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Abstract

We introduce a non-cooperative model of bargaining when players

are divided into coalitions. The model is a modification of the mech-

anism in Vidal-Puga (Economic Theory, 2005) so that all the players

have the same chances to make proposals. This means that players

maintain their own "right to talk" when joining a coalition. We apply

this model to an intriguing example presented by Krasa, Tamimi and

Yannelis (Journal of Mathematical Economics, 2003) and show that

the Harsanyi paradox (forming a coalition may be disadvantageous)

disappears.
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1 Introduction

Many economic situations can be modelled as a set of agents or players with

independent interests who may benefit from cooperation. Moreover, it is not

infrequent that these agents have partitioned themselves into coalitions (such

as unions, cartels, or syndicates) for the purpose of bargaining.

Assuming that cooperation is carried out, the question is how to share the

benefit between the coalitions and between the members inside each coalition,

i.e. which “value” best represents the expectation of each individual. The

economic theory has addressed this problem from two different points of

view. One of them is axiomatic, or cooperative. The other one is positive,

or non-cooperative.

The axiomatic point of view focuses on finding allocations which satisfy

“fair” (or at least “reasonable”) properties, such as efficiency (the final out-

come must be efficient), symmetry (players with the same characteristics

must receive the same), etc. The non-cooperative point of view leads to the

study of the allocations which arise in a given non-cooperative environment.

In this paper, we follow a non-cooperative approach.

Taking an axiomatic point of view, Owen (1977) presented a value for

transfer utility games with coalition structure. Further axiomatic charac-

terizations were provided by Hart and Kurz (1983), Winter (1992), Calvo,

Lasaga and Winter (1996) and Albizuri and Zarzuelo (2004), among others.

Owen assumed that this structure was exogenously given. Hart and Kurz

(1983) reinterpreted the Owen value assuming that players form coalitions

in order to improve their bargaining power.

Under both approaches, the main idea is that the coalitions play among

themselves as individual agents in a game between coalitions, and the surplus

obtained by each coalition is distributed among its members.

Recently, the Owen value has been non-cooperatively supported by Vidal-

Puga and Bergantiños (2003) and Vidal-Puga (2005). In these papers, the

players play a non-cooperative mechanism1 in two stages: in the first stage,

1To avoid ambiguities with cooperative games, we use the term non-cooperative mech-
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the players inside a coalition bargain among themselves the strategy to follow

in the second stage, where bargaining takes place among coalitions.

Vidal-Puga (2005) generalizes a previous mechanism of Hart and Mas-

Colell (1996). In Hart and Mas-Colell’s model, a player is randomly chosen

in order to propose a payoff. If this proposal is not accepted by all the

other players, the mechanism is played again under the same conditions with

probability ρ ∈ [0, 1). With probability 1− ρ, the proposer leaves the game

and the mechanism is repeated with the rest of the players.

In Vidal-Puga (2005), this procedure is played in two rounds. First, agree-

ments are negotiated within coalitions and then through delegates among

coalitions. In the first round, a player is randomly chosen out of each coali-

tion and proposes a payoff. Each proposal is voted by the rest of the members

of its own coalition. If one of them rejects the proposal, the mechanism is

either played again under the same conditions (probability ρ), or the pro-

poser leaves the game and the mechanism is repeated with the rest of the

players (probability 1 − ρ). If there is no rejection, the proposal of one of

the coalitions is randomly chosen. If this proposal is not accepted by all

other coalitions, the mechanism is played again under the same conditions

(probability ρ), or the entire proposing coalition leaves the game and the

mechanism is repeated with the rest of the players (probability 1− ρ).

Vidal-Puga (2005) shows that this mechanism in two rounds implements

the Owen value in a non-restrictive class of games.

