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Abstract. We present a class of games with a pure strategy being strictly
dominated by another pure strategy such that the former survives along most
solutions of the Brown–von Neumann–Nash dynamics.
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1. Introduction

Let π : S = S1×· · ·×SN → RN be the payoff function of a finite strategic game,
extended N–linearly to the polyhedron ¤(S) = ∆(S1) × · · · × ∆(SN ) of mixed
strategy profiles x = (xi)N

i=1 = (xi, x−i). Then the Brown–von Neumann–Nash
dynamics is given by the system of differential equations on ¤(S)

(BNN) ẋis = ki(s, x)− xisk̄i(x), i = 1, . . . , N, s ∈ Si

with ki(s, x) = max[0, πi(s, x−i) − πi(x)] and k̄i(x) =
∑

σ∈Si
ki(σ, x). ki(s, x) is

the excess payoff for strategy s of player i over his average payoff. For two person
symmetric zero–sum games this differential equation was introduced by Brown and
von Neumann (1950) as another numeric device (besides fictitious play) to compute
optimal strategies. For general N person games it is the continuous time analog of
the map that Nash (1951) used in his existence proof of equilibria.

Nash’s map has been fundamental for the development of economic theory by
inspiring a whole literature on existence of general equilibrium, starting from Arrow
and Debreu (1954). A generalization of (BNN) has already been used by Nikaido
(1959) as a price adjustment process. In game theory, however, (BNN) had to wait
forty years for its comeback finally paved by Maynard Smith’s (1982) creation of
evolutionary game theory. It entered stage again as ‘dynamics of rational delib-
eration’ in Skyrms (1990), as ‘canonical dynamics’ in Swinkels (1993), and as the
archetype of an ‘innovative dynamics’ in Weibull (1994b). Berger (1998) studied
the stability of Nash equilibria under this dynamics, and Hofbauer (2000) showed
global stability of completely mixed ESS. Sandholm (2001) uses it as prime example
in his study of potential games, and Sandholm (2004) shows a fascinating relation
of (BNN) to the regret-based decision rules of Hart and Mas-Colell (2001).

One can give a rough evolutionary interpretation of (BNN): Suppose there are N
player populations (each of constant size) in which there is steady influx and outflux.
New players joining the game use only strategies that are better than average, and
better strategies are more likely to be adopted. More precisely, strategy s ∈ Si is
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adopted with probability proportional to the excess payoff ki(s, ·). On the other
hand, randomly chosen players leave the game.

It is instructive to compare the BNN dynamics with two other, well-known dy-
namics. The replicator dynamics is the fundamental selection dynamics in evo-
lutionary biology and in the social sciences.1 Of similar importance in economic
theory is the best response dynamics, which is (up to a rescaling of time) mathe-
matically equivalent to the continuous time fictitious play learning process.2 Both
these dynamics are ‘myopic adjustment dynamics’ as defined by Swinkels (1993):
Each player population moves towards a better reply against the current state of
the other player populations.

From the viewpoint of classical game theory, however, both these dynamics have
their drawbacks. The replicator dynamics is a selection dynamics (a once unused
strategy will never occur), which in particular implies that every pure strategy
profile is a stationary state. The best response dynamics, on the other hand, is
an innovative dynamics (at least one of the (possibly unused) pure strategies with
higher than average payoff grows in population share), implying that its constant
solutions agree with the Nash equilibria, but in general it suffers from nonuniqueness
of solutions.

What makes the BNN dynamics so interesting in evolutionary game theory is
that it picks out the attractive features3 of both the replicator and the best response
dynamics:

• (BNN) is a myopic adjustment dynamics, as follows from its definition.
• Its stationary states are precisely the Nash equilibria, since it is an innova-

tive dynamics.
• It has unique solutions by Lipschitz continuity.

2. (Ir)rationality

The present note deals with the following question. Does the BNN dynamics
asymptotically lead to rational behavior?

Consider a game with a pure strategy q that is strictly dominated by a (possi-
bly mixed) strategy p. A basic rationality postulate is that a player would never
use q. It is easy to see that in the best response dynamics (or fictitious play),
strategy q will eventually vanish from the population. Along interior orbits, q will
also go extinct in the replicator dynamics, see Samuelson and Zhang (1992). More
generally, Hofbauer and Weibull (1996) characterized the selection dynamics for
which elimination of (even iteratively) strictly dominated strategies holds as ‘con-
vex monotone’. Basically, these dynamics are interpolations between the replicator
and the best response dynamics. Their crucial property is that any pure strategy
which is used and performs below average strictly decreases its frequency.4 The

1See Maynard Smith (1982), Weibull (1995), Hofbauer and Sigmund (1998), or Fudenberg and
Levine (1998).

2The best response dynamics was introduced by Gilboa and Matsui (1991) and Matsui (1992),
and fictitious play is due to Brown (1951). For stability results see Gaunersdorfer and Hofbauer
(1995), Hofbauer (1995, 2000), Fudenberg and Levine (1998), or Berger (2004).

3There are even arbitrarily smooth variants of (BNN), see Weibull (1994b), Hofbauer (2000),
or Sandholm (2004), which share its crucial properties.

