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1 Parent-Offspring Conflict in Economics and
Biology

Economic Theories of the Family

The demand for children and for children’s consumption goods have been central
themes in the economics of the family.1 Most economic studies of these topics
are based on theory that would apply equally well to the demand for pets and
the derived demand for pet food. Children are assumed to have no decision-
making authority and hence their preferences are assumed to have no bearing
on economic outcomes.

In 1974, Gary Becker [3] introduced an economic model of the household in
which children are rational decision-making agents with interests distinct from
those of their parents. Becker’s model allows children to have economic spheres
of influence where they can make decisions that influence their own well-being.
Becker found a surprising result—which he called the “Rotten-Kid Theorem.”
The Rotten-Kid Theorem assumes that offspring care only about the money
value of their consumption and that there is a benevolent “household head”
who is so much wealthier than his children that he chooses to make gifts to each
of them. Thus all “marginal” allocational decisions are made by the household
head. Although children are entirely selfish and are able to influence the pre-
transfer income distribution in the family, it will be in the interest of each to try
to maximize total household income. The outcome is the same as the allocation
that would have been selected by a benevolently dictatorial household head.
According to Becker,

. . .the head automatically internalizes the “external” effects of his ac-
tions on other family members. Indeed, because the head maximizes
family income, he fully internalizes these externalities not only when
the income of different members but also when their consumption
. . . is directly affected.”

Economists [4], [7], [23], have since demonstrated that the conclusions of the
Rotten Kid Theorem depend critically on special assumptions that are likely

1This literature is ably surveyed by Martin Browning [6].
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to be violated in normal interactions among offspring and parents. In realistic
environments, a child who is able to make the “first move” in interactions with
a parent may be able to manipulate the parent to contribute more resources to
the child than the parent would if the parent could control the child’s actions.

Biological theories of Parent-Offspring Relations

Biologists, like economists, have found the language of game theory a useful way
to study conflict and cooperation between parents and offspring. Evolutionary
biologists bring two ideas to the study of the family that are new to economists.
First, payoffs in games between family members are usually measured in the
currency of reproductive success. Second, in biological models, the strategy
that an individual uses in games with its relatives is programmed by its genes,
which are passed from parent to offspring by the rules of Mendelian inheritance.

Almost all modern work on familial interaction (surveyed by T. H. Clutton-
Brock [9] and H. J. C. Godfray [17]) has been influenced in one way or another
by the fundamental contribution of William D. Hamilton [20] to the theory of
kin selection. Hamilton demonstrated that evolution will favor siblings who are
neither totally altruistic nor totally selfish toward each other. Hamilton stated
the following proposition, which has come to be known as “Hamilton’s Rule”2.

The social behavior of a species evolves in such a way that in each
distinct behavior-evoking situation the individual will seem to value
his neighbors’ fitness against his own according to the coefficients of
relationship3 appropriate to that situation.”

Robert Trivers [25] explicitly applied Hamilton’s theory of kin selection to
parent-offspring conflict. Trivers advanced the view that since in sexually re-
producing species the genetic interests of offspring do not coincide with those of
their parents, offspring will frequently act in ways that are not in their parents’
genetic interests.4

Trivers’ view that children are likely to find ways to exploit their parents was
not universally shared by evolutionary biologists. In the same year that Gary
Becker introduced the Rotten Kid Theorem, biologist Richard Alexander, [1]
offered a theory of parent-offspring relations that is more in accord with Becker’s
ideas. Alexander proposed that evolutionary theory would lead us to expect

parents to be able to manipulate their offspring to act in the parental genetic
interest.

2Hamilton’s original model focused on the special class of interactions in which the costs
and benefits of each behavior are “additive.” Hamilton’s theory has since been extended to
broader classes of interactions, by L. Luca Cavalli-Sforza

and Marcus Feldman [8] [13], Gordon Hines and John Maynard Smith [22], Alan Grafen [18],
Theodore Bergstrom [5], and others.

3A definition of the coefficient of relationship between two individuals appears later in this
paper. (Definition 7)

4Trivers’ textbook Social Evolution [26] devotes a chapter to parent-offspring conflict, with
several engaging descriptions of efforts by bird and mammal offspring to manipulate their
parents and vice versa.
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Alexander supported his view with two arguments; the first of which does
not seem to have occurred to economists. Alexander reasoned that a gene that
leads a child to act against reproductive interests of its parents will not spread
because when such a child gene grows up, its own children will act against
its reproductive interests, and hence in the long run such a “rotten kid” will
generate fewer descendants.

Richard Dawkins [10], [11] disputed Alexander’s genetic argument for the
primacy of parental interests. Dawkins agreed that Alexander was correct in
pointing out that one of the costs of being a selfish child was “the disadvantage
of one’s selfishness spreading to one’s own children” but argued that this cost
is not decisive in the conflict between the reproductive interests of parent and
child. Appealing to Hamilton’s theory of kin-selection, Dawkins asserts that for
sexual diploids, “a selfish child will still do well to be selfish so long as the net
benefit to him is at least half of the cost to close relatives.” Alexander [2] later
agreed to the view expressed by Dawkins and recanted his genetic explanation
for parental dominance.

But Alexander had in store a second argument for the dominance of parental
interests. This argument is more direct and is similar to that made by Gary
Becker in the Rotten Kid Theorem. Becker appeals to the economic dominance
of the household head, arguing that the head controls the relevant household
budget decisions because his wealth is much greater than that of the other family
members. Alexander relies on the physical primacy of the parent, asserting that
“. . . the parent is bigger and stronger than the offspring, hence in a better

position to pose its will.”
The Becker-Alexander appeal to physical superiority and the parental ability

to allocate resources has also come under attack by biologists. Dawkins [10]
suggests that offspring may have private information about their own condition
which parents can only guess. This puts offspring in a strong position to manip-
ulate their parents by lying about their own condition. Amotz Zahavi [27] [28]
proposed that a child might blackmail its parents into giving it more food than
the parents would prefer to contribute by screaming until it is fed. Since the
screaming is likely to attract predators, the parent must feed it or expect to
lose the child. Both of these forms of manipulation of parents by offspring have
received attention in the biological literature.

Alan Harper [21] and H. C. J. Godfray [15] [16] discuss models in which beg-
ging serves as a costly signal of an offspring’s condition. Maynard Smith’s [24]
Sir Philip Sidney game is also frequently applied to scenarios involving parent-
offspring communication and resource allocation.

Marcus Feldman and Ilan Eshel [14] constructed a model of family behavior
that is strikingly similar to Gary Becker’s scenario. Feldman and Eshel endowed
parents with the power to redistribute wealth away from greedy children, where
behavior of parents and of offspring is genetically coded. They found that
parental ability to redistribute is not necessarily sufficient to induce offspring to
behave as their parents would choose. In a later paper, Eshel and Feldman [12]
present a detailed genetic model that incorporates Zahavi’s idea that offspring
might blackmail their parents by threatening to bring harm to themselves. They
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study a two-locus genetic model of interaction between parents and offspring
in which individual offspring can advance their own reproductive interests by
imposing “handicaps” on themselves; these handicaps increase the amount of
resources needed to reach a given probability of survival. Eshel and Feldman
find that under some conditions, this strategy of blackmail can indeed invade
and resist invasion by non-blackmailing offspring. Thus they show that the fact
that parents control resource allocation at the margin does not necessarily allow
parents to enforce their will.

