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Abstract

We examine a simple bargaining setting, where heterogeneous buyers and sellers are

repeatedly matched with each other. We begin by characterizing e�ciency in such a dy-

namic setting, and discuss how it di�ers from e�ciency in a centralized static setting. We

then study the allocations which can result in equilibrium when the matched buyers and

sellers bargain through some extensive game form. We take an implementation approach,

characterizing the possible allocation rules which result as the extensive game form is var-

ied. We are particularly concerned with the impact of making trade voluntary: imposing

individual rationality on and o� the equilibrium path. No buyer or seller consumates an

agreement which leaves them worse o� than the discounted expected value of their future

rematching in the market. Finally, we compare and contrast the e�cient allocations with

those that could ever arise as the equlibria of some voluntary negotiation procedure.
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1 Introduction

This paper uses implementation theory to study decentralized contracting in markets that

are limited to bilateral bargaining. To this end, we employ a simple model of matching and

search with an in�nity of buyers and sellers, who wish to trade one (indivisible) unit of a

good. There is a known distribution of seller and buyer valuations. Trade occurs in a �nite

number of discrete periods. In the �rst period, buyers and sellers are randomly matched into

pairs and then play a bargaining game that either results in a trade at some price, or no trade.

If a buyer-seller match does not result in a trade, then each is randomly rematched with a

new potential trading partner in the next period. The cost of search comes from each agent

having only a �nite number of opportunities to trade and discounting between periods. We

characterize the e�cient allocations and identify the set of allocations that can be achieved

by general bargaining procedures.

Our main departure from past work in this area is that we approach the problem from the

implementation theory perspective. On the one hand, consistent with much of the previous

literature on decentralized bilateral trade, the matching and search technology described

above is taken as given. But contrary to past work on decentralized bilateral trade, we do

not treat the rules of trade as exogenously �xed. That is, our objective is not to study

properties of equilibira under some speci�c game form according to which bilateral trade

is governed (say, the Rubinstein bargaining game, or the Nash bargaining solution), but

rather to pose the implementation question: what allocation rules can be implemented as

equilibrium outcomes of some �nite extensive form bargaining game of perfect information?

We �rst characterize the set of e�cient allocation rules in this environment, and then

characterize the set of all allocation rules that can be implemented by some bargaining game.

Using the conditions for implementability, we show that there exist robust distributions

of buyer and seller valuations in which e�cient trading rules cannot be implemented by

any bargaining game. Implementation requires that the desired set of allocations coincide

exactly with the set of equilibrium outcomes. In fact, we show the stronger statement that

e�cient trading rules are not even attainable by any bargaining game, where attainability

only requires that an e�cient trading rule correspond to some equilibrium outcome.

The characterization of e�cient allocations subject to the matching constraint identi�es

systematic distortions relative to unconstrained e�ciency. The unconstrained �rst best is

to have a match result in trade if and only if the buyer has a value above the competitive

equilibrium price trade and the seller has a value below that price. (The transaction price

is irrelevant.) Subject to matching, however, �rst best will generally be unachievable since

chance determines which buyers are matched with which sellers. As a result, constrained

e�ciency can involve trade between buyers and sellers whose values both fall below (or

above) the competitive equilibrium price. We show that the constrained e�cient allocations
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are uniquely determined (up to sets of measure zero) and characterize such allocations.

We then investigate the implementability of those constrained e�cient rules by a general

class of �nite-length extensive game forms with perfect information. Also, the game form is

augmented by appending to each terminal node a signature move for both the buyer and the

seller. Both signatures are required, or the mechanism results in no trade for that match.

The role of the signatures is to ensure that trade is voluntary, i.e. respects (endogenous)

individual rationality constraints. It is assumed that the the buyer and seller in the match

have complete information about each others' valuations, so the solution concept we employ

is e�ectively backward induction.

In addition to the general characterization, we demonstrate the importance of the imple-

mentation approach by showing an example where e�cient trades are not attainable when

prices correspond to those from Nash Bargaining; but are attainable when prices correspond

to Nash Bargaining with a price cap. Finally, based on some of the necessary conditions

from the characterizations, we provide a robust example with heterogeneous seller and buyer

valuations where the e�cient allocations are not implementable or even attainable, even if

there is no discounting.

2 Relation to the Literature

Because this paper bridges several di�erent areas, we discuss separately how it �ts in with

previous work in three broad themes: competitive bargaining, search, and implementation.

In short, what we are doing here is layering the implementation question on to a standard

model of search and competitive bargaining. Thus, our work relates to each of these areas.

Relation to the Competitive Bargaining Literature

The underlying model that we study involves a combination of matching, bargaining,

search and rematching over a sequence of trading periods. As such, it is useful for studying

pure exchange economies from a non-cooperative, game-theoretic perspective. Past work in

the area1, has typically assumed both the technological features underlying the matching

and search technologies and also has assumed the formal rules according to which bargaining

between paired agents is required to follow. It is this latter set of assumptions that marks

the �rst key di�erence between what we are doing and what has been done before. While the

1By now the collection of papers in this area is too large to summarize exhaustively. The most closely related

papers include Gale (1986ab), Rubinstein and Wolinsky (1985), Binmore and Herrero (1988), and McClennan

and Sonnenschein (1991) which follow in the footsteps of the early work on search and matching by Butters

(1980), Mortensen (1982), Diamond (1982) and others. The bulk of this work is interested in identifying

conditions under which game-theoretic equilibria in these decentralized matching and bilateral bargaining

institutions will approximate Walrasian allocations when the frictions (seach costs, discount factors, etc.)

become in�nitesimal. We lump all these together under the general heading of \competitive bargaining".
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bargaining rules usually are modeled as a speci�c process of o�ers and countero�ers such as

one based on Rubinstein (1982) and Stahl (1972), we explicitly do not assume a particular

game form for the bargaining process. Rather, we are trying to identify the set of allocation

rules (Walrasian or otherwise) that can be achieved as unique Nash equilibrium outcomes of

some bargaining mechanism.

The second di�erence between this paper and earlier work is that we do not focus on the

question of the equivalence between Walrasian and competitive bargaining outcomes when

market frictions are small. In fact, our main focus is not the case of frictionless markets per

se, but rather on the properties of markets in which frictions exist, despite the large numbers

of traders. To this end, we characterize e�cient allocation rules subject to the matching

constraints, and show how these di�er in systematic and interesting ways from competitive

allocations. Our interest then turns to whether these e�cient allocations can be attained via

any bargaining rules.

Relation to the Search Literature

Sattinger (1995) studies the question of e�ciency in a search model with two-sided

heterogeneity.2 He �nds that the equilibria of matching procedure in which trades take

place at prices determined by the Nash bargaining solution can be ine�cient even taking

account of the constraints of the search process. That is, one cannot even attain "second

best" e�ciency.3 The reason for ine�ciency in Sattinger's model is that agents who are faced

with a choice of trading in a current match do not account for the e�ect that their choice

has on the future distribution of valuations in the market, and thus the future value from

matching of other agents.4 There is a problem of congestion and the prices determined by

the Nash bargaining solution do not generate adequate incentives for trade to compensate

for this externality. In particular, agents do not consumate some trades that society would

like them to. The innovation of our work is to investigate arbitrary bargaining procedures

and ask whether any such procedure can be constructed to provide agents with the correct

incentives for trading. To do this, we characterize the entire set of pricing and allocation

rules that can be implemented by some bargaining procedure and compare this set to the set

of constrained e�cient allocations. The previous work in this area assumes Nash bargaining

to determine transaction prices. We demonstrate that in some environments, this kind of

pricing is suboptimal since it creates adverse incentive problems which can easily be avoided

2Also related are papers by Lu and McA�ee (1995) and Peters (1991) who study the allocation rules

generated by speci�c processes of noncooperative competitive bargaining constrained by matching. Shimer

and Smith (1994, 1996) study this matching problem and obtain additional results and characterizations about

e�cient sorting subject to the constraints of the matching process and the Nash bargaining solution.
3This contrasts with earlier work of Mortensen (1982) and Hosios (1990) who showed that e�ciency could

be acheived, but in models with homogeneous agents.
4We thank an anonymous referee for directing us to the Sattinger (1995) and Shimer and Smith (1994)

papers.
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by resorting to alternative trading mechanisms.

Speci�cally, we provide an example where the e�cient trading rule is not attained when

prices correspond to Nash bargaining, but can be attained by a simple variation where prices

correspond to Nash bargaining with a price cap. Thus, ine�ciency under Nash bargaining

is not necessarily evidence that e�ciency is not attainable. However, we go on to show

that there are examples where e�ciency is not attainable via any bargaining procedure.

Actually, this example identi�es a di�erent source of ine�ciency which is complementary to

the congestion problem identi�ed in Sattinger (1995) (and Shimer and Smith (1994)). There

agents are too patient and pass up e�ciency-enhancing trades. In our example, some agents

are overly impatient given their anticipated prospects for trade under any mechanism and so

they trade too soon. This reduces the future prospects for other agents below the socially

e�cient level and creates further impatience.

