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Abstract. This paper provides a sufficient condition under which the
optimal policy of a monopolistic seller who is considering the tradeoff
between price discrimination and information disclosure is at one of two
extremes: either buyers are given access to all the available information,
or the seller makes no disclosure at all.
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1 Introduction

Increasing revenue by means of price discrimination is a common practice among
monopolistic sellers. Lewis and Sappington (1994) explores the seller’s tradeoff
between information disclosure and price discrimination. On one hand, disclos-
ing information to prospective buyers enables the seller to segment the market
and charge higher prices to high-value buyers. On the other hand, improved in-
formation may help buyers to earn informational rents which damages seller’s
profits. A few examples in Lewis and Sappington (1994) show that in a variety
of settings this tradeoff is optimally resolved with an all-or-nothing informa-
tion disclosure policy: either buyers should be supplied with the best available
knowledge, or the seller should not disclose any information at all.

A counterexample in Lewis and Sappington (1994) shows that this conclusion
does not hold in general, but that paper fails to provide any general sufficient
condition for its validity. The modest purpose of this paper is to provide one
such condition, which is based on four assumptions. This sufficient condition
is derived using the techniques of monotone comparative statics. Very recently,
Johnson and Myatt (2004) have used a different approach to provide a more
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general alternative condition. However, in spite of its formal elegance, the ab-
stract nature of their approach takes priority on its intuitive content. Therefore,
we provide here a second more stringent sufficient condition which replaces two
of our original four technical assumptions with hypotheses that enjoy a simple
and natural economic interpretation.

2 The problem

There is a (male) monopolistic seller who wishes to sell one indivisible object to
one1 (female) buyer by means of a take-it-or-leave-it offer at price p. Both agents
are risk-neutral. The buyer does not know the value V ≥ 0 of the object, but she
can observe a signal S of type θ. Intuitively, we think of θ as a measure of the
“quality” of the signal S: the higher θ, the more accurate is the information that
S carries about V . The seller can (credibly and costlessly) control the quality
θ of the signal observed by the buyer before she takes her decision whether to
purchase or not. We assume that θ can vary within a compact interval Θ =
[θL, θH ] with θL ≥ 0 and that V and S are independent whenever θ = 0. Thus,
a signal S of quality θ = 0 carries no information about V .

In this situation, the buyer’s optimal choice is the following. After receiving
a signal s of quality θ, she buys the object whenever its expected value is not
lower than the price p demanded by the seller. Let b(s, θ) = E(V |s, θ) be the
expected value of V conditional on receiving a signal S = s of quality θ. Then
the buyer purchases whenever b(s, θ) ≥ p.

Now, consider the seller’s problem. Suppose that the seller has an opportunity
cost c for the object. Then his profit from selling the object is

Π(p, θ) = (p− c) · P [b(s, θ) ≥ p].

Knowing the buyer’s optimal behavior, the seller wishes to choose a pair (p∗, θ∗)
which maximizes his expected profit. Clearly, the optimal price p∗(θ) depends
in general on θ but for simplicity we usually omit the argument.

This paper provides a sufficient condition such that either θL or θH are always
part of the optimal seller’s choice. That is, it is part of the optimal policy for
the seller to use an all-or-nothing policy which makes the quality of the signal
extreme.

The problem of providing sufficient conditions for an all-or-nothing informa-
tion disclosure policy can be attacked in several ways. One is by starting out with
assumptions on the joint distribution H(v, s) for the buyer’s value V ≥ 0 and the
signal S. Another one is to begin with assumptions on the prior distribution F (v)
on V and the conditional distribution G(s|v) for the signal (given the value V ).
The third one is to work with the family of conditional distributions F (v|s), and
this is the route that we follow here. The three approaches are strictly related
and one may easily recast the assumptions differently, although the choice of the
1 An equivalent formulation assumes a unit mass of consumers with valuation θ. See

Johnson and Myatt (2004).



165

approach impacts on the naturalness of the hypotheses. Another possible line of
attack is to find sufficient conditions for the stronger result that Π(p∗(θ), θ) is
quasiconvex in θ. Appendix A.2 provides an explicit example in this respect.

3 The main result

Denote by H(v, s; θ) the bivariate joint distribution for the random vector (V, S)θ

when the quality of the signal is θ. Recall that b(s, θ) is the expectation for the
buyer’s value conditional on her receiving a signal S = s of quality θ. Our set of
sufficient conditions requires four assumptions.