Frequently, it is interpreted that players form coalition structures in order

to improve their bargaining strength (Hart and Kurz (1983)). However, as

Harsanyi (1977, p. 203) points out, the bargaining strength does not improve

in general. An individual can be worse off bargaining as a member of a

coalition than bargaining alone. Chae and Heidhues (2004, p. 47) provide

an explanation for this paradox. By merging in a coalition structure, players

reduce their multiple "rights to talk" to a single right in the game between

coalitions, hence improving the position of the outsiders.

anism, or simply mechanism, rather than non-cooperative game.
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The meaning of "rights to talk" is not clear from an axiomatic viewpoint

(see for example Chae and Moulin (2004)). However, it has a clear meaning

in the mechanism in Vidal-Puga (2005). The right to talk is simply the

right to make a proposal. This right is dispelled as the size of the coalition

increases.

In this paper, we study the effect that provides to maintain the "rights to

talk" of the players inside a coalition. We modify the mechanism by Vidal-

Puga (2005) so that players maintain their "rights to talk". Hence, the

coalitions with more members have more chances to make proposals. This

new mechanism is still a generalization of the mechanism of Hart and Mas-

Colell (1996), in the sense that both coincide when the coalition structure is

trivial (i.e. all the coalitions are singletons, or there exists a unique coalition).

In Section 2 we present the notation used throughout the paper. In

Section 3 we present the formal mechanism and state our main result. In

Section 4 we analyze an intriguing example presented by Krasa, Tamimi and

Yannelis (2003). Finally, Section 5 is devoted to a brief discussion.

2 Preliminaries

Let U be a (maybe infinite) set of potential players. A non-transferable util-

ity game, or NTU game, is a pair (N,V ) where N ⊂ U is finite and V is

a correspondence which assigns to each S ⊂ N , S 6= ∅ a nonempty, closed,
convex and bounded-above subset V (S) ⊂ RS representing all the possible

payoffs that the members of S can obtain for themselves when playing co-

operatively. For S ⊂ N , we maintain the notation V when referring to the

application V restricted to S as player set. For simplicity, we denote V (i)

instead of V ({i}), S ∪ i instead of S ∪ {i} and N\i instead of N\{i}. We
denote the set of NTU games as NTU .

For each i ∈ N , let ri := max {x : x ∈ V (i)}. We will assume that, for
each S ⊂ N and x ∈ V (S), the vector y ∈ RN with yi = xi for all i ∈ S and

yi = ri for all i ∈ N\S, belongs to V (N).
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When

V (S) =

(
x ∈ RS :

X
i∈S

xi ≤ v(S)

)
for some v : 2N → R with v (∅) = 0, we say that (N,V ) is a transferable

utility game (or TU game) and it is represented by (N, v).

Given N ⊂ U finite, we call coalition structure over N a partition of the

player set, i.e. C = {C1, C2, ..., Cp} ⊂ 2N is a coalition structure if it satisfiesS
Cq∈C Cq = N and Cq ∩ Cr = ∅ when q 6= r. A coalition structure C over

N is trivial if either C = {{i}}i∈N or C = {N}. For any S ⊂ N , we denote

the restriction of C to the players in S as CS (notice that this implies that CS
may have less or the same number of coalitions as C).
We denote an NTU game (N,V )with coalition structure C over N as

(N,V, C). We denote the set of NTU games with coalition structure as

CNTU .

Given G is a subset of NTU or CNTU , a value in G is a correspondence

which assigns to each (N,V ) ∈ G or (N, V, C) ∈ G a vector of RN . A well-

known value in TU games is the Shapley value (Shapley (1953)). We denote

the Shapley value of the TU game (N, v) as ϕN ∈ RN . For TU games with

coalition structure, Owen (1977) proposed a single value based on Shapley’s

which takes into account the coalition structure C. We call this value the
Owen coalitional value, or simply the Owen value. We denote the Owen

value of the TU game with coalition structure (N, v, C) as φN ∈ RN .

3 The mechanism

In this section we describe the coalitional mechanism. This mechanism is a

modification of the bargaining mechanism presented in Vidal-Puga (2005).

Even though the model is defined for NTU games, we focus on TU games.