Relation to the Implementation Literature

Implementation theory formally models trading mechanisms as game forms and tries to

obtain general characterizations of the allocation rules that can or cannot be acheived as

noncooperative equilibrium outcomes. Although the necessary conditions that come out of

this literature must be taken seriously, there is somewhat less consensus about the practicality

of many of the su�ciency results, where very general and abstract mechanisms are constructed

in order to demonstrate that a certain class of allocation rules can be implemented. The

canonical mechanisms can been criticized for a variety of reasons relating to their arti�ciality,

reliance on threats, discontinuities, lack of balance, lack of well de�ned behavior on parts of

the mechanisms.5

In this paper, we want to avoid the problems of arti�ciality as well as the problems

inherent in mechanisms for which behavior is not always well-de�ned relative to the solution

concept. In addition, we wish to begin to remedy two other shortcomings to the existing

work in implementation theory.

First, we wish to avoid the use of implausible threats, used either to enforce certain actions

in equilibrium, or to prevent certain strategy pro�les from being \undesirable" equilibria. An

extreme example of such a threat (which appears often in su�ciency constructions) is for the

planner to destroy all or part of the social endowment, if a particular out-of-equilibrium mes-

sage pro�le is announced. The problem with this is that such outcomes may not actually

be carried out, and agents should anticipate this when deciding on strategies. Such mecha-

nisms seem particularly far-fetched in cases where the players have inherent property rights

5There is a growing literature related to these points and some representative references for various aspects

of the problem are: Postlewaite and Wettstein (1989), Jackson (1992), Abreu and Matsushima (1992), Dutta,

Sen, and Vohra (1993), Saijo, Tatamitani, and Yamato (1993), Jackson, Palfrey and Srivastava (1994), and

Sj�ostr�om (1995).
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(such as an initial endowment or outside option) that provide a lower bound on the utility

the agent can expect in the mechanism, for all message pro�les. In our model, because the

buyer and seller in a match will be rematched in the next period, should they fail to agree to

exchange, this places a natural individual rationality, or voluntary participation, constraint

on the process: no buyer or seller will consumate a trade which leaves him or her worse o�

than the discounted expected value of their future rematching in the market. 6 We call this

voluntary implementation.

Voluntary implementation is related to implementation in the face of renegotiation since

renegotiation also provides agents with an option outside of what is immediately prescribed

by the mechanism. For example, the approach in Maskin and Moore (1988) is to specify

an arbitrary, exogenous, and state dependent renegotiation function that converts ine�cient

outcomes into e�cient ones.7 In contrast, our approach does not allow agents to negotiate

outside of the explicit rules of the mechanism, so there is no `renegotiation' per se. In

particular, we consider �nite horizon mechanisms where one or both of the agents may opt

for `no trade', e�ectively walking away from the current match, after which there is no further

interaction between those two agents. Given this available option for no trade (which except

at the last date leads to rematching), no mechanism can impose an outcome of trade between

two matched agents. However, given that agents cannot negotiate outside of a mechanism, it

is possible for a mechanism to impose an outcome of no trade between two matched agents

even when those two agents have mutual gains from current trade.

As for any process of renegotiation, we use the mechanism to represent whatever the

protocol for negotiation between the parties is. Our viewpoint in this paper is thus di�erent

from the usual implementation `planner imposes a mechanism' viewpoint. Instead our point

of view is more positive in that the full interaction between any agents including any rene-

gotiation that they might undertake can be modeled as a game form. Thus, any interaction

between the agents is a process which can be described in full by a game form, and any dis-

tinction between negotiation and renegotiation becomes a question of semantics. Moreover,

after this full process has concluded, the outcome is not �nal until both agents have signed

a piece of paper acknowledging any agreement that they have reached.

Our approach imposes restrictions that (i) the whole process of interaction can be mod-

6See Ma, Moore and Turnbull (1988) for a look at implementation with an exogenous outside option for

each player. In our paper, individual rationality is more involved since voluntary implementation takes the

form of an endogenous individual rationality constraint which is determined by the value of future rematching,

which in turn depends on the bargaining mechanism itself.
7Rubinstein and Wolinsky (1992) adopt a di�erent approach, `renegotiation-proof implementation,' which

requires Pareto e�ciency of the continutation outcome at all outcome nodes of the implementing mechanism.

A related constraint is `credibility', or the inability to commit to o�-equilibrium-path outcomes that the

planner (as opposed to the players) would not wish to impose. See, for example, Chakravorti, Corchon, and

Wilkie (1992), Baliga, Corchon, and Sj�ostr�om (1995) and Baliga and Sj�ostr�om (1995).
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elled as a �nite length game, and (ii) the process itself is not state dependent. Point (i) is

inessential to our results (see footnote 29) and used for simpli�cation. Point (ii) represents

an important di�erence between our approach and that of, say, Maskin and Moore (1988).

The set of available means for negotiation (i.e., the mechanism) is the language, pieces of

paper, and timing, etc., available for interaction between agents. These same means are

available regardless of the preferences of two matched agents. What di�ers is what agents

choose to do as it depends on the state (their preferences, match, time, etc.). We think it is

essential that the renegotiation process be formally modeled as part of the game form, and

be independent of the state (although, of course the actions chosen may be state dependent).

This is consistent with the seminal discussion on mechanism design by Hurwicz (1972).

We should add that this approach will have some important implications for examples

of markets where the option for agents to walk away from a current match is present. For

instance, considering the U.S. market for single family homes, there is a standard process of

negotiation by which a price is posted, and then o�ers and counter o�ers are made, lawsuits

are brought, escrow accounts are impounded, etc. { and these are the same set of available

actions that any further negotiation or `renegotiation' also follow, and constitute an overall

game form. Any tentative agreement is not binding until the proper signatures are put to

paper. The same is true in many security markets (e.g. NASDAQ or the Chicago Mercantile

Exchange) and in fact, most of these exchanges prohibit negotiation between member parties

outside of the given rules (i.e. mechanisms) for trade.

The second issue where we depart from past work in implementation theory is to study

dynamic allocation rules. The importance of intertemporal tradeo�s is critical since many

problems that economists are interested in, such as bargaining, investment, and growth, are

dynamic. Unfortunately, implementation theory thus far has had little to contribute to ques-

tions of mechanism design in this large arena. Extensive form games have been examined,

but only in the context of using them to implement static allocations.8 Finally, we emphasize

that the notion of implementation we examine here is stronger than simple implementation by

subgame perfect equilibrium. Our implementation results are for mechanisms that are con-

structed as games of perfect information, so our concept of equilibrium is actually \backward

induction" (Herrero and Srivastava (1992)).

Summarizing our contributions relative to the implementation literature: using a com-

petitive bargaining model with rematching, we are able to characterize implementability in

a dynamic environment, with an endogenous voluntary participation constraint, and with-

out imposing implausible threats or using mechanisms with arti�cial or suspicious features.

Thus, we obtain a characterization of what is implementable is this class of dynamic allocation

problems, without resorting to the usually cumbersome methods of proof in implementation

8Two recent exceptions are Kalai and Ledyard (1995) and Brusco and Jackson (1996).
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theory.

Remarks on the Information Structure

In our model, agents know the value of the agent with whom they are currently matched

and there is a central authority who enforces the rules of the mechanism independent of

any knowledge the values of the agents. This assumption is common to each of the liter-

atures discussed above, as well as the contract theory literature.9 This approach permits

the analysis of mechanism design to focus on incentive problems without introducing the

complications of prior beliefs, strategic information transmission, and Bayesian equilibrium.

Clearly, most bargaining settings involve some asymmetry of information between negotiat-

ing buyers and sellers, and such asymmetric information further compounds the incentive

problems and introduces additional potential sources of ine�ciency. Our choice is to use a

model with symmetric information between bargainers and to focus on a particular source

of social ine�ciency that arises independent of asymmetric information. From a practical

standpoint, in many markets, including some real estate and specialized labor markets, infor-

mational asymmetries may play a relatively small role compared to the fundamental problems

of value-speci�c matching and negotiation on which we focus.

The remainder of the paper is organized as follows. The model and de�nitions are pre-

sented in Section 3. Constrained e�cient allocation rules are characterized in Section 4. Sec-

tion 5 provides characterizations of voluntary attainability and voluntary implementability.

Section 6 combines the results of sections 4 and 5 to study the implementation of constrained

e�cient allocation rules. Section 7 contains some concluding remarks.

3 De�nitions

The Economy

There are two goods. One good is indivisible and the other is divisible. Each seller is

endowed with one unit of the indivisible good, and each buyer is endowed with one unit of

the divisible (numeraire) good.

Preferences

Agents' preferences are are characterized by a reservation value of the indivisible good,

v 2 [0; 1]. There are a �nite number of dates, t 2 f1; : : : ; Tg, at which trade can take place,

and a common discount parameter � 2 [0; 1]. A seller with reservation value s who sells her

indivisible good for p units of the numeraire good at time t receives (net) utility �t(p � s),

9This literature is too large to survey here. For example, see Hart and Moore (1988), Moore (1992), Aghion,

Dewatripont, and Ray (1994), and the references they cite.
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and a buyer with reservation value b who buys a unit of the indivisible good for p units of

the numeraire good at time t receives utility �t(b � p). An agent who never trades receives

utility 0.