The Scope of This Paper

In the sections that follow, we address the question posed in this paper’s ti-
tle. That is, we ask whether evolutionary forces tend to support the Becker-
Alexander position, that parent-offspring conflict will be resolved in favor of the
parents’ reproductive interests, or the Trivers-Dawkins position, that individ-
ual offspring can manipulate their parents to further its reproductive success at
the expense of the parents’ own reproductive success. In doing so, we address
not only the extent of the genetic conflict between parents and offspring (the
battleground, in

Godfray’s [17] terms), but also the resolution of this conflict.
We have attempted to make this paper readily accessible to economists who

have little or no background in evolutionary biology. Therefore we begin with a
brief tutorial on two-locus genetics in Section 2. We then launch our attack on
this problem by studying one of the simplest possible non-trivial examples of
parent-offspring conflict, a model of weaning conflict between a mother and her
first-born, in which resources can either be given to the first-born or reserved
for a child who is not yet born. Because of its stark simplicity, this example
is well-suited for illustrating fundamental principles of parent-offspring conflict
that can be obscured in more complicated interactions among parents and their
offspring.

In Section 3 we describe the model formally. We determine the weaning age
that will be fixed by natural selection if first-born lambs control the weaning
age unchallenged by their mothers, and the weaning age that will be fixed if
mother have unchallenged control.

In Section 4 we consider a set of strategies in which mothers “offer” a certain
weaning age, and offspring can either cease weaning at or before this age, or
take drastic and costly action to express their dissatisfaction, bleating until they
attract predators. Working within an explicit two-locus genetic framework, we
consider the effects of these strategies on the survival probabilities of first-born
and second-born offspring. We examine how the genetic conflict between parent
and offspring will be resolved in such a system, and explore the characteristics
of stable equilibrium.

Our work on this problem has been inspired by the two-locus models of
parent-offspring conflict presented by Eshel and Feldman [12], and many of
our results closely parallel findings in their paper. Eshel and Feldman address
Zahavi’s concept of the non-signalling “handicap,” examining the evolution of
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strategies in which offspring actually reduce their own survival probability given
any particular amount of resources. By contrast, we consider the evolution of
strategies in which offspring reduce their own survival probability (to zero, in
our model) if they do not get their way, but do not negatively affect their
survival probability if they do get their way. Hence, at the equilibria which we
consider, offspring will enjoy the maximum possible survival probability given
the amount of resources received. This allows us to separate the persuasive
potential of offspring “threats” from the handicap mechanism itself.

2 Elements of One-Locus and Two-Locus Ge-

netics

In sexual diploids — all species of birds and mammals, for example — each
individual has two copies of each “gene.” More precisely, each individual has
two (possibly identical) alleles at each genetic locus; one allele is inherited from
its mother and one from its father. The allele inherited from each parent is a
random draw from the parent’s two alleles at the same locus. We will assume
that the strategy that an offspring uses in dealing with its parents and siblings
is determined by the pair of alleles at one genetic locus and that the strategy
that it will pursue if it survives to adulthood is determined by the pair of alleles
at another locus.

We introduce a number of definitions that will be useful in discussing evo-
lution in populations of individuals with genetically encoded strategies.

Definition 1 An individual is said to be homozygous at a given locus if its two
allele copies at that locus are the same. An individual is heterozygous at a given
locus if its two allele copies at that locus are different.

Definition 2 An allele is said to be dominant if a heterozygote with one copy
of this allele expresses the same phenotype, strategy, or behavior as does a ho-
mozygote with two copies of the allele. An allele is said to be recessive if a
heterozygote with one copy of this allele expresses the same phenotype, strategy,
or behavior as does a homozygote with two copies of the other allele. That is,
a dominant allele has its full effect even if heterozygous, whereas a recessive
individual has no effect unless homozygous.

Definition 3 A genetic locus is said to be monomorphic when all individuals
in the population — excepting the occasional rare mutant — have the same pair
of identical alleles at this locus. A population is said to be monomorphic when
it is monomorphic at all loci considered. For example, in the present model, a
population will be considered monomorphic if both the locus controlling parental
behavior and the locus controlling offspring behavior are monomorphic.

Definition 4 A dominant mutant allele will be said to invade a monomorphic
population if it can increase in frequency when rare. More formally, a novel
allele can invade if, when an arbitrarily small positive proportion of the novel
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allele is added to the original population, the average number of copies of the
novel alleles that are passed on to surviving members of the adult population
of the next generation exceeds the average number of copies of a normal allele
that are passed on to surviving members of the adult population of the next
generation.

Definition 5 A stable monomorphic equilibrium is a monomorphic population
that cannot be invaded by any possible rare dominant allele.5

To determine the equilibrium strategies at the loci encoding juvenile and
parental behavior, we will need to take into account the details of the trans-
mission process for these alleles. Suppose an individual receives alleles A1 and
B1, encoding parental and juvenile behavior respectively, from her mother, and
alleles A2 and B2 from her father. What combinations of alleles Ai and Bi will
she transmit to her offspring? Depending on the degree of linkage between the
the A and B loci, she may transmit only the combinations received from her,
parents, or she may — through the process of genetic recombination — transmit
all possible combinations of the Ai and Bi alleles.

Definition 6 The recombination distance r is a common measure of the degree
of linkage between two loci; r is defined as the probability that recombination
occurs between the two loci in one generation. If the alleles at the two loci are
transmitted only in the combinations received from an individual’s parents —
A1B1 and A2B2, in the example above — the loci are said to perfectly linked,
with a recombination distance r = 0. When alleles at the A and B loci assort
independently — i.e., when an individual is equally likely to transmit all possible
combinations A1B1, A1B2, A2B1, and A2B2 — the A and B loci are said to
be unlinked, with a recombination distance of r = 1/2. When the alleles are
more likely to be transmitted in the combinations received from the parents, but
are not necessary transmitted only in those combinations, the loci are said to
be partially linked with 0 < r < 1/2. Recombination distances greater than 1/2
are almost never observed in nature.

The coefficient of relationship between siblings

In general, natural selection will not result in a population of individuals who
simply maximize their own survival probability without

regard to the survival probabilities of their relatives. The key to under-
standing the evolution of behavior in games between relatives is to notice the
following: a rare allele that affects the behavior of one individual is more likely

5Because we define invasion to occur only when invading gene reproduces faster than the
normals, this is weaker notion of a stable equilibrium than one which excludes “drift” among
alleles that reproduce equally rapidly. It is also a weaker concept than Maynard Smith’s
notion of evolutionarily stable strategies since we do not impose restrictions on the case in
which a mutant gene reproduces exactly as rapidly as the normal genes. Thus the equilibria
studied here may not be resistant to the possibility of novel alleles reaching high frequency by
drift.
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to be found in close kin than it is to be found in an average member of the
population. In games played among siblings, or between parents and offspring,
the expected payoff to an individual with a rare allele will be influenced not only
by the way that this allele changes its own behavior, but also by the probability
that its relatives carry the same allele and behave accordingly.