4A property called ‘seeking the good’ by Skyrms (1990) and ‘weakly sign preserving’ by
Ritzberger and Weibull (1995).
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BNN dynamics — though not a selection dynamics — obviously shares this prop-
erty. This might suggest that (BNN), just like the replicator or the best response
dynamics, asymptotically behaves ‘as if’ the population were a rational player (com-
pare Weibull, 1994a). We show below that this is not the case.

Note that there are well known examples, e.g. Dekel and Scotchmer (1992) or
Hofbauer and Weibull (1996), of strictly dominated strategies surviving in certain
games under certain dynamics. However, in all these examples the dominating
strategy p is mixed. For (BNN) the situation is worse: here the dominating strategy
may itself be pure.

We begin by studying the degenerate case of games with two equivalent strate-
gies. For simplicity we consider symmetric two person games played within one
population, with finite strategy set S = S1 = S2, payoff matrix π : S×S → R, and
x ∈ ∆(S) denoting a mixed population profile. Suppose there are two equivalent
pure strategies, say p, q ∈ S, such that π(p, x) = π(q, x) and hence k(p, x) = k(q, x)
for all x. Then (xp − xq). = −(xp − xq)k̄(x). In particular, the subset {x ∈ ∆(S) :
xp = xq} is invariant under (BNN). Consider a trajectory x(t), t ≥ 0, which stays
away from the set of equilibria, so that k̄(x(t)) ≥ δ > 0.5 Then xp(t) − xq(t) → 0
as t →∞.

Hence the BNN dynamics tends to equalize the proportions of equivalent strate-
gies, at least along nonconvergent trajectories.6 This equilibration property looks
perfectly reasonable. It can be seen as an evolutionary version of the ‘principle of
insufficient reason’: in case of indifference between two options, use each with equal
probability. However, as we will show now, this property is incompatible with the
elimination of strictly dominated strategies.

For this we need a game with nonconvergent trajectories. The obvious choice is a
rock–scissors–paper game with S = {r, s, p} and payoffs 0, 1,−3 for a draw, win, or
loss, respectively. This game has a unique equilibrium E at which players put weight
1
3 on each option. A short calculation, compare Hofbauer (2000, section 4.3), shows
that the nonnegative function V (x) = 1

2

∑
σ∈S k(σ, x)2 attains its unique minimum

at E and satisfies

V̇ = π(ẋ, ẋ)− k̄π(ẋ, x) =
∑

σ∈S

ẋ2
σ − k̄

∑

σ∈S

k(σ, x)2.

Near E the first term is of order k̄2 and the second term of order k̄3. This implies
that V̇ > 0 near E. Hence V increases along trajectories near E, and E is a repellor
for (BNN).7 By the Poincaré–Bendixson theorem, orbits near E spiral outwards to
some limit cycle. On the other hand, orbits starting on the boundary spiral inwards
and approach some (possibly different) limit cycle. These two limit cycles bound
an asymptotically stable annulus L.8

5Note that k̄(x) is nonnegative and vanishes precisely at equilibria, hence it is a measure for
the distance of x from the set of Nash equilibria.

6This behaviour is quite different from that of the replicator dynamics, where the ratio xp/xq

remains constant along solutions, or the best response dynamics, for which arbitrary drift between
the equivalent strategies is possible.

7This holds more generally for payoffs a, b, c (instead of 0, 1,−3) satisfying c < a < b and
b + c < 2a. For a different proof based on Poincaré maps see Berger (1998).

8Numerical simulations suggest that L is a unique limit cycle.
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Figure 1. The oscillating attractor for ε = 0.2.

Consider now the augmented game with S = {r, s, p, q} and payoff matrix given
by 



0 1 −3 −3
−3 0 1 1
1 −3 0 0

1− ε −3− ε −ε −ε




with ε ≥ 0. Strategies r, s, p play rock, scissors, paper, as before, while q is an
ε-close variant of p which is strictly dominated by p for ε > 0. The oscillating
attractor L for the {r, s, p} game appears in the augmented game for ε = 0 on the
invariant subset {xp = xq}. This asymptotically stable invariant set L attracts all
trajectories in ∆(S), except the stationary solutions corresponding to the line of
Nash equilibria 1

3 (λp + (1− λ)q + r + s), with λ ∈ [0, 1]. For ε > 0 this line is still
invariant and consists of an orbit converging to the unique equilibrium 1

3 (r+s+p).
Since (BNN) depends continuously on the parameter ε, the oscillating attractor L
continues for small ε to a nearby asymptotically stable invariant set Lε (again a
periodic orbit according to numerical simulations, see Figure 1) which still attracts
all orbits except those starting in a small neighborhood of the invariant line.

For the perturbed game with ε > 0, strategy p strictly dominates q, but for
small values of ε, xp and xq are almost equal along the attractor9 Lε, and hence
the strictly dominated strategy q survives.

3. Conclusion

We showed by means of a simple 4×4 game that a pure strategy which is strictly
dominated by another pure strategy may survive along a large set of solutions of the
BNN dynamics. Indeed the construction works more generally for any game with
an asymptotically stable attractor that is disjoint from the equilibrium set, and the
argument also applies to other innovative dynamics. While (BNN) and its relatives
are presently establishing themselves as a promising third type of evolutionary
dynamics besides the replicator and the best response dynamics, they do not share
one of the crucial properties of these two: ‘as if’ rationality.

9According to numerical simulations, this limit cycle reaches the face xq = 0 only for ε ≈ 0.47.
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