Distributions of Values

Initially, there is a continuum of buyers and of sellers. The distribution of reservation

values of the agents remaining in the economy at the beginning of a time t 2 f1; : : : ; Tg is

summarized by the following functions.

Bt(b) { the mass of buyers at time t with value no more than b.

St(s) { the mass of sellers at time t with value no more than s.

These are not cumulative distribution functions, since, for instance, it may be that St(1) 6=
1. The corresponding distribution functions (for St(1) > 0 and Bt(1) > 0) are St(v)

St(1)
and Bt(v)

Bt(1)
.

The initial mass of buyers and sellers is the same, B1(1) = S1(1), so it will always be true

that Bt(1) = St(1), for all t. This is without loss of generality, since we can model other cases

by adding buyers or sellers who should never trade.10

We assume that at least one of the two distributions is atomless. Speci�cally, we will

assume that the initial distribution of buyers, B1, is continuous and increasing at all b > 0.

This rules out masses of buyers with identical valuations and assures that there are buyers

with values in an any open subinterval of [0,1]. This assumption simpli�es the analysis in that

we do not have to worry about rationing agents with the same valuation, or randomizing.

We also assume that S1(0) < S1(1), to rule out the trivial case where all matches should be

consummated immediately in the �rst period.

Pairwise Matching

At the beginning of each period, the remaining buyers and sellers who have not yet traded

are pairwise matched with each other. The matching11 is described by a probability measure

�t on [0; 1]2 where for any measurable At � [0; 1]2

�t(At) =
Z
s

 Z
b:(s;b)2At

dBt(b)

Bt(1)

!
dSt(s)

St(1)
:

10For instance, B1(1) > S1(1), is handled by adding sellers with s = 1.
11There is a measurability problem associated with a law of large numbers over a continuum of i.i.d. random

variables (see Judd (1985) and Feldman and Gilles (1985)). For any �nite economy which approximates ours,

we could describe a matching process (which would not be i.i.d.) with the above speci�ed properties, but there

would necessarily be some (small) dependence in the random variables. Instead, we work directly at the limit

distributions and simply note that we could come arbitrarily close to �nding a matching process that formally

justi�es the assumed one. See Gretsky, Ostroy, and Zame (1992) and Al-Najjar (1996) for more discussion of

this.
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The distribution over values that any speci�c seller with valuation s will be matched with at

time t is dBt(b)
Bt(1)

. Similarly, the distribution over values that any speci�c buyer with valuation

b will be matched with at time t is dSt(s)
St(1)

.

Matched buyers and sellers are fully informed of each other's valuation.

Allocation Rules

Allocation rules describe which buyers and sellers will trade at each time, and what price

will be paid (i.e., what transfer is made). We restrict our attention to allocation rules which

depend only on the time and on the buyers' and sellers' valuations (but not their names).

This restriction re
ects our interest in anonymous processes.

A trading rule is a collection, A = (A1; : : : ; AT ), of measurable subsets At of [0; 1]� [0; 1].

A pair (s; b) 2 At indicates that any seller with valuation s and buyer with valuation b who

are matched at time t should trade.

A price rule is a collection of measurable functions p = (p1; : : : ; pT ), where pt : At ! [0; 1].

A price rule indicates that if a buyer and seller trade then the buyer transfers pt(s; b) units

of the divisible good to the seller.

An allocation rule consists of a trading rule and a price rule.

Cuto� Rules

One type of trading rule that will play an important role in our results is a cuto� rule.

This is a rule such that the set of buyers who trade with any given seller form an upper

interval of the set of buyer types, and the set of sellers who trade with a given buyer form a

lower interval of the set of seller types. More formally, A is a cuto� rule if for all t and s,12

(i) either fbj(s; b) 2 Atg = fb 2 [0; 1]jb � b0g or fbj(s; b) 2 Atg = fb 2 [0; 1]jb > b0g for

some b0 2 [0; 1], and

(ii) fbj(s; b) 2 Atg � fbj(s0; b) 2 Atg whenever s > s0.

In many cases it will not matter whether the inequalities in (i) are weak or strict (see

the de�nition of equivalence below), and we represent a cuto� rule by functions �t(s) (corre-

sponding to b0 in (i)).

Evolution of Distributions of Valuations

Any trading rule A and initial distributions S1 and B1 induce S2; : : : ; ST and B2; : : : ; BT ,

according to the matching process. The resulting distributions are de�ned recursively by:

St+1(v) = St(v)�
Z
s�v

 Z
b:(s;b)2At

dBt(b)

Bt(1)

!
dSt(s) (1)

12The de�nition can equivalently be stated from the buyer's perspective.
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and

Bt+1(v) = Bt(v)�
Z
b�v

 Z
s:(s;b)2At

dSt(s)

St(1)

!
dBt(b): (2)

Equivalence of Trading and Allocation Rules

Given the continuum of agents, we de�ne an equivalence over allocation rules that di�er

only on sets of measure 0.

The trading rules A and bA are equivalent if �t(At \ bAt) = �t(At [ bAt) for each t, where

�t is the measure de�ned in (0) induced by A according to (1) and (2).13

The allocation rules (A; p) and ( bA; bp) are equivalent if A and bA are equivalent and

�t(f(s; b) 2 Atjpt(s; b) 6= bpt(s; b)g) = 0 for each t.

Expected Utility

The expected utility ust (s;A; p) of a seller with valuation s under an allocation rule (A; p)

at the beginning of time t conditional on not having traded yet is given by

ust(s;A; p) =
TX
�=t

���t
 
���1
i=t

"
1�

Z
b:(s;b)2Ai

dBi(b)

Bi(1)

#! Z
b:(s;b)2A�

(p� (s; b)� s)
dB�(b)

B� (1)

!
;

where �t�1
i=t [�] is taken to be 1. Similarly, the expression for the expected utility ubt(b; A; p) of

a buyer with valuation b under an allocation rule (A; p) is given by

ubt(b; A; p) =
TX
�=t

���t
 
���1
i=t

"
1�

Z
s:(s;b)2Ai

dSi(s)

Si(1)

#! Z
vs:(s;b)2A�

(b� p�(s; b))
dS�(s)

S� (1)

!
:

Reservation Prices

It will often be useful to work with the reservation prices, pst (s;A; p) and pbt(b;A; p),

induced by an allocation rule. The reservation price at time t is simply the price at which

an indivdual would be indi�erent between trading and not trading at time t. These follow

immediately from above:

pst (s;A; p)� s = �ust+1(s;A; p); t= 1; � � � ; T � 1

b� pbt(b;A; p) = �ubt+1(b;A; p); t= 1; � � � ; T � 1

psT (s;A; p) = s

pbT (b;A; p) = b:

When (A; p) is �xed, we may simply write ust(s), p
s
t (s), etc.

13Notice that in this case that the measure b�t induced by bAt will coincide with �t.
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Constrained E�ciency

We say that a trading rule A is constrained e�cient if there exists a price rule p such that

(A; p) maximizes the total expected surplus:Z
s

us1(s;A; p)dS1(s) +
Z
b

ub1(b;A; p)dB1(b):

Notice that constrained e�ciency is a property of trading rules, and thus is independent of

the choice of a price rule p. The \constraint" in constrained e�ciency is embedded in the

de�nition of trading rule which respects the matching process.

Constrained e�ciency is the same as constrained Pareto e�ciency if ex-ante transfers

of the divisible good can be made among the buyers, and among the sellers. Without such

transfers, constrained e�ciency as we have de�ned it is utilitarian and thus may rule out some

constrained Pareto e�cient allocations. To see the di�erence, consider an example where some

sellers are forced to trade with any buyer that they meet in the �rst period whose valuation

falls below a certain level, even if the buyer's value is less than the seller's. Such trades can

be part of a constrained Pareto e�cient allocation if no transfers are permitted, since these

sellers take low valued buyers out of the market, which leads to higher expected utilities for

the other sellers because the remaining pool of buyers has a higher average valuation. This

sort of trading fails our de�nition of constrained e�cient allocation since it does not maximize

the overall gains from trade.

Our de�nition of e�ciency takes the set of agents in the system as given. If one allowed

control of the set of agents present, then a perfectly informed planner could induce the extra-

marginal traders to leave, by mandating that all trade be consummated in the �rst period, at

the competitive price. We rule out such a scheme by taking the agents present in the initial

matching process as exogenous. Moreover, any of a number of embellishments of the model

would nullify schemes of this sort. For example, if there is some aggregate uncertainty about

the distribution of buyers or sellers (e.g., a �nite number of traders sampled from a known

distribution), then the competitive price is not known with certainty and every trader could

have some probability of being on the right side of the market clearing price.14 Alternatively

(as in Shimer and Smith (1994)), if there is some match-speci�c component of the valuations,

so that the value we model is only the expectation of a value which may vary with the

match (or even just over time), then even traders who have a low expected gain from trade

may still have a signi�cant option value and an incentive to stay in the market. Finally,

admitting convex preferences and divisibilities would (as in a classical Edgeworth box) would

o�er potential gains from trade to almost all agents even though some could be very small.