Definition 7 The coefficient of relationship between two relatives, which we
will denote by k, is the probability that a rare allele carried by one of them will
also be carried by the other. 6

It is instructive to work through a calculation of the coefficient of relationship
between two lambs born to the same mother. Assuming that this allele is not
sex-linked and does not have differential effects on survival of the two sexes,
copies of the rare allele in the population are equally likely to be present in
males and females. When this allele is rare and mating is random, carriers of
the rare allele will almost always mate with an individual who is homozygous
for the normal allele. Since offspring receive one allele from each parent, almost
all carriers of the rare allele will be heterozygotes with one copy of the rare allele
and one copy of the normal allele; moreover, the rare allele is equally likely to
be inherited from the offspring’s father or its mother.

If an offspring has inherited the rare allele from its mother, its mother’s other
offspring will almost certainly inherit a normal allele from its father, and this
sibling is equally likely to inherit its mother’s rare allele as her normal allele.
Therefore the probability is 1/2 that a copy of a maternally inherited rare allele
will also be found in the mother’s other offspring. If an offspring inherits the
rare allele from its father and its mother’s other offspring does not have the same
father, then since the allele is rare, almost certainly the other offspring’s father
and mother both lack the rare allele and hence the sibling will not have the rare
allele. If the offspring inherits the rare allele from its father and if the mother’s
other offspring has the same father, then the probability that the other sibling
has the rare allele will be 1/2. Let s be the probability that two offspring of the
same mother also have the same father. Thus the probability that a copy of a
paternally inherited rare allele will also be found in the mother’s other offspring
must be s/2. Since an offspring is equally likely to inherit the rare allele from
its father or its mother, it follows that for two offspring of the same mother,
the coefficient of relationship is k = 1/2(1/2 + s/2) = (1 + s)/4. If mating is
perfectly monogamous, then s = 1 and k = 1/2. If females never mate twice
with the same individual, then s = 0 and k = 1/4.

A Simplifying Assumption about Fertility

In the long run, the alleles that are found in the population will be those that
mandate strategies that lead to success in reproduction. In general, the long run

6A more commonly-used definition (as applied to sexual diploids) is “The coefficient of
relationship between two individuals is the proportion of genes in one that are ‘identical by
descent’ to genes present in the other.” For the study of invasion of a monomorphic population
by rare mutant alleles, our definition operationalizes the standard definition.
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reproductive success of a gene may depend on more than the expected number
of copies that it produces in the next generation. For example, an individual
may be able to produce a greater number of surviving grandchildren by having
fewer, but healthier and/or more cooperative children. Similarly, in the case of
primogeniture, a parent may maximize the number of descendants by treating
some offspring differently from others. In the models considered in this paper,
we will avoid these complications by assuming the following:

Assumption 1 The probability that an individual reaches adulthood depends
only on its own actions and the actions of its parents and siblings. All individuals
who survive to adulthood have the same expected number of offspring.

The reproduction rate of an allele can be measured as the expected number
of copies of each allele of its kind that are passed from a surviving adult in
one generation to a surviving adult in the next generation. Since we have
assumed that all individuals that survive to adulthood are equally fertile, the
only variation in the reproduction rates of alleles comes from variation in the
probabilities that offspring who carry these alleles will survive to adulthood.
Assumption 1 allows us to determine the reproductive success of a rare allele
simply by comparing the average survival probabilities of offspring that carry
the rare allele with the average survival probabilities of homozygous normal
offspring.

Remark 1 Given Assumption 1, a rare dominant allele can invade a monomor-
phic population if and only if the average survival probability of lambs born with
a single copy of the rare allele exceeds the average survival probability of lambs
born with two copies of the normal allele.

3 The Case of the Bleating Lamb

Imagine a breed of sheep in which adult females have one lamb per year and
survive as adults for at most two years. A more realistic model of ovine re-
production would permit ewes to have more than two fertile seasons, in which
case the analysis here would apply to the lambs born in the last two years of
their mother’s life.7 These simple two-year sheep will, however, be adequate for
illustrating the ideas to be discussed here.

As the first-born lamb matures, it is able to forage for itself, but it still
benefits from feeding on its mother’s milk. The longer that it continues to
nurse, the stronger it will be when winter arrives and the more likely it will
survive to adulthood. But a long period of nursing is costly to the mother. The
sooner the first-born lamb is weaned, the healthier its mother will be when she

7Unless female sheep have been secretly cloning themselves for some time, we would
not expect to find surviving real breeds in which ewes on average have fewer than two

surviving lambs per lifetime. Economists, of course, are accustomed to dealing with abstract
sheep–the traditional economists’ sheep, unlike a real sheep, produces wool and mutton in
fixed, unalterable proportions.
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gives birth to her second lamb, and the more likely the second-born will survive.
In evolutionary terms, this conflict of interest between mother and lamb takes
the form of a tradeoff between the survival probability of the first-born and that
of the second-born lamb8.

Let x denote the weaning age of the first-born lamb, where possible weaning
ages range from a minimum of x to a maximum of x̄. We assume that the
survival probabilities of the first-born and the second-born lambs are twice-
differentiable functions of x and that the survival probability of the first-born
is an increasing function of x whereas the survival probability of the second-
born is a decreasing function of the x. We further assume that as x increases,
the first-born’s marginal gain from a longer nursing period diminishes while the
second-born’s marginal cost from delayed weaning of the first-born increases.
We assume that for a first-born who is weaned at the earliest possible age x, the
marginal gain in survival probability from increasing the nursing period exceeds
the marginal cost of this extended weaning to its younger sibling. Finally we
assume that the expected number of surviving offspring will be lower if the
mother does not nurse her first-born at all, letting it die, than if she nurses it
for some positive length of time. We summarize these conditions as follows.

Assumption 2 Where x is the weaning age and Π1(x) and Π2(x) are the sur-
vival probabilities of the first-born and second-born lambs:

i.) Π′
1(x) > 0 and Π′

2(x) < 0 for all x ∈ [x, x̄].

ii.) Π′′
1 (x) < 0, and Π′′

2(x) < 0 for all x ∈ [x, x̄].

iii.) Π′
1(x) > −Π′

2(x).

iv.) Π2(x) < Π1(x) + Π2(x) for all x ∈ [x, x̄].

We can trace out the parametrically-generated curve which we will call the
survival probability frontier.9

Definition 8 The survival probability frontier is the locus of points (Π1(x), Π2(x))
where x is between x to x̄.

The curve AB in Figure 1 is an example of a survival probability frontier. Taking
derivatives, we find that the survival probability has the following properties.

8David Haig [19] describes the situation with a colorful analogy:

“Suppose that a mother buys a milkshake to be shared among her children,
but the milkshake has only a single straw. If the first

child takes a drink and passes the remainder on to the second, and so on
down the line, then the greater the consumption of each child, the fewer children
receive a drink.”