Fix (N,V, C) ∈ CNTU . For each S ⊂ N , we denote by ΓS the set of

applications γ : CS → S satisfying γ
¡
C 0
q

¢ ∈ C 0
q for each C 0

q ∈ CS. For
simplicity, we denote γq := γ

¡
C 0
q

¢
.
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The coalitional bargaining mechanism associated with (N,V, C) and ρ ∈
[0, 1) is defined as follows:

In each round there is a set S ⊂ N of active players. In the

first round, S = N . Each round has one or two stages. In the

first stage, a proposer is randomly chosen from each coalition.

Namely, a function γ ∈ ΓS is randomly chosen, being each γ

equally likely to be chosen. The coalitions play sequentially (say,

for example, in the order
¡
C 0
1, C

0
2, ..., C

0
p

¢
) in the following way:

γ1 proposes a feasible payoff, i.e. a vector in V (S). The members

of C 0
1\γ1 are then asked in some prespecified order to accept or

reject the proposal. If one of them rejects the proposal, then

we move to the next round where the set of active players is S

with probability ρ and S\γ1 with probability 1− ρ. In the latter

case, player γ1 gets rγ1 . If all the players accept the proposal, we

move on to the next coalition, C 0
2. Then, players of C

0
2 proceed

to repeat the process under the same conditions, and so on. If

all the proposals are accepted in each coalition, the proposers are

called representatives. We denote the proposal of γq as a
¡
S, γq

¢ ∈
V (S).

In the second stage, a proposal is randomly chosen. The proba-

bility of a (S, γr) being chosen is proportional to the size of C 0
r,

i.e. |C0r |
|S| . Assume a

¡
S, γq

¢
is chosen. We call player γq the

representative-proposer, or simply r.p. If all the members of S\C 0
q

accept a
¡
S, γq

¢
— they are asked in some prespecified order — then

the game ends with these payoffs. If it is rejected by at least

one member of S\C 0
q, then we move to the next round where,

with probability ρ, the set of active players is again S and, with

probability 1− ρ, the entire coalition C 0
q drops out and the set of

active players becomes S\C 0
q. In the latter case each i ∈ C 0

q gets

ri.
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Clearly, given any set of strategies, this mechanism finishes in a finite

number of rounds with probability 1.

This mechanism coincides with the mechanism in Vidal-Puga (2005) ex-

cept that the probability of a coalition to be chosen is proportional of its

size2. With this modification, when there is no rejection each player has the

same probability to be chosen r.p. Hence, players do not loose their "right to

talk" when joining a coalition.

The mechanism also generalizes Hart and Mas-Colell’s (1996) for trivial

coalition structures. For C = {N}, the second stage is trivial, since there
is a single representative and a single proposal. Moreover, the first stage

coincides with Hart and Mas-Colell’s mechanism. For C = {{i}}i∈N , the first
stage is trivial. Each player states a proposal, and in the second stage a

proposal is randomly selected with equal probability and voted by the rest

of the players/coalitions.

As usual, we consider stationary subgame perfect equilibria. In this con-

text, an equilibrium is stationary if the players’ strategies depend only on

the set S of active players. They do not depend, however, on the previous

history or the number of played rounds.

Let S denote the set of active players. Given a set of stationary strategies,

we denote by a(S, i)γ ∈ V (S) the payoff proposed by i ∈ C 0
q ∈ CS when the

set of proposers is determined by some γ ∈ ΓS with γq = i. Thus, for a given

γ ∈ ΓS,

a(S)γ :=
X
C0q∈CS

¯̄
C 0
q

¯̄
|S| a

¡
S, γq

¢γ ∈ V (S) (1)

is the expected final payoff when all the proposals are accepted and γ deter-

mines the set of proposers (or representatives).

We denote

a(S) :=
X
γ∈ΓS

1

|ΓS|a (S)
γ ∈ V (S)

as the expected final payoff when all the proposals are accepted.

2In Vidal-Puga (2005) each coalition is chosen with the same probability.