(A1) For any θ, the distribution H(v, s; θ) has the same marginals, denoted
respectively by F (v) and G(s).

This is a structural assumption that neither requires V or S to have connected
support, nor H (or F or G) to be absolutely continuous. The only restriction
imposed is the very mild property that θ does not affect the prior distributions
for V and S. To avoid trivialities, in the following we assume also that both the
support of V and the support of S contain at least two distinct points.

The second assumption concerns the relationship between V and S (regard-
less of θ). Given the random vector (V, S), denote by F (v|s) the distribution of
V conditional on S = s. We say that V is stochastically increasing in S if

F (v|s1) ≥ F (v|s2) for all s1 ≤ s2 and v; (1)

that is, if s1 ≤ s2 implies that F (v|s1) is stochastically dominated by F (v|s2).
This assumption was introduced first in Lehmann (1966) under the name of
“positive regression dependence,” but it is nowadays known also as “stochastic
monotonicity” or “conditional stochastic dominance”.

(*) For any θ, the value V is stochastically increasing in the signal S.

It is well known that affiliation of V and S implies (*). The opposite does
not hold even if we assume that the joint density of (V, S) exists; see Lewis
and Sappington (1988, p. 426) for a counterexample. It is also known that (A2)
implies a few weaker notions of positive dependence between V and S, and in
particular positive quadrant dependence: H(v, s) ≥ F (v) · G(s) for all (v, s);
see Nelsen (1999, p. 163). For simplicity, we assume as much differentiability
as convenient and thus the equivalent formulation of (*) becomes the following.
(We also leave it understood that inequalities such as Fs > 0 are supposed to
hold over the entire domain of the function.)

(A2) The conditional distributions F (v|s; θ) are twice continuously differen-
tiable functions with Fs > 0.

The third assumption requires that increasing θ reinforces the strength with
which the main clause of (*) is satisfied. We make a short detour to motivate
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this statement. Given the conditional distribution F (v|s), denote by F−1( · |s)
its right-continuous inverse (with respect to v). The property of stochastic mono-
tonicity defined in (1) is equivalent to

F−1(y|s1) ≤ F−1(y|s2) for all s1 ≤ s2 and all y in [0, 1].

Based on this, Yanagimoto and Okamoto (1969) defined a random vector (V, S)θ2

to be “more stochastically increasing” than another random vector (V, S)θ1

whenever, for any s1 ≤ s2,

F−1(y|s1, θ1) ≤ F−1(z|s2, θ1) ⇒ F−1(y|s1, θ2) ≤ F−1(z|s2, θ2) (2)

for all y, z in [0, 1]. Yanagimoto and Okamoto (1969) shows that this definition
is equivalent to requiring that, for any s1 ≤ s2,

F (v|s1, θ1) ≥ F (w|s1, θ2) ⇒ F (v|s2, θ1) ≥ F (w|s2, θ2) (3)

for all v, w in [0, 1]. Using a subscript2 to denote the dependence from θ, this
can be equivalently written as

F−1
θ2

[
Fθ1(v|s1)

∣∣∣s1

]
≤ F−1

θ2

[
Fθ1(v|s1)

∣∣∣s2

]
for all s1 ≤ s2 and v. (4)

Our third assumption requires that (3) holds for any θ1 ≤ θ2; that is, raising
θ must increase the stochastic monotonicity of (V, S)θ. We note that exchanging
v and s in (4) yields the definition of “increasing accuracy” in the signal proposed
in Lehmann (1988) and adopted in Persico (2000). Based on this, we dub (3) as
a property of increasing “accuracy” in the value V or, for short, V -accuracy.

(**) The family (V, S)θ is increasingly V -accurate in θ.

Both increasing V -accuracy and the symmetric notion of increasing S-accuracy
imply that the family (V, S)θ is increasingly concordant in θ; that is, H(v, s; θ1) ≤
H(v, s; θ2) as θ1 ≤ θ2. See Thm. 2.12 in Joe (1997, p. 43).

Assuming differentiability and using the obvious convention for the case Fv =
0, an equivalent formulation for (**) is the following.

(A3) The conditional distributions F (v|s; θ) satisfy the Spence–Mirrlees condi-
tion:

Fθ

Fv
is decreasing in s.

