)

u3 (z) > u3 (y) > u3 (x) > u3 (�) > u3 (w)

Preferences are intermediate if players are linked according to their labels 1�
2�3. Preferences are single-peaked as well if public goods are ordered as x > y >
z > � > w. Player 1 will stay alone with � in allocation (ff1 2 3gg ; (w)). Player
1 will join 2 with public good x in allocation (ff1g ; f2g ; f3gg ; (� � �)). Player
2 will join 3 with public good y in allocation (ff1 2g ; f3gg ; (x �)). Player 3 will
join 1 with public good z in allocation (ff2 3g ; f1gg ; (x �)). Player 1 will join 2
with public good x in allocation (ff1 3g ; f2gg ; (z �)). There is no individually
stable allocations.

Another way to relax the core is to reduce a coalition�s ability to exclude mem-

bers. Tiebout equilibrium treats memberships di¤erently from the core: Core al-

lows a blocking coalition to form if every member can be better o¤. This means

that a coalition can exclude members; one cannot join a coalition if her arrival

makes others worse o¤. On the other hand, Tiebout equilibrium allows an indi-

vidual to join a coalition freely. It is possible to make existing members worse o¤

when joining a coalition. For example, one can move into a congested community

and reduce the welfare of its residents. This means that Tiebout equilibrium does

not allow coalitions to exclude individual members. The above observation mo-

tivates the no-exodus equilibrium, which requires that when a coalition deviates

6For example, in a game with �nite X, we can let �u = mini2N; x2X ui (x) and f (jN j) =
�u= jN + 1j. Notice that these examples still work if the network e¤ect is absent.
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with a public good, they have to include all players who prefer the new alterna-

tive. It captures the idea of free migration into a new country which welcomes all

newcomers who dislike the status quo. The no-exodus equilibrium is equivalent

to the core when feasible sets are monotonic. This is a notion speci�c to public

good models that does not apply to payo¤ functions.

De�nition 1. A feasible allocation a is a no-exodus equilibrium if there is no

public good x 2 X such that x 2 � (E) where E = fi 2 N j vi (E; x) > vi (a (i))g.

When an exodus coalition E forms with a feasible public good x, it allows all

players who prefer (E; x) to the status quo to join. This is in contrast with the

core, where a blocking coalition can form with some other players who want to

join left out.

Obviously, the no-exodus equilibrium contains the core since an exodus coali-

tion is also a blocking coalition. When feasible sets are monotonic, the two notions

are equivalent since the same public good provided by a blocking coalition will still

be feasible if more people join in. The following example illustrates the di¤erence

between them: when feasible sets are not monotonic, the core may be empty while

a no-exodus equilibrium exists.

Example 3. Consider a three-player game: N = f1 2 3g, X = fx y z wg,
� (N) = � (f1g) = � (f2g) = � (f3g) = fwg, � (f1 2g) = fyg, � (f2 3g) = fzg,
and � (f1 3g) = fxg. For simplicity, let the network e¤ect be negligible as in the
previous example. Their utility functions are the following:

u1 (x) > u1 (y) > u1 (z) > u1 (w)

u2 (x) > u2 (y) > u2 (z) > u2 (w)

u3 (z) > u3 (x) > u3 (y) > u3 (w)

Note that preferences are intermediate if players are linked according to their

labels 1 � 2 � 3. Preferences are single-peaked as well if public goods are or-
dered as y > x > z > w. Allocations with ff1 2 3gg and with ff1g ; f2g ; f3gg
are blocked by f1 2g with y; allocation (ff1 2g ; f3gg ; (y w)) is blocked by f1 3g
with x; allocation (ff1 3g ; f2gg ; (x w)) is blocked by f2 3g with z; allocation
(ff1g ; f2 3gg ; (w z)) is blocked by f1 2g with y. Even through connected support
is also satis�ed, the core is empty. However, (f1 2 3g ; (w)), (ff1g ; f2g ; f3gg ; (w w w)),
(ff1 2g ; f3gg ; (y w)) are no-exodus equilibria.
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The following example shows that there may not exist a no-exodus equilibrium

when feasible sets are not monotonic even though preferences over public goods

are intermediate and single-peaked.

Example 4. Consider a three-player game: N = f1 2 3g, X = fx y z wg,
� (f1g) = fzg, � (f2g) = fyg, � (f3g) = fxg, � (f1 2g) = fxg, � (f2 3g) = fwg,
� (f1 3g) = fyg, and � (N) = fzg. For simplicity, let the network e¤ect be

negligible. Their utility functions are the following:

u1 (x) > u1 (w) > u1 (y) > u1 (z)

u2 (w) > u2 (x) > u2 (y) > u2 (z)

u3 (y) > u3 (z) > u3 (w) > u3 (x)

Preferences are intermediate if players are linked according to their labels 1�
2�3. Preferences are single-peaked if public goods are ordered as x > w > y > z.
Players f1 2g will form an exodus coalition with x in allocations (ff1g ; f2g ; f3gg ; (z y x)),
(ff1 2 3gg ; (y)), and (ff1 3g ; f2gg ; (y y)). f2 3g will form an exodus coalition

with w in allocation (ff1 2g ; f3gg ; (x x)). f1 3g will form an exodus coalition

with y in allocation (ff1g ; f2 3gg ; (z w)).

4 Concluding Remarks

Utility functions that contain public and private goods and coalition members

were proposed by Drèze and Greenberg (1980) but did not attract many follow-

ers. Subsequent works investigate public good models and pure hedonic models

separately. This paper uses a simple hedonic utility function and focuses on the

network e¤ect in local public goods. Players have preferences over coalition size as

well. We derive characterizing properties for the core and obtain its nonemptiness.

With the network e¤ect, each coalition is composed of players with similar

preferences (they are connected on a tree structure). Moreover, in a core alloca-

tion, every player prefers own coalition to another. This means core allocations

are envy-free. The existence of a core allocation is obtained in several papers, but

e¢ ciency in public good models, however, is not guaranteed and not characterized.

More

There seems to be no results in public good models without assuming monotonic

feasible sets. A weaker stability notion, individually stable allocations, may not
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exist even with strong preference restrictions. We also examine the no-exodus

equilibrium which contains the core and is equivalent to the core when feasible

sets are monotonic. It is relaxed from the core by not allowing coalitions to ex-

clude members. Still, we fail to obtain positive results. Whether stability can be

obtained without monotonicity requires further research.
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