Rather than complicate the model in one of these ways we simply take the matching process

to be exogenous.

14Our use of the continuum as a simplifying tool is responsible for the departure from this.
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4 Characterization of Constrained E�ciency

Our analysis of constrained e�ciency is restricted to the case of T = 2. (See Jackson and

Palfrey (1997) for some results on arbitrary �nite horizons.) We begin with an illustrating

example and then turn to the characterization result.

Example 1.

Consider a case where: � = 1, buyers' valuations are uniformly distributed across [0,1]

with a total mass of 1, and a mass 0 < m < 1 of sellers have valuation 0 and the remaining

mass, 1�m, have valuation 1. This is represented by B1(b) = b for all b and S1(s) = m for

all s < 1.

In the absence of matching considerations or any frictions, Pareto e�cient allocations

would involve the assets going to the buyers with value at least 1 � m. The competitive

allocations is an obvious choice, where sellers sell to the buyers with values above the com-

petitive price, p = 1 �m: In our model, trade is constrained through the matching process,

and the characterization of an e�cient allocation becomes is complicated since some of the

higher value buyers might never be matched to a seller with whom they can trade, and it is

sometimes better to clear a trade with a low-valued buyer than to wait for a buyer with a

higher expected value.

It is straightforward, but instructive, to derive the constrained e�cient allocation rule for

this example. In the second (last) period, all positive value trades should be cleared, since

there will be no further matching. It is also clear that a constrained e�cient trading rule

will be a cuto� rule, so it su�ces to specify the minimum value of a buyer that should trade

in the �rst period if matched with a 0 value seller. (These and other claims in this example

are proved in Theorem 1.) For any value c set as a cuto� today, the remaining distribution

tomorrow will be B2(b) = b for b � c, and B2(b) = (1�m)(b�c)+c for b > c. The gain from

clearing a trade today with a buyer of value b, is simply b. Sellers who do not trade today are

rematched in the second period. The expected value of the buyer that they will trade with

in the second period is simply the expected value of b under the distribution B2(v)
B2(1)

which is

1�m(1� c)(1 + c)

2(1�m(1� c))
:

The constrained e�cient trading rule is obtained by equating the cuto� value equal to the

expected value of rematching. That is, on the margin, a trade should be cleared today if (and

only if) it o�ers at least as much total value as could be expected by waiting and clearing

the trade tomorrow. Solving for c�, the e�cient cuto� rule is:

c� =

p
1�m� (1�m)

m
:

12



The cuto� rule is decreasing in m. As the mass of sellers m increases, the current cuto�

has less of a reduction e�ect on tomorrow's expected trading value. Also notice that the

cuto� value is always lower than the competitive price (1�m).

The e�cient solution in the above example has an easily characterizable form since sellers

are e�ectively homogeneous, but in many ways is representative of the characterization which

is provided below for the case of general distributions of buyer and seller valuations.

Theorem 1 There exists a unique (up to sets of measure 0) constrained e�cient trading

rule. It is a described by cuto� rules, with associated functions �1(s) and �2(s). These cuto�

values uniquely satisfy the following equations:

�2(s) = s 8s 2 [0; 1];

and

�1(s)� s = �

Z 1

0
max[b0 � s; 0]

dB2(b0)

B2(1)
+ �

Z 1

0
max[�1(s)� s0; 0]

dS2(s0)

S2(1)
�

�

Z 1

0

�Z 1

0
max[b0 � s0; 0]

dB2(b
0)

B2(1)

�
dS2(s

0)

S2(1)
; (4)

if this is feasible with �1(s) < 1, and �1(s) = 1 otherwise; where S2 and B2 are determined

by (1) and (2), respectively. Furthermore, �1(s) is continuous and is strictly increasing at

values of s such that �1(s) < 1.

Let us examine the intuition behind (4) as a characterization of e�ciency. Consider a

planner deciding whether to clear a currently matched pair, with valuations s and �1(s).

Since �1(s) is the cuto� value for s, the planner should be indi�erent between clearing this

trade or not. If this trade is cleared, then the left hand side represents the marginal value15 of

consummating that trade today. If this trade is not cleared, then s and �1(s) will be put back

in the pool in the second period. The right hand side gives the marginal expected value from

throwing both players back in the pool to be rematched tomorrow. This marginal expected

value has three components. Throwing the players back means that they are matched with

two other players who would have been otherwise matched. Given that those two other players

will be randomly selected, on average one can treat the opportunity cost for matching them

with s and �1(s) as being the average trade value in the second period. This is the last

expression in (4). The net value that comes from the random rematching of s and �1(s) is

then the expected value from each of their rematchings (the �rst two expressions on the right

hand side of (4)), less the opportunity cost of the agents with whom they are rematched (the

last expression on the right hand side of (4)).

15Each trade is in fact of measure 0, so a calculus of variations argument is used in the formal derivation.
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5 Necessary Conditions for Voluntary Implementation and

Attainability

Next, we turn to the issue of voluntary implementation and consider the case of arbitrary

(�nite) T . Characterizations of voluntary implementation and attainability provide us with

the complete collection of allocation rules which could ever be the equilibrium outcomes of

such a dynamic interaction - under any negotiation process (which is representable by a �nite

extensive game form of perfect information). With such characterizations in hand, we will

return to check whether constrained e�cient allocations are attainable.

Negotiation and Game Forms

The formal, or informal, negotiation process which goes on between a buyer and seller

who are matched at time t is represented by an extensive game form 
t. This game form is

the same across all pairs matched at time t. The game form 
t is a �nite stage extensive

game form of perfect information. (The results extend to in�nite stage game forms, but �nite

ones are all that are needed.)

Since 
t can depend on time, in equilibrium it can also depend on the measures of agents

remaining. However, 
t cannot depend on the history of play. This is essentially an anonymity

restriction so that the mechanism cannot respond to the particular actions of any agent, which

is motivated by out interest in modeling markets. If one permits the mechanism to depend

fully16 on the history, the implementation problem can become trivial. The future stages of

the mechanism could then be chosen to enforce no trade if any agent deviates from prespeci�ed

actions. This defeats the idea of individual rationality as capturing voluntary trade with an

endogenous outside option, as the outside option could be controlled as a function of any

single agent's actions. If that were the case, the mechanism would then simply reduce to a

\forcing contract."

One can argue that we should use the stronger assumption that the mechanism be the

same in each period. That is, the form of negotiation available at any time should be the

same if it is representing some primitive set of available actions. While we agree with this in

certain contexts (for instance in a richer model where there are balancing in
ows of agents

too), allowing for the larger set of mechanisms strengthens our impossibility result, and is

congruent with the fact that the stock of agents in our model is nonstationary. It is possible

that the bargaining procedure could depend on market conditions (for instance, by convention

who makes the �rst o�er in an alternating bargaining procedure might depend on the relative

excess supply or demand). Of course, a stationary mechanism is a special case of the ones we

consider here, and our characterization of implementation can be specialized to that case.

16We could allow 
t to depend on the history of play up to sets of measure 0.
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The Signature Stage

The heart of our analysis is the assumption that no agreement becomes binding until it is

signed by each of the two agents. After negotiations have led to a suggested trade and price,

the trade does not take place unless both agents \sign" the agreement. This is captured as

follows. Consider, 
t, an extensive game form with perfect recall to be played between an

arbitrary buyer and seller at some time t, such that each terminal node suggests either a trade

and price, or no trade. Given 
t, let us de�ne a dynamic version, �(
t), as follows. First,

replace any terminal node of 
t which recommends a trade and price, with a node that has a

binary choice node (yes, no) for the buyer. Let \no" lead to a terminal node with no trade

as the outcome. Let \yes" lead to a binary choice node (Yes, No) for the seller. Let \No"

lead to a terminal node with no trade as the outcome, and \Yes" lead to a terminal node

with the originally prescribed trade and price. We have simply augmented 
t by additional

moves which require both the buyer and seller's \signature" before completing the trade.

At any time t, each matched buyer and seller play the augmented version of 
t. If the

outcome of �(
t) is trade, then the trade is consumated and the buyer and seller are removed

from the matching process. If the outcome is no trade, then the buyer and seller are returned

to their respective pools to be rematched in the next period.

As an example, consider a simple dictatorial mechanism 
t where the seller simply an-

nounces a price p 2 [0; 1] and the outcome is then trade at price p. The augmented version

�(
t) has as the �rst stage the seller announce p 2 [0; 1]. Next, the buyer, having observed

p, chooses from (yes,no). Finally, the seller having observed p and the buyer's move chooses

from (Yes, No). The outcome of �(
t) is trade at price p if the choices in the `signature'

stages are yes and Yes; and no trade (return for rematching at time t+ 1), otherwise.