To see why, observe that Theorem 2.14 in Joe (1997, p. 44) establishes that a
sufficient condition for increasing V -accuracy is

∂2F

∂v∂s

∂F

∂θ
− ∂2F

∂θ∂s

∂F

∂v
≥ 0, (5)

2 Anywhere else in this paper, the notation Fθ stands for the partial derivative of F
with respect to θ.



167

and that this holds if and only if Fθ/Fv is decreasing in s.
We remark that the Spence–Mirrlees condition provides a particularly sim-

ple condition to check. Moreover, Appendix A.1 shows that, under a very mild
regularity condition, it is in fact necessary and sufficient for (**).

The fourth and last assumption requires that there exists a signal which is
neutral with respect to quality.

(A4) There exists a signal ŝ such that b(ŝ, θ) is constant for all θ.

Our main result is that, jointly taken, these four assumptions imply the
optimality of an extreme policy for information disclosure. Before giving the
main result, we prove another (slightly more general) sufficient condition. The
assumptions have a technical flavor and are not meant to be intuitive. This
proposition, on the other hand, provides conditions which are easier to check in
practice and makes the connection with the standard techniques in monotone
comparative statics more transparent.

Proposition 1. Assume (A1) and (A4) and suppose that the following holds:

(B2) The function b(s, θ) = E(V |s, θ) is continuously differentiable and bs > 0.
(B3) The function b(s, θ) is supermodular.

Then it is part of the optimal policy for the seller to make the quality of the
signal extreme.

Proof. It suffices to show that if (p∗, θ∗) is an optimal choice for the seller but
(θ∗ − θL)(θ∗ − θH) 6= 0 then

Π(p∗, θ∗) ≤ max {Π(p∗, θL),Π(p∗, θH)} . (6)

Let ŝ(θ) be the implicit function defined by b(s, θ) = p∗. By (B2), the function
ŝ(θ) is defined for all θ and, moreover, P [b(s, θ) ≥ p∗] = P [S ≥ ŝ(θ)].

Recall that Π(p, θ) = (p − c) · P [b(s, θ) ≥ p]. Since (p∗ − c) ≥ 0, Π(p∗, θ) is
an increasing function of P [b(s, θ) ≥ p∗] = P [S ≥ ŝ(θ)]. By (A1), P [S ≥ ŝ(θ)] is
a decreasing function of ŝ(θ). Therefore, (6) follows if we show that θ∗ cannot
be a strict local minimizer for ŝ(θ) when θL < θ∗ < θH .

By contradiction, suppose that θ∗ is a strict local minimizer for ŝ(θ) and that
θL < θ∗ < θH . Then there exist θ1 and θ2 such that θL ≤ θ1 < θ∗ < θ2 ≤ θH and
ŝ(θ∗) < min {ŝ(θ1), ŝ(θ2)}. Let s∗ = ŝ(θ∗) and si = ŝ(θi) for i = 1, 2. Without
loss of generality, suppose s1 ≤ s2. Using (B2) twice, b(s1, θ

∗) > b(s∗, θ∗) =
b(s1, θ1) = b(s2, θ2) ≥ b(s1, θ2). Therefore, b(s1, θ

∗)− b(s1, θ1) > 0 ≥ b(s1, θ2)−
b(s1, θ

∗), which — together with (A4) — contradicts the supermodularity of b.

We are now ready to state the main result of this section.

Proposition 2. Assume (A1), (A2), (A3), and (A4). Then it is part of the
optimal policy for the seller to make the quality of the signal extreme.
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Proof. By Proposition 1, it suffices to show that (A2) and (A3) imply (B2) and
(B3). Clearly, (B2) follows immediately from (A2). As for (B3), let W ⊂ R+

denote the support of V . Observe that

bθ(s, θ) =
∂

∂θ

∫

W

[1− F (v|s, θ)] dv = −
∫

W

[Fθ(v|s, θ)] dv

= −
∫

W

[
Fθ

Fv

]
Fv(v|s, θ) dv.

The Spence–Mirrlees condition implies that the last integral is a convex combi-
nation with respect to Fv(v|s, θ) of functions which are decreasing in s. Hence,
bθ is increasing in s or, equivalently, b(s, θ) is supermodular.

4 Examples

This section illustrates the power of Proposition 1 with a few examples. We
believe that they have independent interest for the fields of economics of in-
formation because they show how copulas can be conveniently used to produce
parametric examples in problems with asymmetric information. Since lack of
space prevents us from discussing copulas here, the interested reader is referred
to Nelsen (1999).