9This curve is conceptually the same as the “utility possibility frontier” that is commonly
used in the theory of welfare economics.

9



Remark 2 The slope of the survival probability frontier at the point (Π1(x), Π2(x))
is Π′

2(x)/Π′
1(x). Assumption 2 implies that Π′

2(x)/Π′
1(x) is a decreasing func-

tion of x and hence that the survival probability frontier bulges away from the
origin, as in Figure 1.

Figure 1: Survival Probability Frontier

A

P

F

Π1

Π2

BΠ1(xp)

Π2(xp)

Π2(xf (k))

What would the first-born choose?

What age of weaning would we expect to find in a population where first-born
lambs could freely dictate the age at which they will stop nursing? In this
case, natural selection would operate on the genetically transmitted instructions
determining the demands made by first-born lambs. We will assume that the
age at which a first-born lamb allows itself to be weaned is controlled by a single
genetic locus.

It will be useful to define a function H such that H(x, v) is a weighted sum
of the survival probabilities of the first-born and second-born lambs when the
first-born is weaned at age x. Specifically, we define:

Definition 9 For all x ∈ [x, x̄] and v ∈ [0, 1],

H(x, v) = Π1(x) + vΠ2(x). (1)

It turns out that if the first-born lambs can dictate their age of weaning, the
equilibrium age of weaning will be governed by a proposition that is similar to
Hamilton’s Rule. First-borns would act as if they valued the survival probability
of their younger siblings at the fraction k of their own, where k is the coefficient
or relationship between two offspring of the same mother.

10



Proposition 1 If first-born lambs are able to dictate whether they are weaned
at age x or at age x′ and if a single genetic locus determines the lambs’ demands,
then a monomorphic population in which first-born lambs demand to be weaned
at x will be invaded by a dominant mutant allele which causes lambs to demand
to be weaned at x′, if and only if H(x′, k) > H(x, k) where k is the coefficient
of relationship between the two offspring.

Proof: Consider a monomorphic population in which first-born lambs who
are homozygous normal will demand to be nursed until age x and suppose that
there is a rare dominant allele such that the first-born who are heterozygous for
this alternative allele will demand to be nursed until age x′ 6= x. Almost every
individual born with the rare allele will have one parent who is heterozygous
for this allele and one who is homozygous normal. Half of the offspring who
carry the rare allele will be first-born and half will be second-born lambs. All
first-born carriers of the rare allele will demand to be nursed until age x′ and
will have survival probability Π1(x′).

The survival probability of a second-born lamb who carries the rare allele
will be Π2(x′) if its older sibling also carries this allele and Π2(x) if its sibling
is homozygous for the normal allele. The probability that a second-born who
carries the rare allele has an older sibling who also carries this allele is (by
definition) k. The survival probability of a second-born lamb who carries the
rare allele is therefore kΠ2(x′) + (1 − k)Π2(x).

Since half of the carriers of the rare allele are first-born and half are second-
born, the average survival probability of offspring who carry the rare allele will
be

1
2
Π1(x′) +

1
2

(kΠ2(x′) + (1− k)Π2(x)) . (2)

Since the alternative allele is rare, almost all copies of the normal allele are car-
ried by homozygous normal individuals who have homozygous normal siblings.
Half of them are older siblings and half are younger siblings, so the average
survival probability of carriers of the normal allele is just 1

2Π1(x′) + 1
2Π2(x).

Therefore the alternative allele for a weaning age of x′ can invade the popula-
tion only if

1
2
Π1(x′) +

1
2

(kΠ2(x′) + (1 − k)Π2(x)) >
1
2
Π1(x) +

1
2
Π2(x). (3)

The expression in Equation 3 is equivalent to

Π1(x′) + kΠ2(x′) > Π1(x) + kΠ2(x). (4)

which in turn is equivalent to H(x′, k) > H(x, k).

Using Assumption 2 it is a matter of straightforward calculus to verify that
for all v ∈ [0, 1] the derivative Hx(0, v) is positive and for all x ∈ [x, x̄] , the
second derivative Hxx(x, v) is negative. From simple calculus it follows that
there is a unique x that maximizes H(·, v) on the interval [x, x̄]. With these
facts in mind, we are entitled to make the following definition and remark.
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Definition 10 For all v ∈ [0, 1], define xf (v) to be the age of weaning that
maximizes H(x, v) over all x in the interval [x, x̄].

Remark 3 For all v ∈ [0, 1], the function H(·, v) is “single-peaked” in x with
its peak at xf (v). That is, H(x, v) is maximized at x = xf (v) and H(x, v) is
strictly increasing in x for x < xf (v) and strictly decreasing in x for x > xf (v).

From Proposition 1 and Remark 3 it follows that if x 6= xf (k) a monomorphic
population of lambs who demand a weaning age of x can be invaded by a
dominant mutant allele that causes lambs to demand a weaning age of xf (k).
Thus we conclude the following.

Proposition 2 If first-born lambs are able to dictate the age at which they are
weaned and if a lamb’s choice of weaning age is determined by a single genetic
locus, then in a stable monomorphic equilibrium it must be that first-born lambs
demand a weaning age of xf (k) where k is the coefficient of relationship between
two lambs born to the same mother.

We can also demonstrate that if first-born lambs can dictate the age of
weaning, then in equilibrium the higher the coefficient of relationship between
a mother’s two lambs, the earlier the first-born will choose to be weaned.

Remark 4 Where xf (k) maximizes H(x, k) on the interval [x, x̄], it must be
that xf (k) is a decreasing function of k.

Proof: The first-order calculus condition for finding xf (k) is

Hx(x, k) = Π′
1(x

f (k)) + kΠ′
2(x

f (k)) = 0 (5)

Differentiating both sides of Equation 5 with respect to k and rearranging
terms, we find that

d

dk
xf (k) = − Π′

2(xf (k))
Π′′

1(xf (k)) + kΠ′′
2 (xf (k))

< 0 (6)

where the inequality follows from Assumption 2 which requires that Π′
2(x) < 0,

Π′′
1(xf (k)) < 0 and Π′′

2 (xf (k)) < 0.

It is instructive to look at a geometric representation of these results. Since
the point xf (k) maximizes H(x, k) = Π1(x)+kΠ2(x) on the survival possibility
frontier, the first-order conditions for maximization require that the slope of the
survival possibility frontier, which is

Π′
2(xf (k))

Π′
1 (xf (k))

is equal to −1/k. This means that in Figure 1 we can find the point F =(
Π1(xf (k)), Π2

(
xf (k)

))
, by finding the point at which the survival possibility
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frontier is tangent to a line with slope −1/k. In Figure 1, we have drawn a
tangent line through the point F with slope −2. This depicts the case of a
monogamous species where k = 1/2 and −1/k = −2. For higher values of k, it
must be that −1/k is smaller in absolute value and the tangency will lie further
to the left, which corresponds to lower values of x.

What Would Mothers Choose?

What age of weaning would we expect to find in a population where tough-
minded ewes are able to dictate the age of weaning to their docile lambs?