Equilibrium

A buyer's strategy for time t is a measurable function, �bt (s; b), mapping pairs of buyer

and seller valuations into the set of behavioral strategies for the buyer role in �(
t). A

seller's strategy for time t, �st (s; b), is similarly de�ned. A collection of pure17 strategies

� = (�b1; : : : ; �
b
T ; �

s
1; : : : ; �

s
T ) induces an allocation rule (As; ps).

An equilibrium of the augmented sequence of mechanisms is a speci�cation of strategies

� such that for each t and (s; b):

(i) �bt (s; b) and �st (s; b) form a subgame perfect equilibrium of �(
t), where the utility

of no-trade is evaluated as �ubt+1(b; A�; p�) for buyers and �ust+1(s; A�; p�) for sellers (0 if

t = T ),18 and

17In this model, mixed strategies will never arise in any equilibrium.
18This de�nition is stronger than simply de�ning an equilibrium to be a subgame perfect equilibrium of the

overall game form with the continuum of players and T periods. The overall game form has many interlaced
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(ii) at any node where an agent's actions may lead either to current trade at some price or

to rematching, the agent chooses an action leading to rematching only if it o�ers an expected

utility higher than any of the other available actions.

Part (i) of the de�nition of equilibrium imposes sequential rationality in the form of

subgame perfect equilibrium. Part (ii) of the de�nition of equilibrium is a tie-breaking rule

when an agent is indi�erent between trading today or waiting an being rematched. The

particular form of the tie-breaking rule is not important: we could have de�ned it to have

agents always favoring delay in such situations. One can think of this as being equivalent

to a lexicographic preference assumption that eliminates indi�erence.19 This simpli�es the

analysis, as it produces a unique prediction of an outcome of a given extensive game form as

a function of endogenous reservation prices (although there can still exist multiple equilibria

because of the endogeneity as in Example 2).

Voluntary Attainability and Implementability

An allocation rule (A; p) is voluntarily attainable if there exist (
1; : : : ; 
T) such that at

least one equilibrium of the augmented sequence of mechanisms results in an allocation rule

that is equivalent to (A; p).

The di�erence between attainability and implementability is uniqueness. Attainability

does not require uniqueness, and hence is a very weak form of implementation.20 More

generally, one may be interested in knowing all the equilibria of a mechanism, which motivates

the de�nition below.

An allocation rule (A; p) is voluntarily implementable if there exist (
1; : : : ; 
T ) such that

each equilibrium of the augmented sequence of mechanisms results in an allocation rule that

is equivalent to (A; p).

Alternatively, we may simply be concerned that an e�cient trading rule be implemented

(or attainable) and not concerned with the particular prices that are realized. We say that

a trading rule A is voluntarily implementable if there exists a sequence 
t such that for each

equilibrium there exists a price rule p such that the equilibrium results in an allocation rule

equivalent to (A; p). A trading rule A is voluntarily attainable if there exists a sequence 
t

information sets (as agents do not know the play of all the other agents in preceeding periods) and so it does

not have proper subgames { so subgame perfection applied overall would simply boil down to Nash equilibrium.

The de�nition of equilibrium we employ applies subgame perfection directly to each time and match and thus

avoids such a problem.
19We did not model it that way since it would preclude a utility representation.
20This is roughly equivalent to what has been known in the literature as `truthful' implementation in the

case where implementation is possible in direct mechanisms (Dasgupta, Hammond, and Maskin 1979). We do

not consider direct mechanisms given the dynamic and voluntary nature of the problem, so we have de�ned

attainability.
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such that there exists some equilibrium and price rule p such that the equilibrium results in

an allocation rule equivalent to (A; p).

Rubinstein and Wolinsky (1992) provide a mechanism for subgame perfect implementation

in a pairwise bargaining model, but in their model there is no possibility of rematching. Thus,

in their model the agents' reservation values are �xed. Given the possibility of rematching we

consider here, the reservation values of the agents become endogenous to the equilibrium. This

provides serious complications to the implementation problem. We end up having a necessary

condition of non-decreasing prices which is similar to Rubinstein and Wolinsky's, except that

it is stated relative to the endogenous valuations. Also, we end up with a strong version of

an additional individual rationality condition that relates the entire set of prescribed prices

(thus the prices available through the mechanism) to the endogenous reservation values.

First, let us examine the condition which is the appropriate generalization of the Ru-

binstein and Wolinsky (1992) condition to say that the prices be non-decreasing in the

endogenous reservation values. This distinction between valuations and endogenous reser-

vation values is very important since reservation values are not always non-decreasing in an

agent's primitive valuation, as reservation prices depend on future prospects for trade under

an allocation rule.

Non-decreasing Prices An allocation rule (A; p) has non-decreasing prices as a function of

reservation prices, if for each t, (s; b) and (s0; b0) in At:

pt(s; b) � pt(s
0; b0)

whenever pst (s;A; p) � pst (s
0;A; p) and pbt(b;A; p)� pbt(b

0;A; p).

Notice that an implication of the above condition is that the price rule can only vary with

the reservation prices of the agents.

The necessity of non-decreasing prices is veri�ed as follows. Since the bargaining game

has a �nite extensive form with perfect information and agents have strict preferences over

outcomes, the equilibrium outcome for every (s; b) (�xing reservation prices) is unique. Let

p = p(s; b) be the oucome for the pair (s; b), and we consider b0 with a higher reservation

value pb
0

t > pbt . Since only the buyer's valuation has changed, either p is still an equilibrium

outcome, or there is a new equliibrium and the b0 buyer must have at least one strictly

improving deviation somwhere in the game tree. Given the change in preferences of the

buyer, the only way a deviation can be improving (and not have been improving before) is

for the deviation to lead to a price between pb
0

t and pbt , while the previous outcome was no

trade. For this to have an e�ect further up the tree, it must be that an agent chooses this

price rather than another one or no trade further up the tree, and so the change in the higher
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subgame must result in this price. This logic is iterated back to the equilibrium path, which

implies that changes can only result in a higher price. Increasing the seller's reservation value

has similar implications.

In addition to the non-decreasing price condition, an additional condition will be nec-

essary. Given the individual rationality that is at the heart of our de�nition of voluntary

implementation, it is clear that the trades suggested under an implementable (or attainable)

allocation rule must be individually rational: the price p of any trade consummated between

s and b in period t must lie between the corresponding seller and buyer reservation values.

Individual Rationality An allocation rule (A; p) satis�es individual rationality if for any t

and almost every (s; b) 2 At

pst (s;A; p)� pt(s; b) � pbt(b;A; p);

Although it is obvious that individual rationality is necessary for voluntary attainability,

it is more subtle that a stronger condition is necessary for voluntary attainability. This

stronger version of individual rationality, states that there is no price which is traded at by

some pair of agents at time t which is simultaneously individually rational for some other

pair of agents who should not trade under the allocation rule.

Strong Individual Rationality An allocation rule (A; p) satis�es strong individual ratio-

nality if it satis�es individual rationality, and for each t, (s0; b0) =2 At and (s; b) 2 At: either

pt(s; b) > pbt(b
0;A; p)

or

pt(s; b))< pst (s
0;A; p):

To understand the necessity of this condition suppose that there are agents who should

not trade under the desired allocation rule, and there is a mutually individually rational price

given their anticipated values from rematching, and this price is available at some terminal

node in the tree. Tracing the path from the this terminal node back up the tree, one can �nd

a best response for each agent at each node and this must leave them at least as well o� as

trade at this price. In this way one can show that there exists an equilibrium which involves

trade between these two agents. However, from the uniqueness of the equilibrium outcome

for a given pair of agents in their round of bargaining (�xing their anticipated reservation

prices under equilibrium rematchings), they must trade in every equilibrium, which would

contradict attainability.

We can summarize the conditions which are necessary for voluntary attainability, and

thus for voluntary implementability.
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Theorem 2 Consider a trading rule, A, that is voluntarily attainable (or implementable),

and ( bA; bp), an allocation rule corresponding to one of the equilibria of an implementing mech-

anism, where bA is equivalent to A. Then ( bA; bp) satis�es strong individual rationality and has

non-decreasing prices.

We make two remarks on Theorem 2. First, these conditions are necessary even when

one just considers attainability. In other words, these conditions are needed simply to ensure

that ( bA; bp) can arise as an equilibrium of any mechanism. The conditions are not arising from

multiple equilibrium considerations. Second, these conditions are still necessary for voluntary

implementability when one admits in�nite stage mechanisms. Details on this are given in a

footnote to the proof (see appendix).

The conditions of non-decreasing prices and strong individual rationality play a central

role in the full characterizations of voluntary attainability and implementation. The full

characterization tackles di�culties associated with possible discontinuities in the implemented

price function, as well as the usual implementation challenge of ruling out equilibria which

do not result in an allocation rule equivalent to (A; p). However, in some cases of interest

the conditions of non-decreasing prices and strong individual rationality are su�cient for

voluntary attainability. Let us describe a mechanism that will show this.