Recall that H(v, s; θ) denotes the bivariate joint distribution for the random
vector (V, S)θ when the quality of the signal is θ. Moreover, (A1) postulates that,
for any θ, H(v, s; θ) has identical marginals F (v) and G(s). Applying the theory
of copulas, this implies that there exists a copula Cθ(x, y) on [0, 1]× [0, 1] such
that H(v, s; θ) = Cθ[F (v), G(s)].

Stochastic independence is associated with the product copula C0(x, y) = xy.
Given a copula C(x, y), we define its “excess” with respect to the product copula
by the function E(x, y) = C(x, y) − C0(x, y). We assume for simplicity that E
is differentiable. (A mild generalization is possible under the assumption that E
be absolutely continuous.) By the elementary properties of copulas, any excess
function E(x, y) has E(0, y) = E(x, 0) = E(1, y) = E(x, 1) = 0 and satisfies
Exy(x, y) ≥ −1 for all (x, y).

We say that a copula C(x, y) is informative when C is concave in y for all
x. As it turns out, (A2) implies that C is informative and this implies that it
satisfies positive quadrant dependence, which is equivalent to E(x, y) ≥ 0 for all
x, y.

4.1 Separable excess

In this section, we assume that the excess function E(x, y) = C(x, y) − xy is
multiplicatively separable. That is, there exist two twice continuously differen-
tiable functions Γ and Φ such that E(x, y) = Γ (x)Φ(y). Denote by γ and ϕ their
respective derivatives. In order to guarantee that E(x, y) be an excess function,
we assume
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(E1) Γ and Φ are two positive functions on [0, 1].
(E2) Γ (0) = Γ (1) = Φ(0) = Φ(1) = 0.
(E3) |γ(v)| ≤ 1 and |ϕ(s)| ≤ 1.

The resulting copula is of the form

C(x, y) = xy + Γ (x)Φ(y).

Note that (A1–A3) imply 0 ≤ Γ (x) ≤ min{x, 1− x}. Finally, to ensure that the
copula be informative and to avoid trivialities, we assume

(E4) Φ(s) is concave, with φ′ < 0.

Proposition 3. Let C be a family of copulas with separable excess that satisfy
(E1), (E2), (E3), and (E4). For any copula C in C, let

θ =
∫ +∞

0

Γ [F (v)] dv.

Then an extreme quality of the signal is optimal.

Proof. We apply Proposition 1. Clearly, (A1) holds by assumption. To check the
other assumptions, let us compute b(s, θ). Given that the joint distribution of
(V, S) is H(v, s) = F (v) ·G(s) + Γ [F (v)] · Φ[G(s)], the conditional distributions
are of the form F (v|s, θ) = F (v) + Γ [F (v)] · ϕ[G(s)]. Hence,

b(s, θ) = E(V |s, θ) =
∫ +∞

0

[1− F (v|s, θ)] dv = E(V )− θϕ[G(s)].

Since bs = −θϕ′[G(s)]g(s), (E4) implies (B2). Similarly, bsθ = −ϕ′[G(s)]g(s) > 0
implies (B3). Finally, (E2) and (E4) imply that φ changes sign from positive to
negative as s increases. By continuity, there exists s′ such that φ(s′) = 0. This
implies (A4) and concludes the proof.

4.2 Convex combinations

For our second example, we consider the family of copulas defined by

Cθ(x, y) = xy + θE(x, y), (7)

where E(x, y) is an excess function and θ is in [0, 1]. The major point of interest
for this family is that, if we let C1(x, y) = E(x, y)−xy be an informative copula,
the copulas in (7) can be written as

Cθ(x, y) = θC0(x, y) + (1− θ)C1(x, y). (8)

Thus, as θ increases, we move away from the (noninformative) product copula
C0(x, y) = xy to the informative C1(x, y).

In the following, we assume that the excess function E(x, y) is differentiable
and concave in y for all x, with Eyy < 0. These assumptions are made mostly
for convenience, except for the concavity assumption which ensures that C1 is
informative.
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Proposition 4. For the family of convex combinations of the product copula
and of an informative copula, an extreme quality of the signal is optimal.

Proof. Given the copula, the conditional distributions are of the form F (v|s, θ) =
F (v) + θEs[F (v), G(s)]. Define

ϕ(s) =
∫ +∞

0

[1− F (v|s, θ)] dv.