7



Given i ∈ C 0
q ∈ CS, let ΓS,i be the subset of functions γ ∈ ΓS such that

γq = i. Notice that |ΓS| = |ΓS,i|
¯̄
C 0
q

¯̄
for all i ∈ C 0

q ∈ CS.
Let

a (S, i) :=
X
γ∈ΓS,i

1

|ΓS,i|a (S, i)
γ (2)

be the expected payoff proposed by i ∈ C 0
q ∈ CS when he is a proposer.

Proposition 3.1 For all S ⊂ N ,

a (S) =
X
i∈S

1

|S|a (S, i) . (3)

Proof. Given S ⊂ N ,

a (S) =
X
γ∈ΓS

1

|ΓS|a (S)
γ

=
X
γ∈ΓS

1

|ΓS|
X
C0q∈CS

¯̄
C 0
q

¯̄
|S| a

¡
S, γq

¢γ
=

X
C0q∈CS

¯̄
C 0
q

¯̄
|S|

X
γ∈ΓS

1

|ΓS|a
¡
S, γq

¢γ
=

X
C0q∈CS

¯̄
C 0
q

¯̄
|S|

X
i∈C0q

1¯̄
C 0
q

¯̄ X
γ∈ΓS,i

1

|ΓS,i|a
¡
S, γq

¢γ
since a

¡
S, γq

¢γ
= a (S, i)γ for all i ∈ C 0

q, γ ∈ ΓS,i:

a (S) =
X

C0q∈CS

¯̄
C 0
q

¯̄
|S|

X
i∈C0q

1¯̄
C 0
q

¯̄ X
γ∈ΓS,i

1

|ΓS,i|a (S, i)
γ

under (2):

a (S) =
X

C0q∈CS

¯̄
C 0
q

¯̄
|S|

X
i∈C0q

1¯̄
C 0
q

¯̄a (S, i) = X
C0q∈CS

1

|S|
X
i∈C0q

a (S, i) =
X
i∈S

1

|S|a (S, i) .

Proposition 3.1 states that the probability that the final proposal comes

from a particular player (when all the proposals are accepted) is equal for all

the players, i.e. they maintain their respective "rights to talk".
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Theorem 3.1 Let (N, v, C) be a TU game with coalition structure. Assume
there is a stationary subgame perfect equilibrium in which all the proposals³
a (S, i)γi∈S,γ∈ΓS,i

´
S⊂N

are accepted. Then, a (S) = ζS for all S ⊂ N , where¡
ζS
¢
S⊂N is inductively defined as follows: ζ{i}i = ri for all i ∈ N . Assume

we know ζT ∈ RT for all T Ã S. Then, ζSi =

1

|S|

v (S) + X
j∈C0q\i

|S|¯̄
C 0
q

¯̄ ³ζS\ji − ζ
S\i
j

´
+

X
C0r∈CS\C0q

 |C 0
r|¯̄

C 0
q

¯̄ X
j∈C0q

ζ
S\C0r
j −

X
j∈C0r

ζ
S\C0q
j


for all i ∈ C 0

q ∈ CS.

Proof. Assume the set of active players is S. Since all the proposals are

accepted, the final expected payoff is a (S). Moreover, the final expected

payoff when γ ∈ ΓS determines the set of proposers is a (S)
γ.

• Assume we are in the second stage and the r.p. is γq ∈ C 0
q ∈ CS. If

all the players in S\C 0
q accept γq’s proposal, the final payoff will be

a
¡
S, γq

¢γ
. If at least a player in S\C 0

q rejects γq’s proposal, the final

expected payoff will be ρa (S) + (1− ρ) a
¡
S\C 0

q

¢
. It is well-known

that, in equilibrium, acceptable proposals would leave the responders

indifferent to accepting or rejecting. Hence,

ai
¡
S, γq

¢γ
= ρai (S) + (1− ρ) ai

¡
S\C 0

q

¢
(4)

for all i ∈ S\C 0
q .

• Let γ ∈ ΓS be the function which determines the set of proposers.