Given a set of prices P � [0; 1], denote

IR(P ) = f(q; r) 2 [0; 1]2 j 9p 2 P q � p � rg:

Fix an allocation rule (A; p) and let Rt be the range of pt over At. Under non-decreasing

prices pt can be rewritten as a function of the endogenous reservation values pt(p
s; pb). Con-

sider the following mechanism:21

Stage 1. The seller announces ps. proceed to stage 2.

Stage 2. The buyer announces ps0; pb. Proceed to stage 3.

Stage 3. The seller announces pb
0
.

The Outcome Function:

If pb
0 � pb and ps0 � ps and (ps0; pb

0
) 2 IR(Rt), then the outcome is pt(p

s0; pb
0
);

If pb
0 � pb and ps0 < ps and (ps0; pb) 2 IR(Rt), then the outcome is inffp 2 Rtjp � ps0g.

If pb
0
> pb and (ps; pb

0
) 2 IR(Rt), then the outcome is supfp 2 Rtjp � pb

0g.
21Although the conditions needed for implementation in our setting turn out to be di�erent, the mechanism

used for implementation (or attaining an outcome) shares some features with the mechanism in Rubinstein

and Wolinsky (1992).
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Otherwise, the outcome is no trade.

Consider the case where B1 and S1 are continuous and increasing. Let (A; p) be an

allocation rule such that At is a continuous cuto� rule,22and pt is continuous on At for all t.

Given these continuity and monotonicity conditions on the allocation rule and the buyer

and seller distributions, nondecreasing prices and strong individual rationality are su�cient

for voluntary attainability. One can easily verify that there is an equilibrium of the above

mechanism where the announcement of ps and pb in equilibrium should be the true (endoge-

nous) reservation prices of the agents. To see how this works, note that the announcement

of ps0 allows the buyer to challenge the seller's announcement if, for instance, the seller an-

nounces ps > ps. In that case, the buyer can revise the seller's announcement by saying

ps0 < ps thereby forcing the seller to either take that price or opt for no trade (where the

seller will get her reservation value). If the seller honestly reveals ps, then a buyer has no

incentive to challenge. Similar reasoning applies to the buyer's announcement of pb and the

seller's possible challenge, pb
0
.

Theorem 3 Suppose that B1 and S1 are continuous and increasing. Consider an allocation

rule, (A; p), such that At is a continuous cuto� rule, and pt is continuous on At for all t.

(A; p) is voluntarily attainable if and only if it satis�es strong individual rationality and has

non-decreasing prices.

A Characterization of Voluntary Implementation

Theorem 3 characterized voluntary attainability for situations where the distributions and

allocation rule are well behaved. We now consider general distributions and allocation rules,

and deal explicitly with the multiple equilibrium problem that is inherent in the endogeneity

of reservation prices and thus voluntary implementation.

First, we extend the necessary conditions for the case of general distributions and alloca-

tion rules.

An allocation rule (A; p) satis�es voluntary trade if for each t there exists Pt � [0; 1] andbpt : [0; 1]2 ! Pt such that:

(V1) [Reservation Price Measurability] for every s; b 2 At, pt(s; b) = bpt(pst(s); pbt(b))
(V2) [Individual Rationality] (pst(s); p

b
t(b)) 2 IR(Pt), for every s; b 2 At, and ps �bpt(ps; pb) � pb; for every (ps; pb) 2 IR(Pt),

(V3) [Strong Individual Rationality] (pst (s); p
b
t(b)) =2 IR(Pt), for every s; b =2 At

(V4) [Non-Decreasing Prices] bpt is non-decreasing over the domain IR(Pt),

22That is, the cuto� values from both the buyer and seller's perspectives are continuous functions.
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(V5) [Separating Prices] for every (ps
0

; pb) 2 IR(Pt) and ps such that (ps; pb) 2 IR(Pt), ifbpt(ps0; pb) < bpt(ps; pb) then there exists p 2 Pt such that ps0 � p < ps. Similarly, for every pb
0

if bpt(ps; pb0) > bpt(ps; pb) then there exists p 2 Pt such that pb
0 � p > pb.

Let us discuss some of the di�erences in the above condition from the conditions stated

previously. The conditions (V2){(V4) are direct extensions of the corresponding previous

conditions. The set Pt corresponds to the set of prices that are reachable by the implementing

mechanism. Sometimes it is necessary for this to be larger than the set of prices which are

supposed to be traded at in equilibrium, as o� equilibrium behavior will be important in

determining equilibrium behavior (see Example 2, below). Then, for instance, the strong

individual rationality condition must be satis�ed relative to all of the prices in Pt. If some

price in Pt is individually rational, then an equilibrium which results in trade will exist. So

(V3) must hold relative to all of Pt.

Condition (V1) is new relative to the non-decreasing prices and strong individual rational-

ity. The function bpt has as domain reservation prices, as these are what matter in determining

equilibrium actions. It is necessary then that the implemented price function be measurable

with respect to reservation prices, which is condition (V1).

The last condition (V5) is also added for the general case. It states that the implemented

price function can only be increasing in places where we can distinguish the reservation prices

of the agent in question. If for instance ps0 < ps, but there are no available prices from Pt

in between ps0 and ps, then these two types would have exactly the same preferences over

trades in Pt (the only ones possible from the implementing mechanism). In such a case, the

equilibrium actions of these two types must be the same.

The voluntary trade condition is thus necessary both for voluntary attainability and volun-

tary implementability. However, voluntary implementability requires an additional necessary

condition to avoid multiple equilibria, as illustrated in the following example.

Example 2 Consider the constrained e�cient trading rule de�ned in Example 1, when

m = 1=2.

Consider a �xed price of c =
p
2 � 1 in the �rst period, which corresponds to c�. So 0

valued sellers trade with all buyers with values above
p
2� 1 in the �rst period at a price ofp

2� 1. In the second period let 0 valued sellers trade with all buyers, and trade at a price

equal to the buyer's valuation.

The voluntary trade condition is satis�ed relative to this A; p by setting P1 = fp2� 1g,
P2 = [0; 1], bp1(ps; pb) = p

2� 1, and bp2(ps; pb) = pb. It is then simple to verify (i){(v). There

exists a mechanism which has A; p as an equilibrium: in the �rst period trade is simply at

price
p
2� 1. In the second period the seller makes take it or leave it o�ers to the buyer (and

the seller can name any price in [0,1]).
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First, we check that there is an equilibrium that results in (A; p). It is the obvious

one. Buyers approve trade in the �rst period if and only if b � p
2 � 1, and the 0-valued

sellers approve trade in the �rst period. Notice that from the characterization of constrained

e�ciency (and from Example 1), we know that a 0-valued seller's reservation price is exactlyp
2 � 1 in the �rst period. In the second period, 0 valued sellers make the o�er of b to the

buyer they are matched with, and it is approved.

But there is another equilibrium relative to the above mechanism! It involves all of the

sellers rejecting the �rst period price. The second period is as before. This is an equilibrium,

since if all the sellers reject in the �rst period, then the full mass of buyers is still there in the

second period. The average value of the buyers is then 1=2 in the second period. Since this

is larger than
p
2 � 1 (see Example 1), the sellers are indeed acting optimally. Since there

are two equilibria, this does not implement the e�cient solution23.

Nonetheless, the e�cient allocation rule can be fully implemented by an alternative mech-

anism which is a simple variation on the above mechanism. Consider the following change:

In the �rst period the buyer makes a take it or leave it o�er to the seller from the set of prices

[
p
2� 1; 1]. Any buyer with a value above

p
2� 1 would rather trade in the �rst period, since

they expect to have their full value extracted in the second period. High valued buyers can

o�er sellers enough to get them to trade in the �rst period, even if the sellers expect a value

above c in the second period. This means that the trades will occur in the �rst period that

should. Given that they occur, the buyers will be able to o�er
p
2� 1 and get it.

The mechanism works because it has a range of available prices in the �rst period that

is larger than just
p
2 � 1. This illustrates the important role of Pt in the voluntary trade

condition. It also gives us insight to the full characterization of implementation and the

relationship to attainability: it must be that (A; p) is attainable, but other (non-equivalent)

( eA; ep)'s are not attainable. If we set P1 = [
p
2� 1; 1], then the voluntary trade condition is

not satis�ed relative to the undesired allocation rule where all of the agents wait until the

second period to trade and so that allocation rule will not be an equilibrium outcome. In

particular, (V3), strong individual rationality, is violated in this example relative to this Pt.

For the characterization of implementation, we restrict attention to mechanisms that have

the property that there exists a subgame perfect equilibrium of the augmented mechanism for

each t relative to every set of reservation prices ps; pb. We call these mechanisms closed. This

avoids the use of controversial implementation theory \tricks" which exploit nonexistence of

best responses in some portion of the message space.

Theorem 4 If an allocation rule (A; p) is voluntarily implementable by a closed mechanism,

then
23In fact, the e�cient equilibrium to the above mechanism is fragile: even a small variation in the expecta-

tions makes it better for the sellers to wait.
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(1) there exists ( eA; ep) which is equivalent to (A; p) and satis�es the voluntary trade condition,

and

(2) for each (A0; p0) not equivalent to (A; p), (A0; p0) fails to satisfy the voluntary trade con-

dition relative to the same bp and Pt as ( eA; ep).
Conversely, if (1) and (2) hold and Pt is closed for each t, then (A; p) is voluntarily imple-

mentable by a closed mechanism.