Note that ϕ(s) is decreasing with φ′ < 0. Let

b(s, θ) = E(V |s, θ) =
∫ +∞

0

[1− F (v|s, θ)] dv = E(V )− θϕ[G(s)].

From here on, the proof is identical to the one offered for Proposition 3.

4.3 The normal example

This example has a different structure. We suppose that V is normally dis-
tributed with mean µ and precision τV ; for short, V ∼ N(µ, τV ). The signal S
is given by S = V + ε, where the noise term ε is normally distributed with zero
mean and precision τε; that is, ε ∼ N(0, τε).

Proposition 5. For the normal example, an extreme quality of the signal is
optimal.

Proof. It is well-known that

E(V |s, τε) = µ +
τε(s− µ)
τε + τV

.

Let θ = τε/(τε + τV ) and ϕ(s) = (s− µ). Then we obtain

b(s, θ) := E(V |s, θ) = E(V )− θϕ(s).

From here on, the proof is identical to the one offered for Proposition 3.

4.4 Plackett’s family

For this example, we consider the Plackett’s family of copulas defined by

Cθ(x, y) =
[1 + θ(s + v)]−

√
[1 + θ(s + v)]2 − 4svθ(θ + 1)

2θ
, (9)

for θ > −1. In Nelsen (1999, p. 160), we find

Cθ
yy(x, y) =

−2θ(θ + 1)x(1− x)

([1 + θ(x + y)]2 − 4xyθ(θ + 1))3/2
,
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which is negative for θ ≥ 0. Hence, this family exhibits informativeness only for
θ ≥ 0 and thus we assume that θ varies in (a compact interval) of R+. Note that
C0(x, y) is the product copula.

We also assume that V is uniformly distributed on [0, 1] so that F (v) = v.
Carrying out the (long) integration, we obtain

b(s, θ) := E(V |s, θ) =
[
(θ + 1) ln(θ + 1)− θ

θ2

]
+

[
θ2 + 2θ − 2(θ + 1) ln(θ + 1)

θ2

]
s.

Let

α(θ) =
(θ + 1) ln(θ + 1)− θ

θ2
e β(θ) =

θ2 + 2θ − 2(θ + 1) ln(θ + 1)
θ2

and rewrite
b(s, θ) = α + βs,

omitting the argument θ for convenience. The function b(s, θ), is a linear function
of s for all θ.

Note that both α(θ) and β(θ) are functions defined for θ > 0 and can be
extended to θ = 0 by continuity. The function α(θ) is decreasing, convex and
onto (1/2, 0); while β(θ) is increasing, concave and onto (0, 1). As θ increases,
b(s, t) has a lower intercept but a greater slope: in the limit, b(s, 0) = 1/2 and
b(s, +∞) = s.

Proposition 6. For the Plackett’s family with V uniformly distributed on [0, 1],
an extreme quality of the signal is optimal.

Proof. Once again, it suffices to apply Proposition 1. Clearly, (A1) holds by
assumption. Since bs = β(θ) > 0, (B2) holds. Similarly, bsθ = β′(θ) > 0 implies
(B3). Finally, for s◦ = 1/2, b(s◦, θ) = E(V ) for all θ which implies (A4) and
concludes the proof.

Under the additional assumption that S is also uniformly distributed, Ap-
pendix A.2 provides additional computations for the family in this example.
These include a derivation of the optimal pair (p∗, θ∗) for any cost c and prove
the stronger result that Π(p∗(θ), θ) is quasiconvex in θ.

A Appendices

A.1 The Spence–Mirrlees condition is equivalent to (**)

Milgrom and Shannon (1994) define a function F (v|s, θ) to be completely regular
if it is continuously differentiable and its level sets {(v, θ) : F (v|s, θ) = k} are
path-connected. Complete regularity is implied by Fv > 0 and Fθ 6= 0 for all v
in the interior of the support of V |S = s and for all θ in the interior of Θ.

Assumption (**) states that

F (v|s1, θ1) ≥ F (w|s1, θ2) ⇒ F (v|s2, θ1) ≥ F (w|s2, θ2) (10)
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for all v, w in [0, 1] whenever θ2 ≥ θ1. Endow the domain of (v, θ) in R2

with a lexicographic order º such that (v2, θ2) ≤ (v1, θ1) if either θ2 > θ1

or θ2 = θ1 and v2 ≥ v1. Then (10) holds if and only if the function U(v, θ, s) =
−F (v|s, θ) satisfies the single crossing property in (v, θ): for (v2, θ2) º (v1, θ1)
and s2 ≥ s1, U(v2, θ2, s1) > U(v1, θ1, s1) implies U(v2, θ2, s2) > U(v1, θ1, s2) and
U(v2, θ2, s1) ≥ U(v1, θ1, s1) implies U(v2, θ2, s2) ≥ U(v1, θ1, s2).