Given C 0
q ∈ CS, assume we are in the subgame which begins after

player γq makes his proposal a
¡
S, γq

¢γ
. If all the players in C 0

q\γq
accept γq’s proposal, the expected final payoff will be a (S)

γ. If at least

a player in C 0
q\γq rejects γq’s proposal, the expected final payoff will be

ρa (S)+(1− ρ) a
¡
S\γq

¢
. By the same argument as above, we conclude

that

ai (S)
γ = ρai (S) + (1− ρ) ai

¡
S\γq

¢
(5)

for all i ∈ C 0
q\γq .
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The following claim states that the proposals are always Pareto efficient:

Claim 3.1 Let γ ∈ ΓS be the function which determines the set of proposers.

Assuming γ ∈ ΓS,i for some i ∈ S, we haveX
j∈S

aj (S, i)
γ = v (S) . (6)

Assume Claim 3.1 does not hold, i.e.
P

j∈S aj (S, i)
γ < v (S). Let ε > 0 be

such that
P

j∈S aj (S, i)
γ+|S| ε ≤ v (S). Suppose player i changes his strategy

and proposes b (S, i)γ with bj (S, i)
γ := aj (S, i)

γ+ε for all j ∈ S. By a similar

argument as before, it is straightforward to check that this new proposal is

bound to be accepted in both the first and the second stages. Hence, the

expected final payoff for player i increases by |C
0
q|

|S| ε. This contraction proves

Claim 3.1.

From Claim 3.1, it is easily checked thatX
i∈S

ai (S) = v (S) . (7)

Fix i ∈ C 0
q ∈ CS. From (1) it is readily checked that, for any j ∈ C 0

q\i,
γ ∈ ΓS,i:

aj (S, i)
γ =

|S|¯̄
C 0
q

¯̄aj (S)γ − X
C0r∈CS\C0q

|C 0
r|¯̄

C 0
q

¯̄aj (S, γr)γ
under (5) and (4), aj (S, i)

γ =

|S|¯̄
C 0
q

¯̄ [ρaj(S) + (1− ρ)aj(S\i)]−
X

C0r∈CS\C0q

|C 0
r|¯̄

C 0
q

¯̄ [ρaj(S) + (1− ρ)aj(S\C 0
r)]

= ρaj(S) + (1− ρ)

 |S|¯̄
C 0
q

¯̄aj(S\i)− X
C0r∈CS\C0q

|C 0
r|¯̄

C 0
q

¯̄aj(S\C 0
r)

 . (8)

Under (3) and (2),

|S| ai (S) (3)=
X
j∈S

ai (S, j)
(2)
=
X
j∈S

X
γ∈ΓS,j

1

|ΓS,j|ai (S, j)
γ

=
X
γ∈ΓS,i

1

|ΓS,i|ai (S, i)
γ +

X
j∈C0q\i

X
γ∈ΓS,j

1

|ΓS,j|ai (S, j)
γ +

X
j∈S\C0q

X
γ∈ΓS,j

1

|ΓS,j|ai (S, j)
γ .
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We study the three terms one by one. For the first term:X
γ∈ΓS,i

1

|ΓS,i|ai (S, i)
γ (6)
= v (S)−

X
γ∈ΓS,i

1

|ΓS,i|
X
j∈S\i

aj (S, i)
γ

= v (S)−
X
γ∈ΓS,i

1

|ΓS,i|
X

C0r∈CS\C0q

X
j∈C0r

aj (S, i)
γ −

X
γ∈ΓS,i

1

|ΓS,i|
X

j∈C0q\i
aj (S, i)

γ

(4)(8)
= v (S)−

X
C0r∈CS\C0q

X
j∈C0r

£
ρaj (S) + (1− ρ) aj

¡
S\C 0

q

¢¤

−
X

j∈C0q\i

ρaj (S) + (1− ρ)

 |S|¯̄
C 0
q

¯̄aj (S\i)− X
C0r∈CS\C0q

|C 0
r|¯̄

C 0
q

¯̄aj (S\C 0
r)


under (7),

P
j∈S\i ρaj (S) = ρ (v (S)− ai (S)) and thus

= v (S)− ρ (v (S)− ai (S))− (1− ρ)
X

C0r∈CS\C0q

X
j∈C0r

aj
¡
S\C 0

q

¢

− (1− ρ)
X

j∈C0q\i

 |S|¯̄
C 0
q

¯̄aj (S\i)− X
C0r∈CS\C0q

|C 0
r|¯̄

C 0
q

¯̄aj (S\C 0
r)