The answer to this question is quite simple. Any monomorphic population
in which mothers do not wean their first-born at an age that maximizes their
expected number of surviving offspring can be invaded by any dominant allele
for a weaning age that facilitates a higher number of surviving offspring. In
particular, the following propositions are true.

Proposition 3 If ewes are able to dictate whether their lambs are weaned at
age x or at age x′ and if a single genetic locus determines a ewe’s weaning
strategy, then a monomorphic population in which first-born lambs are weaned
at x can be invaded by a dominant mutant allele for weaning at age x′ if and
only if Π1(x′) + Π2(x′) > Π1(x) + Π2(x).

From Proposition 3, it is immediate that if mother sheep can unilaterally
choose the weaning age of their first-born, then the only stable monomorphic
equilibrium is an outcome in which a mother weans her first-born at an age that
maximizes the expected number of her own surviving offspring. That is:

Proposition 4 If ewes are able to dictate the age at which they wean their first-
born and if this action is determined by a single genetic locus, then in a stable
monomorphic equilibrium it must be that mothers will wean their first-born at
the age xp where xp maximizes Π1(x) + Π2(x) on the interval [x, x̄].

Despite the simplicity of the answers stated in Propositions 3 and 4, we be-
lieve it is important to understand exactly why they are true. Thus we prove
Proposition 3 in what may seem to be excruciating detail. The importance
of proving, rather than simply asserting this result will become more appar-
ent later when we show that if the loci for juvenile and parental behavior are
tightly linked, monomorphic populations can sometimes be invaded by alleles
that mandate weaning at an age that gives them a smaller expected number of
surviving offspring than that enjoyed by normal mothers.
Proof of Proposition 3:

Here we assume that the ewe is able to dictate the age of weaning abso-
lutely, without resistance from her offspring. Consequently, we need to concern
ourselves only with a single genetic locus controlling the age at which mothers
wean their first-born. Consider a monomorphic population in which mothers
wean their offspring at age x. Suppose that to this population is added a small
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proportion of an alternative dominant allele, such that mothers heterozygous
for this alternative allele wean their offspring at age x′.

As we noted in Remark 1, Assumption 1 enables us to determine whether the
alternative allele can invade the population by comparing the average survival
probability of lambs born with a single copy of the rare allele to that of lambs
born with two copies of the normal allele.

Since the alternative allele is rare and mating is random, almost all individ-
uals with this allele will be heterozygotes, with one copy of the alternative allele
and one copy of the normal allele. A lamb who inherits the rare allele is equally
likely to be a first-born or a second-born and (independently of whether it is
first-born or second-born) is equally likely to inherit the allele from its mother
or from its father. Thus 1/4 of all lambs fall into each of these four categories.

Since mothers who carry the alternative allele wean their offspring at age
x′, a first-born who inherits this allele from its mother is weaned at age x′ and
has survival probability of Π1(x′). If a second-born inherits this allele from its
mother, the mother will have weaned the first-born at age x′ and the survival
probability of the second-born must be Π2(x′)

If a lamb inherits the alternative allele from its father , then since mating is
random and the alternative allele is rare, the lamb will almost certainly have a
homozygous normal mother, who will wean her first-born at age x. Therefore
a first-born who inherits the alternative allele from its father will have survival
probability Π1(x) and a second-born who inherits the alternative allele from its
father will have survival probability Π2(x).

It follows that the average survival probability of lambs born with the mutant
allele is

1
4

(Π1(x′) + Π2(x′) + Π1(x) + Π2(x)) . (7)

Since the alternative allele is rare, almost all homozygous normal offspring
have homozygous normal mothers who wean their first-born at age x. These off-
spring are equally likely to be first-born or second-born so their average survival
probability is

(Π1(x) + Π2(x)) /2 (8)

The alternative allele for weaning at age x′ will be able to invade a monomor-
phic population of mothers who wean at age x if and only if Expression 7 exceeds
Expression 8. Subtracting Expression 8 from Expression 7 and multiplying the
result by 4, we see that the rare allele will invade if and only if

Π1(x′) + Π2(x′) > Π1(x) + Π2(x). (9)

The distribution of survival probability between first-born and second-born
that corresponds to a weaning age of xp is shown on Figure 1 by the point P =
(Π1(xp), Π2(xp)), which is the point where the slope of the survival probability
frontier at P is −1.

From the definition of H(x, v), we see that
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Π1(x) + Π2(x) = H(x, 1). Therefore xp = xf (1), and since k < 1, it is im-
mediate from Remark 4 that xp < xf (k). Therefore we can assert the following.

Proposition 5 If mothers are able to dictate the age at which their first-born
are weaned, then in stable monomorphic equilibrium, they will be weaned at an
earlier age than would be the case in stable monomorphic equilibrium if first-born
were able to dictate the age at which they are weaned.

4 Resolving the Genetic Conflict

The Lamb Who Would Call Wolves

We have shown that in an equilibrium where first-born lambs could choose their
age of weaning, they would choose a later date than that which would maximize
the number of surviving offspring produced by their mothers. We now might
follow Alexander and ask, “So what?

Mother sheep are bigger, stronger, and can run faster than their lambs.
Surely the mother has the physical ability to enforce her own choice of weaning
age.” But, as Eshel and Feldman pointed out, the lamb is not limited to physical
coercion as a means of enforcing its will and the resolution of parent-offspring
conflict may not always coincide with the parent’s will.

Let us explore one strategy by which first-born lambs may be able to black-
mail their mothers into letting them nurse to an age x > xp where xp is the age
of weaning that mothers would dictate if they had full control of the behavior of
their lambs. Suppose that first-born lambs are genetically programmed to use
the following

decision rule: “Demand to be nursed until you reach age x. If you are
younger than x and your mother does not let you nurse, then bleat so loudly
that you will attract predators.” This is by no means the only sort of strategy
an offspring might use to influence its mother (for example, Eshel and Feldman
[12] consider a different class of strategies that serve a similar purpose).

If a first-born lamb uses this strategy and if its mother weans it before age
x, the lamb will make an awful ruckus, attract a predator, and get eaten; the
mother will lose her first-born. The lamb’s extortionary strategy changes the
shape of the survival probability frontier in such a way that with the altered sur-
vival probability frontier, the mother will maximize her number of descendants
by yielding to her first-born’s demand. In Figure 2, we sketch the survival prob-
ability frontier ABCD for the offspring of a sheep whose first-born lamb adopts
the extortionary strategy demanding x. If the mother allows the lamb to nurse
until it reaches age x (the lamb’s preferred age) it will behave normally, but if
the mother attempts to wean it before age x, it will bleat suicidally. The point
C represents the distribution of survival probabilities (Π1(x), Π2(x)) between
her two offspring if the mother accedes to the lamb’s demand to be nursed until
age x.