The following proposition is a straightforward application of Theorem 3 in
Milgrom and Shannon (1994, p. 161).

Proposition 7. Suppose that F (v|s, θ) is completely regular. Then (**) holds if
and only if (A3) holds.

Note that the conclusion holds even if we drop the assumption Fs > 0 from
(A2).

A.2 Plackett’s copula

Let H(v, s; θ) be the joint distribution of the buyer’s value V and of the signal
S (when its quality is θ). Given the corresponding marginal c.d.f.’s F (v) and
G(s), there exists a copula Cθ(x, y) such that H(v, s; θ) = Cθ[F (v), G(s)]. We
suppose that this copula belongs to the Plackett’s family and that V and S are
both uniformly distributed, so that F (v) = v and G(s) = s.

The Plackett family of copulas is defined for t > 0. (Setting θ = t−1 restores
the conventions used in the main text.) For t 6= 1 we have:

C(v, s|t) =
[1 + (t− 1)(s + v)]−

√
[1 + (t− 1)(s + v)]2 − 4svt(t− 1)
2(t− 1)

and C(v, s|t) = vs for t = 1. As t increases, dependence increases. For t ≥ 1, we
have positive dependence. This is a comprehensive family; that is, it includes the
copula corresponding to the minimal Frechet distribution (t → 0), the product
copula corresponding to the case of stochastic independence (t = 1) and copula
associated to the maximal Frechet distribution (t → +∞). See Nelsen (1999,
pp. 80–81).

As noted above, Nelsen (1999, p. 160) gives

Css(v, s|t) =
−2t(t− 1)v(1− v)

([1 + (t− 1)(v + s)]2 − 4vst(t− 1))3/2

which is negative for t ≥ 1. Hence, C(v, s|t) is concave for t ≥ 1 and the Plackett
family satisfies informativeness for t ≥ 1. From Nelsen (1999, p. 176), we note

Cs(v, s|t) =
tv + (1− t)C(v, s|t)

1 + (t− 1)[v + s− 2C(v, s|t)] .

The conditional density is

Cvs(v|s, t) =
t[v(1− s)(t− 1) + s(1− v)(t− 1) + 1]

[(v − s)2t2 + 2(v − v2 + s− s2)t + (v + s− 1)2]3/2
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Integrating with respect to v, we find

b(s, t) = E(V |s, t) =
∫ 1

0

vCvs(v|s, t) dv =
1 + t ln t− t

(t− 1)2
+

t2 − 2t ln t− 1
(t− 1)2

s.

Let

A(t) =
1 + t ln t− t

(t− 1)2
e B(t) =

t2 − 2t ln t− 1
(t− 1)2

and rewrite b(s, t) = A + Bs, omitting the argument t for convenience. The
function b(s, t), which is the expected value of V given s, is a linear function of
s, for all t.

Both functions A(t) and B(t) are defined for t > 1 and can be extended to
t = 1 by continuity. The function A(t) is decreasing, convex and onto (1/2, 0);
while B(t) is increasing, concave and onto (0, 1). As t increases, b(s, t) has a
lower intercept but a greater slope: in the limit, b(s, 0) = 1/2 and b(s,+∞) = s.

Recall that P (B buys) = P (b(s, t) ≥ p). Using the linearity of b(s, t) in s and
the uniform distribution of s,

P (b(s, t) ≥ p) = P (A + Bs ≥ p) = P

(
s ≥ p−A

B

)
= 1− p−A

B
,

provided that the probability remains in [0, 1]. (We omit the argument of A and
B for simplicity.)

For a given t, the seller’s problem becomes

max
p

(p− c)P (B buys) = max
p

(p− c)
[
1− p−A

B

]
(11)

This function is concave in p and thus the first order condition suffices to select
as the (candidate) global maximizer the price

p◦(t) =
A + B + c

2
.