 .
For the second term:X

j∈C0q\i

X
γ∈ΓS,j

1

|ΓS,j|ai (S, j)
γ (8)
=

X
j∈C0q\i

ρai (S) + (1− ρ)

 |S|¯̄
C 0
q

¯̄ai (S\j)− X
C0r∈CS\C0q

|C 0
r|¯̄

C 0
q

¯̄ai (S\C 0
r)


= ρ

¡¯̄
C 0
q

¯̄− 1¢ ai (S)
+ (1− ρ)

 X
j∈C0q\i

|S|¯̄
C 0
q

¯̄ai (S\j)−Ã1− 1¯̄
C 0
q

¯̄! X
C0r∈CS\C0q

|C 0
r| ai (S\C 0

r)

 .
For the third term:X

j∈S\C0q

X
γ∈ΓS,j

1

|ΓS,j|ai (S, j)
γ (4)=

X
C0r∈CS\C0q

X
j∈C0r

[ρai (S) + (1− ρ) ai (S\C 0
r)]

= ρ
¡|S|− ¯̄C 0

q

¯̄¢
ai (S) + (1− ρ)

X
C0r∈CS\C0q

|C 0
r| ai (S\C 0

r) .
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Hence, adding terms, |S| ai (S) =

v (S)− ρv (S)− (1− ρ)
X

C0r∈CS\C0q

X
j∈C0r

aj
¡
S\C 0

q

¢

−
X

j∈C0q\i
(1− ρ)

 |S|¯̄
C 0
q

¯̄aj (S\i)− X
C0r∈CS\C0q

|C 0
r|¯̄

C 0
q

¯̄aj (S\C 0
r)


+(1− ρ)

 X
j∈C0q\i

|S|¯̄
C 0
q

¯̄ai (S\j) + X
C0r∈CS\C0q

|C 0
r|¯̄

C 0
q

¯̄ai (S\C 0
r)


+ρ |S| ai (S) .

Rearranging terms and dividing by 1− ρ, |S| ai (S) =

= v (S)+
X

j∈C0q\i

|S|¯̄
C 0
q

¯̄ (ai (S\j)− aj (S\i))+
X

C0r∈CS\C0q

 |C 0
r|¯̄

C 0
q

¯̄ X
j∈C0q

aj (S\C 0
r)−

X
j∈C0r

aj
¡
S\C 0

q

¢
from where the result is easily deduced following a standard induction argu-

ment.

4 An eloquent example

Krasa, Temimi and Yannelis (2003) propose a three-person economy with

differential information where two players bargain as one unit against the

third one. When there is complete information, the economy can be expressed

as a TU game (N, v) where N = {1, 2, 3} and v is given by

v ({1}) = v ({2}) = 1
v ({3}) =

43

16

v ({1, 2}) =
5

2

v ({1, 3}) = v ({2, 3}) = 31

8

v (N) =
83

16
.
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When there is differential information, due to incentive incompatibility,

1 and 2 are only able to achieve v ({1, 2}) = 2 by themselves. For any other
S ⊂ N , v (S) is the same as under complete information.

Krasa, Temimi and Yannelis take the Owen value φN as a measure of

players’ expectations when 1 and 2 join forces. Their result is that bargaining

as one unit is advantageous if and only if information is complete, as the next

table shows:

φN complete information differential information

C = {{1} , {2} , {3}} ¡
39
32
, 39
32
, 88
32

¢ ¡
109
96
, 109
96
, 280
96

¢
C = {{1, 2} , {3}} ¡

40
32
, 40
32
, 86
32

¢ ¡
108
96
, 108
96
, 282
96

¢
.