When the first-born pursues this extortionary strategy, the distribution of
survival probability the mother would have chosen to maximize her expected
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Figure 2: Survival Probability Frontier with a First-born Extortionist
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number of surviving offspring (point P in Figure 2) is longer accessible to her.
Given the restricted survival probability frontier imposed by the first-born’s
threat, the the expected number of surviving offspring is maximized at the
point C = (Π1(x), Π2(x)). We might naively generalize from our previous re-
sults to predict that this point will correspond to the only stable monomorphic
equilibrium when such strategies are available

to lambs. However, we will find in the subsequent analysis that for certain
degrees of linkage, this combination of offspring threat and parental acquiescence
will not be a stable equilibrium.

Equilibrating Behavior of Parents and Offspring

Readers familiar with the notion of subgame perfection in game theory are
likely to be skeptical that a first-born lamb’s threat “Feed me or I will bleat
until a wolf eats me,” would be respected in equilibrium. Certainly this threat
is not credible in the sense that if a rational lamb who made this threat was
ignored by its mother, it would not find it in its interest to commit suicide
by bleating. Rational mother sheep, in appraising this situation would realize
that their rational progeny would not carry out this incredible threat and would
ignore it.10. But even economists are likely to quail at attributing such powers
of ratiocination to a sheep. Instead of making a priori assumptions on the
mental abilities of sheep, we will posit that they are genetically programmed to

10Arthur Robson relates that as a child, he once threatened to hold his breath until his
mother bought him an ice cream cone. His mother, ever sensible, refused to capitulate. Given
that Arthur himself now tells this story, we can infer that his threat was not particularly
credible.
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use strategies as lambs and adults that lead to successful reproduction of the
genes that program their behaviors and we will investigate possible equilibrium
outcomes. In fact, we will see that genetically programmed strategies allow
players to commit to playing subgame-imperfect strategies in a manner which
would not be possible for rational players.

An evolutionary model of the resolution of conflicting reproductive interests
of parents and offspring requires that we specify the genetic basis of childhood
behavior, and its relation to adults behavior. In this discussion, we will assume
that the alleles at one genetic locus control an individual’s behavior towards its
parents and siblings when it is a child, and that the alleles at a second locus
control its behavior as a mother. As we will show, the extent of linkage between
these two loci will be crucial in determining the resolution of this conflict.

It will be useful to spell out more detailed “rules of the game” that apply
in encounters between a first-born lamb and its mother. Let us assume that
each day after the lamb reaches the first possible age of weaning, its mother
either offers to nurse the lamb or she refuses to nurse it. If the mother offers to
nurse the lamb, the lamb can either accept nursing or refuse to be nursed. If the
mother refuses to nurse the lamb, it can either submit to its mother’s refusal or
loudly demand to be fed despite its mother’s refusal.

We will simplify our task by confining our attention to a restricted class of
strategies. We assume that mothers must use a strategy from a class of strategies
that we call x-offer strategies and that lambs must use a strategy from a class
of strategies that we call

x-demand strategies.
A ewe who follows an x-offer strategy will act according to the rule: “Offer

to nurse your first-born if it is younger than x. Refuse to allow it to nurse if it
is older than x .”

We consider two kinds of x-demand strategies, which differ in the action
that a lamb takes if its mother offers to let it nurse beyond the age x. A lamb
that uses either type of x-demand strategy will bleat and demand to be fed
if its mother refuses to nurse it before it reaches age x. A lamb who follows
the greedy x-demand strategy will continue to nurse beyond age x if its mother
permits it to do so. A lamb who follows the temperate x-demand strategy will
reject nursing after it reaches age x even if its mother would permit it to nurse.

Invasion by Separate Mutations

In this section we consider mutations that enter the population one locus at
a time. We investigate in turn whether a monomorphic population can be in-
vaded by a dominant mutant allele that alters offspring behavior, and whether
a monomorphic population can be invaded by a dominant mutant allele that al-
ters parental behavior. We do not consider the possibility that some individuals
might have mutant alleles at both of these loci.

We will show that if mutations only arise in this single-locus fashion, the con-
flict between the genetic interests of mothers and first-born could be resolved
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in many different ways. In fact any weaning age between the age xp that max-
imizes H(x, 1) and the age xf (k) that maximizes H(x, k) could be maintained
by a population that cannot be invaded by any single mutation at either locus.

Proposition 6 For any x such that xp ≤ x ≤ xf (k), a monomorphic popula-
tion in which all first-born lamb use x-demand strategies and all mothers use
x-offer strategies cannot be invaded by a dominant allele that mandates that
first-borns use an x′-demand strategy for x′ 6= x.

Proof:
Let us first show that the normal population cannot be invaded by an allele

that causes lambs to demand nursing until an age greater than x. Suppose that
a rare allele at the locus controlling first-born behavior causes first-born lambs
to use an x′-demand strategy, where x′ > x. Since mothers all use the x-offer
strategy, a first-born lamb that uses x′-strategy will be confronted with a mother
who refuses to let it nurse after age x. A first-born carrying this rare allele will
not be able to nurse any longer than a normal lamb, but will reduce its survival
probability by bleating when its demand is refused. Whether or not its older
sibling carries the rare allele, a second-born lamb who carries the rare allele will
have survival probability Π2(x) since its mother will nurse the first-born only
until age x. Thus first-born carriers of the mutant allele have lower survival
probability than first-borns with two normal alleles and second-born carriers of
the mutant allele will have the same survival probability as normals. It follows
that on average, carriers of the mutant allele will have lower survival probability
than normals and hence this mutant allele cannot invade.

Next we show that the normal population cannot be invaded by an allele
that causes first-born lambs to accept weaning before age x. Suppose that such
an allele causes lambs to use an x′-demand strategy where x′ < x. We will show
that neither a greedy x′-demand strategy nor a temperate x′-demand strategy
can invade. Since its mother would offer to nurse it until age x, a first-born
lamb carrying a dominant allele for the greedy x′-demand strategy would be
offered — and would accept — the opportunity to nurse until the normal age
x. Therefore both first-born and second-born carriers of this allele would have
exactly the same survival probability as first-borns and second-borns in the
normal population and could not invade.11 A first-born lamb with a dominant
allele for the temperate x′-demand strategy would be offered the chance to nurse
until age x but would stop nursing at age x′. Since x′ < x < xf (k), it follows
from Remark 3 that H(x′, k) < H(x, k) and therefore Proposition 1 implies
that the allele for a temperate x′-demand strategy cannot invade the original
population.

Proposition 7 For any x such that xp ≤ x ≤ xf (k), a monomorphic pop-
ulation in which all first-born lambs use x-demand strategies and in which all

11Recall that by our definition, a mutant allele can invade only if it reproduces faster than
normal alleles.
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mothers use x-offer strategies, cannot be invaded by a dominant allele that man-
dates that mothers use an x′-offer strategy for x′ 6= x.