We remark that (1) is necessary for voluntary attainability as well as implementability.

This is proven in the appendix.

Condition (1) states the necessity of voluntary trade, which we have discussed earlier.

Condition (2) is the condition ruling out undesired multiple equilibria, as illustrated in Ex-

ample 2. The implementing mechanism used to prove su�ciency is a simple variation on the

one described in the previous section, prior to Theorem 3.

We know that it is not necessary that Pt be closed. It is an open question whether (1) and

(2) are su�cient in the absence of this condition, or whether there are additional necessary

conditions.

6 Attaining or Implementing Constrained E�cient Rules

Given the characterizations of attainability and implementation, we turn to the issue of

attaining or implementing e�cient trading rules. Let us begin with an example that illustrates

that the consideration of all bargaining procedures is important. There are e�cient allocation

rules that are not voluntarily attainable when one considers a procedure that results in

Nash bargaining solutions, but are voluntarily attainable (and implementable) via alternative

bargaining procedures.

Example 3.

This is a variation on Example 1, where there is discounting (� < 1) and where m = 1
2 .

Again, buyers' valuations are uniformly distributed across [0,1] with a total mass of 1. A mass
1
2 of sellers have valuation 0 and the remaining mass have valuation 1. This is represented

by B1(b) = b for all b and S1(s) =
1
2 for all s < 1.

Using Theorem 1 one can compute the cuto� value c� (i.e., c� = �1(0)) as the unique

solution to the equation

c� = �

�
2� c�

2� �c�

�
E2[b];

which is the unique root in [0,1] to the cubic equation

(c� + c�2)(2� �c�) =
�

2
(1 + c�2)(2� c�):
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Notice that if prices are set by the Nash bargaining solution so that pt(0; b) =
b
2 , then a seller

with s = 0 will choose to trade with any b � c where c satis�es c
2 = �E2[

b
2 ], or

c = �E2[b]:

This is ine�cient, since sellers fail to consummate all e�cient trades in the �rst period.

Thus, if one restricts attention to prices corresponding to Nash bargaining, then the e�cient

trading rule cannot be voluntarily attained. The source of the adverse incentives under the

Nash bargaining price rule is that it splits the buyer and seller surplus in half. As a result, a

seller matched with a buyer whose valuation is close to the e�cient c� would prefer to wait

because the trading prospects are more attractive tomorrow.

However, the e�cient trading rule can be voluntarily attained when one considers a pricing

rule that reduces the sellers' prospects tomorrow. A very simple modi�cation of the Nash

bargaining price rule accomplishes this: place a price ceiling on the transaction, equal to

some value P < 1. This changes the pricing rule from pt(0; b) =
b
2 to pt(0; b) = min[P; b2 ].

For � close to 1 there will exist a ceiling P which creates the right incentives, where sellers

matched with a buyer of valuation c will be exactly indi�erent between trading and waiting.

To see this, note �rst that the right incentives will be provided as long as P is chosen so that

P > c�

2 and E2[p2(0; b)] =
�

2�c�

2��c�

�
E2[

b
2 ]. This will guarantee that the ceiling is not binding

in the �rst period and that the cuto� value is chosen optimally. It is easy to see that P can

be chosen to accomplish this: E2[p2(0; b)] varies continuously in P , ranging from 0 to E2[
b
2 ]

so, for any value of c 2 [0; 1], we can choose P so that E2[p2(0; b)] =
�

2�c
2��c

�
E2[

b
2 ]. When

� = 1 the solution for the optimum is c� =
p
2� 1 and the choice of P = :5 >

p
2� 1 works,

and so for � close to 1 the appropriate value of P will satisfy P > c�=2, as required. This

stationary pricing rule, which is a simple modi�cation of Nash bargaining, o�ers exactly the

right incentives to satisfy strong individual rationality, and together with the e�cient trading

rule is voluntarily attainable (and in fact implementable).

Example 3 shows that the e�cient trading rule may not be attainable with a pricing rule

determined by Nash bargaining, but could be attainable in conjunction some other natural

pricing rule (here Nash bargaining with a price cap). This illustrates why it is important to

consider general bargaining procedures and general pricing rules in these matching/exchange

environments. Consideration of only a single pricing rule, such as Nash bargaining, can

signi�cantly constrain the set of attainable or implementable allocations.

The Proposition below, however, shows that even admitting general bargaining procedures

and pricing rules does not allow one to attain e�cient allocation rules in some situations.

Generally, there is a rich set of constraints imposed by strong individual rationality, and these

can be di�cult to satisfy when the distribution of sellers is more general than the one in the

examples above.
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Proposition 1 There exists a robust set of continuous and increasing distributions of buyer

and seller valuations for which the constrained e�cient trading rule is not voluntarily attain-

able (and hence not voluntarily implementable).

The robustness mentioned in the Theorem refers to the fact that the result is true for any

distributions satisfying the following24 for small enough 0 < � < 1=2.
1
2 � � � B1(�) � 1

2 and

B1(1� �) � 1
2 + �

and likewise
1
2 � � � S1(�) � 1

2 and

S1(1� �) � 1
2 + �.

In other words, for small � these distributions have nearly half their mass on values close

to 1 and nearly half their mass on values close to 0.

A sketch of the proof (details of which are found in the appendix) is as follows: For such

distributions, an e�cient solution will clear trades in the �rst period between low valued

sellers and high valued buyers and so the resulting distributions the second period will have

approximately 1
3 high value buyers and 2

3 low valued buyers, and similarly 1
3 low value sellers

2
3 high valued sellers. Thus, low valued sellers and high valued buyers (the only agents really

generating gains from trade) have a chance of only 1
3 of meeting a successful match in the

second period. Since one side can get no more than half of the surplus of a successful match in

the second period, either the low valued seller or the high valued buyer has an expected value

of no more than 1
6 from trading tomorrow. Say it is the low valued seller. The combination

of individual rationality and strong individual rationality imply that individual rationality

is almost exactly binding for both the lowest valued seller (0) and her cuto� match (�1(0)),

which in turn implies that the low valued seller can get no more than 1
6 from her cuto�

trade today. Since her cuto� match �1(0) is approximately 1
3 (as derived from Theorem 1),

the buyer with value 1
3 must get at least 1

6 from the trade today. However this buyer �1(0)

can expect at most 1
3 � 1

3 = 1
9 from waiting and thus strictly prefers to trade today, which

contradicts the fact that the individual rationality constraint should be binding at �1(0).

The robustness follows from the fact that the e�cient solution varies continuously with the

distribution, so we can work with any distribution satisfying the above conditions for small

�.

The rough intuition is that �rst period trades create an externality on the distribution of

traders who are rematched in the next period. Thus in the optimal solution, it is possible

that some \good" trading pairs 25 (in the example a low valued seller and a low-middle valued

24In fact, the only nontrivial example we know of where the constrained e�cient allocation is voluntarily

attainable is in the case of homogenous sellers.
25This is the 
ip side of examples in Sattinger (1995) and Shimer and Smith (1994), where a congestion
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buyer) should not trade and instead be left in the market to o�set this externality. This can

be true even though the expected surplus from that transaction in the �rst period exceeds

the sum of the expected surpluses of the two transacting parties were they to search one more

period. For any game that tries to implement this e�cient solution, some of these trading

pairs would prefer to trade in the �rst period, which prevents the e�cient solution from being

an equilibrium outcome.

7 Concluding Remarks

There are three main contributions in this paper.

First, we provide a characterization of constrained e�ciency in a setting with random

matching and search. In situations where markets are truly decentralized, standard notions

of e�ciency are inappropriate since goods may not be transferable arbitrarily from one agent

to another. The matching process imposes constraints on the set of feasible allocations, and

introduces search externalities across agents. These constraints and externalities are at the

heart of the characterization of constrained e�ciency.

Second, we provide characterizations of attainability and implementation in situations

where mechanisms cannot impose trade on agents. The characterization is intuitive in terms

of the (strong) individual rationality conditions which naturally arise from the voluntary

choice of agents either to accept the outcome of the mechanism, or to reject it and search for

a new trading partner in the next period. The implementation is shown to be achievable by

simple mechanisms using alternating move games with perfect information, with a structure

similar to standard bargaining games.

Third, we show that it is often the case that constrained e�cient allocations are incon-

sistent with voluntary decentralized trade under any bargaining game. Even with atomless

agents, the externalities cannot be overcome, regardless of the mechanism by which agents

negotiate and trade. Thus, in spite of the fact that trading pairs share complete information

about each others' valuations, the strong necessary conditions imposed by voluntary trade

are incompatible with overcoming the externalities and achieving e�cient allocations.