Consider now that we take ζN as a measure of players’ expectations when

1 and 2 join forces. Then, bargaining as one unit is advantageous in any case,

as the next table shows:

ζN complete information differential information

C = {{1} , {2} , {3}} ¡
39
32
, 39
32
, 88
32

¢ ¡
109
96
, 109
96
, 280
96

¢
C = {{1, 2} , {3}} ¡

40
32
, 40
32
, 86
32

¢ ¡
112
96
, 112
96
, 274
96

¢
.

This last situation corresponds to the assumption that players, by joining,

do not loose their respective "rights to talk". Note also that the benefit from

cooperation is 1
32
for each player in both cases.

5 Discussion

The Owen value seems to be a good measure of players’ expectations when

the coalition structure is exogenously given. For example, wage bargaining

between firms and labor unions, tariff bargaining between countries, bar-

gaining between the member states of a federated country, etc. In these

situations, players do not have to wonder whether they would do it better

bargaining as a unit, because it is something out of their control.
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On the other hand, Hart and Kurz (1983) followed the idea that players

form coalition structures in order to improve their bargaining strength. They

studied four reasonable properties, or axioms, that determine uniquely the

Owen value. The only property that is not satisfied by ζ is Carrier (p. 1051),

which states that moving null players3 does not affect the outcome of the rest

of the agents. We will contest this property4.

In bargaining problems, asymmetries in the final outcome may be due to

the players’ different bargaining powers. As Binmore (1998, p. 80) points out:

“Bargaining powers are determined by the strategic advantages conferred on

players by the circumstances under which they bargain.” In our case, the

coalition structure. Assume for example a game in which all the players are

mutually substitutes5. Since no asymmetries are introduced in the model,

the expectation a priori should be the same for substitute players, i.e. all

players are supposed to have equal bargaining powers. In general games,

however, nothing is said about the bargaining power of the null players! If we

admit that null players do have bargaining power, then this fact can somehow

increase the aggregate power of the coalition they join.

Take for example the unanimity game (N, v) where N = {1, 2} and
v (N) = 1, v ({1}) = v ({2}) = 0. By a symmetry argument, the value

of each player should be 1
2
, i.e. the expectation of each player before any

implementation of the game is the same.

Assume now we add a null player 3. We get the game (N 0, v0) with

N 0 = {1, 2, 3} and v0 (S) = 1 if {1, 2} ⊂ S and v0 (S) = 0 otherwise. What

would the players’ expectation be in this new game?

It can be argued that the situation does not change with the presence

of a player that does not contribute anything to any coalition. Hence, the

value of (N 0, v0) should be
¡
1
2
, 1
2
, 0
¢
. However, the situation may significantly

3A null player is a player i with v (S ∪ i) = v (S) for all S.
4The Carrier axiom in Hart and Kurz has two parts, one of them (i) can also be split

into two properties: efficiency (the value is efficient for all coalition structures) and dummy

(null players get zero). ζ satisfies efficiency, but not dummy.
5Two players i, j are substitutes if v (S ∪ i) = v (S ∪ j) for all S with i, j /∈ S.
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change if we assume that player 3 joins forces with player 2. In this case,

the symmetry argument used to assign the value
¡
1
2
, 1
2

¢
in the previous game

(N, v) vanishes. Player 1 and coalition {2, 3} are substitutes in the game
between coalitions, but not completely symmetric. The fact that {2, 3} has
two members introduces an endogenous asymmetry. Hart and Kurz (p. 1048)

describe this situation as follows:

As an everyday example of such a situation, “I will have to

check this with my wife/husband” may (but not necessarily) lead

to a better bargaining position, due to the fact that the other

party has to convince both the player and the spouse.

If we accept that player 2 may benefit from the support of player 3, one

may wonder how to quantify this benefit. The value ζ provides a possi-

ble answer, by assigning an allocation ζN
0
=
¡
4
12
, 7
12
, 1
12

¢
when the coalition

structure is C = {{1} , {2, 3}}.
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