Proof: We first show that the normal population cannot be invaded by an
allele that causes mothers to refuse nursing to their first-born before they reach
age x. Suppose that a rare allele at the locus controlling maternal behavior
causes mothers to use an x′-offer strategy where x′ < x. If a lamb inherits the
rare allele from its father, it will almost surely have a normal mother and hence
will have the same survival probability as normal lambs. But suppose

that a lamb inherits the mutant allele from its mother. Since all lambs use
x-demand strategies, a first-born lamb that carries the rare allele for maternal
behavior will surely die. Since whether or not her first-born inherits the rare
allele, the mother nurses the first-born until age x′, it must be that any second-
born lamb who inherits the rare allele from its mother has survival probability
Π2(x′). Therefore the average survival probability of lambs who inherit the rare
allele from their mother is Π2(x′)/2. But Assumption 2 implies Π2(x′)/2 <
Π1(x) + Π2(x). Since half of the lambs who carry the rare allele receive it
from their fathers and half receive it from their mothers, the average survival
probability of lambs who inherit the rare allele must be lower than that of lambs
born to two normal parents.

We next show that the normal population cannot be invaded by an allele
that causes mothers to offer nursing to lambs older than age x. Suppose that
such an allele mandates x′-offer strategies by mothers where x′ > x > xp. If
a lamb inherits the rare allele from its father it will almost surely have a nor-
mal mother and hence will have the same survival probability as normal lambs.
First-born lambs using temperate x-demand strategies will refuse to nurse af-
ter age x and hence they and their second-born siblings will have the same
survival probabilities as the offspring of normal mothers. First-born lambs
who use greedy x-demand will have survival probability Π1(x′), while their
younger siblings will have survival probabilities Π2(x′). The average survival
probability of offspring who use the greedy x′-demand strategy and who in-
herit an allele for the maternal x′-offer strategy from their mothers is therefore
(Π1(x′) + Π2(x′)) /2. Since x′ > x > xp, it follows from Assumption 3 that
(Π1(x′) + Π2(x′)) /2 < (Π1(x) + Π2(x)) /2. Therefore it must be that the aver-
age survival probability of lambs who carry the rare allele for maternal behavior
is lower than that of lambs who have two normal parents.

In this section, we have shown that if the loci controlling parental and off-
spring behavior are unlinked and if mutations occur only in one locus at a time,
there will be equilibria that sustain any weaning age x such that xp < x < xf (k).
Thus the range of possible genetic resolutions to the conflict of interest between
parent and offspring is no narrower than the extent of the conflict itself. In the
following sections, we will show that when the loci are linked, tighter bounds are
placed on the resolution of this parent-offspring conflict and the more closely
the loci are linked, the more closely the possible genetic resolutions coincide
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with the outcome that maximizes the mother’s expected number of surviving
offspring.

Perfectly Linked Loci

Suppose that the genetic locus controlling the nursing demands of first-born
lambs and the locus controlling the nursing offers of mothers are perfectly linked.
In this case the genetics of parent-offspring interaction can be modeled as if a
single locus controls a sheep’s behavior both when it finds itself cast in the role
of a first-born lamb, and when it finds itself cast in the role of a mother.

Let us define an allele that would lead sheep to behave in accord with Alexan-
der’s view that, in equilibrium, offspring will act in their parents’ reproductive
interests. We will call this allele an Alexandrian allele, a sheep who carries
this allele an Alexandrian sheep and a lamb who carries this allele an Alexan-
drian lamb. Formally, an Alexandrian allele instructs lambs to use the greedy
x strategy and mothers to offer to nurse their first-born only until they reach
the maternal optimal age xp. Notice that an Alexandrian lamb never demands
to nurse unless its mother offers, and it always accepts nursing if offered. In a
monomorphic population of Alexandrian sheep, all lambs would be weaned at
age xp.

Where linkage is perfect, we have a striking result. Any monomorphic pop-
ulation in which lambs are not weaned at age xp can be invaded by the Alexan-
drian allele. Conversely, in a monomorphic population of Alexandrian sheep,
all lambs are weaned at age xp, and this

population cannot be invaded by alleles for alternative strategies by lambs
and/or ewes.

Proposition 8 With perfect linkage, any monomorphic population in which
lambs use x-demand strategies and ewes use x-offer strategies where x 6= xp

can be invaded by a dominant Alexandrian allele. Conversely, a monomorphic
population of Alexandrian sheep cannot be invaded by mutants using xl-demand
strategies as lambs and xe-offer strategies as ewes.

Proof:
Suppose that a mutant Alexandrian allele arises in a monomorphic popula-

tion in which lambs use x-demand strategies and ewes use x-offer strategies.
If a first-born lamb inherits the Alexandrian allele from its mother, then the

mother will be using an xp-offer strategy and so the lamb will be weaned at
age xp and have survival probability Π1(xp). If a second-born lamb inherits the
Alexandrian allele from its mother, then the mother will wean its older sibling
no later than xp (possibly earlier, if in the original population the older sibling
is a temperate x demander and x < xp) and so the survival probability of the
younger sibling will be at least Π2(xp). Since a lamb inheriting the rare allele
from its mother is equally likely to be first-born or second-born, the average
survival probability of lambs that inherit the rare Alexandrian allele from their
mothers is at least (Π1(xp) + Π2(xp)) /2.
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If a first-born lamb inherits the rare Alexandrian allele from its father, then
its mother almost certainly will be homozygous normal and will use an x-offer
strategy. A first-born lamb who inherits the Alexandrian allele from its father
will be offered nursing until age x by its normal mother. Since an Alexandrian
lamb accepts exactly what its mother offers, a first-born who inherits the rare
allele from its father will be weaned at age x and have survival probability
Π1(x). Since the first-born is weaned at age x, regardless of whether it carries
an Alexandrian allele or two normal alleles, the second-born will have survival
probability Π2(x). Therefore the average survival probability of lambs that
inherit the rare Alexandrian allele from their fathers is (Π1(x) + Π2(x)) /2.

A lamb that is born with the rare Alexandrian allele is equally likely to have
inherited this allele from its mother or from its father. Therefore the average
survival probability of lambs that carry the rare allele is:

1
4

(Π1(xp) + Π2(xp) + Π1(x) + Π2(x)) (10)

Since the average survival probability of normal first-born lambs is

(Π1(x) + Π2(x)) /2, (11)

the Alexandrian allele will be able to invade the normal population if Expression
10 exceeds Expression 11. Subtracting the latter expression from the former and
multiplying by 4, we see that this is equivalent to

Π1(xp) + Π2(xp) > Π1(x) + Π2(x) (12)

which is always true since xp strictly maximizes Π1(xp) + Π2(xp). It follows
that the Alexandrian allele can always invade the original population

Verifying the converse statement is straightforward.

Partially Linked Loci

Suppose that behavior of first-born lambs and behavior of mothers are controlled
by two partially linked loci separated by a recombination distance of r, where
0 < r ≤ 1/2. Consider a monomorphic population of sheep in which all first-
borns are weaned at age xp < x < xf (r). As we have demonstrated, if the two
loci are perfectly linked, this population can be invaded by an Alexandrian allele.
Even if the two loci are not perfectly linked, it is still possible in principle that
the original monomorphic population can be invaded by a pair of offspring-
strategy and parent-strategy alleles which encode Alexandrian behavior. In
the presence of recombination, however, not all of the double-mutants — we
call them double heterozygotes — will breed true. When genetic variation is
found at only one locus, half of the offspring of an individual who carries a rare
allele will inherit the rare allele. When variation is found at two loci and the
recombination distance is r, only the fraction (1 − r)/2 of the offspring of a
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double heterozygote parent will inherit both rare alleles. Even if those offspring
who have a mutation in a single locus are less likely to survive than homozygous
normal offspring, the proportion of double heterozygotes in the population can
increase if (1− r) times the average survival probability of double heterozygote
offspring exceeds survival probability of normal individuals.12 In the case of
unlinked loci, where r = 1/2, this would mean that the double heterozygote
could invade if the survival probability of double heterozygote offspring was
more than twice as large as that of normal individuals.