However, we also need to impose some conditions to make sure that produc-
tion and sale at p◦ is an optimal choice. Recall that the seller may choose to not
to sell, in which case he does incur the cost c and makes a zero profit. Hence, the
profitability constraint is that p◦(t) ≥ c. Moreover, we need to control for the
probability to remain in [0, 1]. The probability is not negative if p ≤ A(t)+B(t)
and it is not over 1 if p ≥ A(t). This gives us three constraints to consider.

If

max{c, A(t)} ≤ p◦(t) ≤ A(t) + B(t) =
t2 − t ln t− t

(t− 1)2
(12)

all constraints are satisfied and p◦ is indeed the global maximizer. If

p◦(t) > A(t) + B(t) =
t2 − t ln t− t

(t− 1)2
, (13)
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the probability of a sale is 0 and therefore the optimal choice is no sale. If
p◦(t) < A(t), the probability of a sale is 1, hence it is preferable to choose
the higher price p∗ = A(t), which is more profitable but does not change the
probability of sale. If furthermore A(t) ≥ c, this price is really profitable and
thus it is optimal; otherwise, no sale is the optimal choice.

Summarizing, the optimal price p∗ (taking into account the constraints) is

p∗(t) =





A(t) + B(t) + c

2
if max{c, A(t)} ≤ p◦(t) ≤ A(t) + B(t)

A(t) if c ≤ p◦ < A(t)

+∞ (no sale) if p◦ < min{c, A(t)} or p◦ > A(t) + B(t)

Expliciting the dependence on t, this gives

p∗(t) =





1
2

t2 − t ln t− t

(t− 1)2
+

1
2
c if max{c, 1 + t ln t− t

(t− 1)2
} ≤ p◦(t) ≤ t2 − t ln t− t

(t− 1)2

1 + t ln t− t

(t− 1)2
if c ≤ p◦ <

1 + t ln t− t

(t− 1)2

+∞ (no sale) otherwise

Before computing the profit Π(p∗(t), t), let us dub the three possibilities as
Case 1, 2, and 3, respectively, and study for which values of c they come in place.
• Case 1 (max{c, A(t)} ≤ p◦(t) ≤ A(t) + B(t)). Let us examine this constraint
more closely. First, note that two subcases are possible: A(t) ≤ c and A(t) > c.
If A(t) ≤ c, substitute p◦ = (A + B + c)/2 and the major constraint reads
A ≤ c ≤ A + B. If instead A(t) > c, the major constraint reads A−B ≤ c < A.
Hence, Case 1 occurs when A−B ≤ c ≤ A + B, or for intermediate values of c.
When this restriction fails, we fall back to Case 2 or 3.

The function (defined only for t > 1 and extended to t = 1 by continuity)

A(t)−B(t) =
2 + 3t ln t− t− t2

(t− 1)2

is convex, decreasing and onto (1/2,−1); moreover, it is zero for t ≈ 2.817. The
other function (defined only for t > 1 and extended to t = 1 by continuity)

A(t) + B(t) =
t2 − t ln t− t

(t− 1)2

is concave, increasing and onto (1/2, 1). Together, these two functions define the
region of values that c can take while making Case 1 true. See Figure 1. Case 1
is the grey region in the middle. This region is a singleton for t = 1 and enlarges
itself as t → +∞. Case 2 occurs below this region (coloured dark) and Case 3
above (coloured white), as we will see shortly.
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c

1

1

t2.817

A(t)-B(t)

1/2

A(t)+B(t)

Fig. 1. The region for Planckett’s example.

As far as the profit function is concerned, a simple substitution gives

Π(p∗(t), t) =
(A + B − c)2

4B
=

1
4

[c(t− 1)2 − t(t− ln t− 1)]2

(t− 1)2(t2 − 2t ln t− 1)

• Case 2 (c ≤ p◦ < A(t)). Working out the restriction, we find c ≤ A + B and
c < A−B, which can be reduced to c < A−B. For the profit function, a simple
substitution gives

Π(p∗(t), t) = A(t)− c =
1 + t ln t− t

(t− 1)2
− c

Since A(t) is decreasing in t, in Case 2 the optimal choice for t would be t∗ = 1
yielding an optimal profit (take limits to compute it) Π(p∗(1), 2) = (1/2) − c.
In Case 2, we have everybody buying: hence, it is preferable to have a nonin-
formative signal. Note that, when Case 2 occurs, c < A(t) ≤ 1/2: this case can
only occur when the cost c is not too high and requires the seller to charge a
price p∗(t) = A(t) ≤ 1/2 which is not higher than what he could get with no
information.