Using essentially the same argument used to prove Proposition 8, we can
prove the following.

Proposition 9 Suppose that the nursing demand strategies of first-born lambs
and the nursing offer strategies of ewes are controlled by two genetic loci which
have a recombination fraction r. Then if (1 − r) (Π1(xp) + Π2(xp)) > Π1(x) +
Π2(x), a monomorphic population where first-borns use x-demand strategies and
mothers use x-offer strategies can be invaded by a double

heterozygote with a dominant pair of mutations encoding Alexandrian behav-
ior.

Mothers Don’t Always Seek to Maximize Expected Num-
ber of Surviving Offspring

In our discussion of “What would mothers choose?”, we promised to show that
when the genetic locus that controls juvenile behavior is linked to the locus that
controls maternal behavior, it cannot automatically be assumed that selection
will favor maternal behavior that maximizes the number of the mother’s sur-
viving offspring. Where a single locus controls the behavior of first-born lambs
and of ewes, as in the previous section, consider a monomorphic population in
which normal first-born lambs pursue x-demand strategies and normal mothers
pursue x-offer strategies, where x > xp. The expected number of surviving
offspring that a normal mother will have is Π1(x) + Π2(x). Now consider a rare
dominant allele that mandates that first-born lambs use the greedy xp-demand
strategy and that mothers use the xp-offer strategy. If a mother carries a copy
of the rare allele, then the probability is 1/2 that her first-born will inherit the
rare allele and the probability is 1/2 that it will inherit the normal allele. If
her first-born inherits the rare allele, it will use the xp strategy and its survival
probability will be Π1(xp), but if the lamb does not inherit the rare allele, it
uses the x strategy and since its mother will refuse to nurse it beyond age xp,
the lamb will not survive. In either case, the mother weans her first-born at age
xp and so the survival probability of the second-born is Π2(xp). It follows that

12While it is true that some double heterozygotes are formed by from single heterozygotes
by recombination when r > 0,

it turns out that when both single and double heterozygotes are rare and when selection
acts against the all single heterozygotes, such recombination events have a negligible effect on
the growth rate of the proportion of double heterozygotes.
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the expected number of surviving offspring that this mother produces will be

1
2
Π1(xp) + Π2(xp).

As we know from Proposition 8, the allele for xp-demand and xp-supply
strategies will invade the original monomorphic population. But while they are
rare, mothers who carry the mutant allele will have a smaller expected number
of surviving offspring than normals (at least if x is sufficiently close to xp). We
can see this as follows. The difference between the expected number of surviving
offspring of a normal mother and a mother with the mutant allele is

Π1(x) + Π2(x)−
(

Π1(xp)
2

+ Π2(xp)
)

(13)

Since x > xp, the Expression 13 will have the same sign as

Π1(x)−Π1(xp)
x− xp

+
Π2(x)−Π2(xp)

x− xp
− Π1(xp)

2(x− xp)
(14)

In the limit as x → xp, the first two terms of Expression 14 approach re-
spectively Π′

1(x
p) and Π′

2(x
p), both of which are finite, while the third term

approaches minus infinity. This implies that for x sufficiently close to xp, the
expected number of surviving offspring of mothers with the rare allele is lower
than that of normal mothers.

How can the rare allele invade, even though mothers who carry this allele
have fewer expected surviving offspring than normal mothers? The answer
is simple and instructive. Although mothers who carry the rare allele, unlike
normal mothers, lose half of their first-born to wolves, the offspring that are lost
to wolves do not carry the mutant allele. In fact the number of her surviving
offspring who carry the rare allele is (Π1(xp) + Π2(xp)) /2. Hence the expected
number of copies of her rare allele which are passed to surviving adults in the
next generation is also (Π1(xp) + Π2(xp)) /2. This exceeds the number of copies
(Π1(x) + Π2(x)) /2 of a normal allele that are passed from one generation to the
next.

5 Conclusions

There is much to be learned from our simple pastoral fable of weaning conflict.
We began by posing a pair of hypothetical questions. At one extreme, at what
age will first-born lambs be weaned if mothers have no control of the weaning
age and natural selection operates exclusively on the age at which first-borns
choose to wean themselves? At the other, at what age will first-born lambs
be weaned if mothers have unchallenged control over weaning age and natural
selection acts exclusively on the weaning age that mothers choose?

In this model, the answers to both questions turn out to be answers that
would be predicted by users of Hamilton’s rule. If first-born lambs could choose,
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they would pick the age of weaning that maximizes a weighted average of their
own survival probability and that of their younger siblings. Here, the relative
weight placed on the younger sibling is simply the coefficient of relationship
between a mother’s two lambs. If mothers could choose, they would pick the
age of weaning that maximizes an equally weighted average of survival

probabilities of first and second born. The weaning age xf (k) that the first-
born would choose is always greater than the age xp that ewes would choose.

The answers to these questions define the extent of the genetic conflict over
weaning age. How will this conflict be resolved? We find that the answer to this
question depends on the strategies available to mother and offspring, and on the
details of the process by which these strategies are inherited. We first considered
the possibility of unilateral change in offspring strategies or maternal strategies.
We found that there is a large class of monomorphic equilibria that cannot be
invaded unilaterally by mutant alleles at the locus that controls the behavior
of lambs, or by mutants at the locus controlling the behavior of mothers. Such
equilibria support any age of weaning x between the parental optimum xp and
the offspring optimum xf (k). Thus if single-locus mutations were the only kind
observed, there would be little theoretical support for the Alexander view that
natural selection would inevitably result in the outcome xp that maximizes the
reproductive interests of the mother.

Two-locus genetic models, however, allow the possibility that novel pairs
of maternal and offspring strategies can invade in association with one another.
We found that this possibility gives more support to the Alexander-Becker view-
point. If the genetic loci that control behavior of first-born and behavior of
mothers are perfectly linked, then the Alexander-Becker view is dramatically
vindicated. The

only outcome that can be a monomorphic equilibrium is the one in which
mothers are able to enforce their will, i.e., in which first-born are weaned at
their mothers’ preferred outcome xp. In intermediate cases, where linkage is
not perfect, we have intermediate results. The greater the probability that ge-
netic recombination will break up allele combinations at maternal and offspring
strategy loci, the further the equilibria can stray from the mothers’ preferred
outcome. For sufficiently loose linkage, the Alexander-Becker position again
collapses and we find that every weaning age between xp and xf (r) can be an
equilibrium.
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