• Case 3 (p◦ < min{c, A(t)} or p◦ > A(t) + B(t)). Working out the restrictions,
we find that the only binding constraint is c > A + B. For the profit function,
no sale occurs and thus Π(p∗(t), t) = 0.



176

Summarizing, we can take into account the constraints as described above
and give the optimized profit as

Π(p∗(t), t) =





1
4

[c(t− 1)2 − t(t− ln t− 1)]2

(t− 1)2(t2 − 2t ln t− 1)
if A−B ≤ c ≤ A + B

1 + t ln t− t

(t− 1)2
− c if c < A−B

0 (no sale) if c > A + B

or, alternatively,

Π(p∗(t), t) =





(A + B − c)2

4B
if A−B ≤ c ≤ A + B

A(t)− c if c < A−B

0 (no sale) if c > A + B

Proposition 8. The optimized profit function Π(p∗(t), t) is quasiconvex in t.

Proof. (Sketch) The function Π(p∗(t), t) is continuous. Moreover, it is concave
increasing in Case 1, convex decreasing in Case 2 and constant in Case 3. Look
at Figure 1. For a given value of c, as t increases, we move from Region 3 (white)
to Region 1 (grey) when c is high, or from Region 2 (dark) to Region 1 (grey)
when c is low, or remain always in Region 1 (grey) when c = 1/2.

In the first case, we study

Π(p∗(t), t) =
(A + B − c)2

4B
.

The total derivative is

dΠ

dt
=

4(A + B − c)
16B2

[
2B(A′ + B′)−B′(A + B − c)2

]

whose sign depends only on the bracketed term because the fraction always
positive. Expliciting the term in square brackets, we find

[2B(A′ + B′)− . . .] = −2
(t ln t + ln t− 2t + 2)

[
t ln t + 1− t− c(t− 1)2

]

(t− 1)5

whose sign is the opposite of the square-bracketed term in the numerator (the
first item on the numerator and the denominator are always positive for t > 1).
Thus, we only need to consider

[
t ln t + 1− t− c(t− 1)2

]
, which is positive if

and only if

A(t) =
t ln t + 1− t

(t− 1)2
≥ c
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It follows that Π(p∗(t), t) is increasing (respectively, decreasing) if and only if
A(t) ≤ (≥)c. Recall that A(t) is decreasing and its maximum is 1/2. Therefore,
for c ≥ 1/2, A(t) ≤ c and Π(p∗(t), t) is increasing. Instead, for c ≤ 1/2, A(t) is
initially greater than c and then lower: thus Π(p∗(t), t) is at first decreasing and
then increasing.

In the second case, Π(p∗(t), t) is convex decreasing first and then concave
increasing: the profit is quasiconvex and the optimal choice is t = 1 or t → +∞
depending on the value of Π(p∗(t), t) at these two points.

In the third (limit) case, the function is always concave increasing and again
the optimal choice is t → +∞, where the profit is 1/2.

Pasting together the three cases together, the function Π(p∗(t), t) is shown
to be quasiconvex in t and we are done.

References

1. Joe, H.: Multivariate Models and Dependence Concepts. Chapman and Hall, Lon-
don (1997)

2. Johnson, J.P. and Myatt, D.P.: On the simple economics of advertising, marketing,
and product design. Discussion Paper, Oxford University 185 (2004) November

3. Lehmann, E: Some concepts of dependence. Annals of Mathematical Statistics 37
(1966) 1137–1153

4. Lehmann, E.: Comparing location experiments. Annals of Statistics 16 (1988) 521–
533

5. Lewis, T.R. and Sappington, D.E.M.: Supplying information to facilitate price
discrimination. International Economic Review 35 (1994) 309–327

6. Milgrom, P. and Shannon, C.: Monotone comparative statics. Econometrica 62
(1994) 157–180

7. Moscarini, G. and Ottaviani, M.: Price competition for an informed buyer. Journal
of Economic Theory 101 (2001) 457–493

8. Nelsen, R.B.: An Introduction to Copulas. Springer, New York (1999)
9. Persico, N.: Information acquisition in auctions. Econometrica 68 (2000) 135–148

10. Yanagimoto, Y. and Okamoto, M.: Partial orderings of permutations and mono-
tonicity of a rank correlation statistic. Annals of the Institute of Statistical Math-
ematics 21 (1969) 489–506