The strength of the �rst two 26 results we obtain is, of course, tempered by the fact that

we have worked in a speci�c setting. The speci�c nature of the preferences of the agents (i.e.,

the \bargaining" structure), the way in which agents may accept or reject the suggestion of

the mechanism, and the particular matching technology are important in terms of the clean

externality leads to too few trades taking place and can be an e�ciency gain to removing low value trades to

reduce congestion. Here we �nd that the opposite problem can also occur: social gains can come from having

some agents with attractive valuations stay in the market, while they may be too impatient.
26The last result (the impossibility of implementing the e�ciency rule) naturally still holds in more general

settings.

26



and intuitive characterizations we obtain.

Relative to the implementation literature, this suggests exploring how the nonimposition

restriction behaves in more general environments, especially those where one admits the

possibility of some choices in matching, such as those o�ered by a centralized exchange.

Relative to the competitive bargaining problem, it would be interesting to examine how the

analysis extends to an in�nite horizon, and to situations where there are in
ows of agents.

In our introduction, we discussed our view that any negotiation and renegotiation should

be modeled as part of the given game form. This viewpoint strengthens the conclusions of

Proposition 1, since the result is true regardless of the form of negotiation that takes place.

However, since we have not taken any stand on the particular process that may govern such

interaction, our admissible class of game forms is still quite large. Although we impose re-

strictions of perfect information, �nite length, signature stages, and lack of integer games,

etc., we do not impose a priori restrictions on the speci�c structure of negotiation or renegoti-

ation. So, if one considers an environment where there are natural or exogenously determined

restrictions on how this process can take place, so that only some of the mechanisms that we

have allowed are feasible, then additional conditions could come out of the characterization.

We point out, however, that in spite of the larger class of mechanisms we have admitted,

our theorems are proven without resorting to complicated or unnatural mechanisms. The

implementing mechanisms used to prove the characterization results are extremely simple

and involve only a sequential announcement of a reservation price by each agent, and an

opportunity for the other agent to challenge this announcement with another price. Thus, in

order for any a priori restrictions on negotiation (or renegotiation) to have an impact, they

would have to rule out such mechanisms. Nevertheless, such mechanisms do allow for the

imposition of no trade as an outcome even when there are mutual gains from trade to agents.

Although this may be reasonable in some markets (e.g., security markets), it may not be in

others (e.g., housing markets)where it will be necessary to rule out such mechanisms before

one can take the su�cient conditions for implementation seriously.

Finally, in this model there are no transfers that are made except between the paired

agents. Having a centralized authority that could execute transfers across agents and time

could help avoid some of the negative externalities and help achieve e�ciency. This is an

important question for future investigation, and suggest interesting comparisons with with

centralized markets.
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Appendix

Proof of Theorem 1: First, any e�cient trading rule must be (up to sets of measure 0) a

cuto� rule for second period trades with �2(s) = s, so A2 = f(s; b) : b > sg. That is, almost

every individually rational second period trades will be consummated.

Assuming this form for �2, and using ept(s; b) = b (since W is independent of p), we can

write
W (A1) =R 1

0

�R
b2A1(s)

(b� s)dB1(b)
�
dS1(s) + �

R 1
0

R 1
s (b� s)dB2(b)

B2(1)
dS2(s)

where A1(s) = fb : (s; b) 2 A1g, and B2 and S2 are determined by (1) and (2)..

Let us rewrite this as

W (�) =R 1
0

�R 1
0 �(s; b)(b� s)dB1(b)

�
dS1(s) + �

R 1
0

R 1
s (b� s)dB2(b)

B2(1)
dS2(s);

where �(s; b) = 1 if (s; b) 2 A1 and �(s; b) = 0 if (s; b) =2 A1.

We maximize W (�) with respect to all measurable �'s and show that the unique solution

corresponds to the claimed cuto� function in (4). Maximizing W is a vector space opti-

mization problem with the constraint �(s; b) 2 [0; 1], for all (s; b). A necessary condition for

an optimum is that directional (Gateaux) derivatives are either 0 or point inward from the

boundary for almost all (s; b). For our problem, this implies that, for almost all (s; b), � = 1

when d[W (�)]
d[�(s;b)] > 0 and � = 0 when d[W (�)]

d[�(s;b)] < 0. 27 Su�ciency of these conditions follows

from the uniqueness of the solution, the continuity of W and the compactness of the set of

admissible �(s; b) (in the weak� topology).
Recall that

S2(v) = S1(v)�
Z
s�v

�Z 1

0
�(s; b)dB1(b)

�
dS1(s)

and

B2(v) = B1(v)�
Z
b�v

�Z 1

0
�(s; b)dS1(s)

�
dB1(b):

Di�erentiate W (�) with respect to �(s; b) for any (s; b), which leads to:

d[W (�)]

d[�(s; b)]
= (b� s)dB1(b)dS1(s) +

��
B2(1)

d[B2(1)]

d[�(s; b)]

Z 1

0

�Z 1

s0
(b0 � s0)

dB2(b
0)

B2(1)

�
dS2(s

0)+

�
d[dS2(s)]

d[�(s; b)]

Z 1

s

(b0 � s)
dB2(b

0)

B2(1)
+ �

d[dB2(b))]

d[�(s; b)]

Z b

0
(b� s0)

dS2(s
0)

B2(1)
(A1)

27To be more explicit, the directional derivative with respect to some measurable function h(s; b) in this

case works out to be
R
(s;b)

d[W (�)]
d[�(s;b)]h(s; b)d(s; b). So, requiring that

R
(s;b)

d[W (�)]
d[�(s;b)]h(s; b)d(s; b) � 0 for any h

such that �(s; b) + h(s; b) 2 [0; 1] for all (s; b), is equivalent to saying that for almost all (s; b), � = 1 when
d[W (�)]
d[�(s;b)] > 0 and � = 0 when d[W (�)]

d[�(s;b)] < 0.
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Next, observe that
d[dS2(s)]

d[�(s; b)]
= �dB1(b)dS1(s);

d[dB2(b)]

d[�(s; b)]
= �dB1(b)dS1(s);

and
d[B2(1)]

d[�(s; b)]
= �dB1(b)dS1(s):

Substituting these expressions into (A1) provides

d[W (�)]

d[�(s; b)]
=

dB1(b)dS1(s)

"
(b� s) + �

Z 1

0

�Z 1

s0
(b0 � s0)

dB2(b
0)

B2(1)

�
dS2(s

0)

B2(1)
� �

Z 1

s

(b0 � s)
dB2(b

0)

B2(1)
� �

Z b

0
(b� s0)

dS2(s
0)

B2(1)

#
:

Recall that we must have (almost everywhere) � = 1 when d[W (�)]
d[�(s;b)] > 0 and � = 0 when

d[W (�)]
d[�(s;b)] < 0. To see that the solution should be a cuto� rule, �x s and notice that the part

inside the brackets on the right hand side of the expression for d[W (�)]
d[�(s;b)] is strictly increasing

in b since we assume S1(0) < S1(1)
28. Setting d[W (�)]

d[�(s;b)] = 0 implies (4). The continuity and

increasing properties of �1(s) follow directly from inspection of the right hand side of (4).

We next present the proofs of theorems 2-4. We do this in the order: Theorem 4, Theorem

2, Theorem 3. This is di�erent from the order in the body of the paper, but it is the natural

order to present the proofs, since the results in Theorem 4 are used to prove Theorems 2 and

3. The claim in Section 6 and Proposition 1 are proved at the end.

Proof of Theorem 4:

We begin by demonstrating the necessity of the conditions. Suppose that (A; p) is im-

plemented by (
1; : : : ; 
T) which satis�es the equilibrium existence condition stated prior to

Theorem 4. Let Pt be the set of prices that correspond to some terminal node of 
t.

Lemma: For any t, and for any (s; b) pair, there is a unique subgame perfect equilibrium

outcome of �(
t) satisfying (ii) in the de�nition of equilibrium as a function of (ps; pb). It is

trade at some price if and only if (ps; pb) 2 IR(Pt).

Consider any (ps; pb). By part (ii) of the de�nition of equilibrium, an agent's choice from

a set of outcomes is uniquely determined. The subgame perfect equilibrium outcomes (which

always exist under the existence condition on the mechanism) can thus be found by backward

induction, which results in a unique outcome.

28If S1(0) = S1(1); then this derivative is constant in b when � equals 1; and there are multiple solutions for
the optimal �rst period allocation rule.
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Only If: By the veto power that each agent has under the augmented mechanism, the

unique equilibrium outcome must be no trade if (ps; pb) =2 IR(Pt).

If: We now show that if (ps; pb) 2 IR(Pt), then the unique equilibrium outcome must be

trade at some price. Suppose the contrary, so that for some (ps; pb) 2 IR(Pt), the equilibrium

outcome is no trade. Consider a pair of equilibrium strategies for (ps; pb) when they are

matched at time t and denote these �. These lead to no trade at time t. Consider also some

strategies which lead to the outcome of p at time t and denote these �0. Alter � at each node

on the play path of �0 to match the action under �0 at that node, and leave the actions at

other nodes under � unchanged. Call this new strategy �00. Since �00 results in trade at p,

it must not be an equilibrium for ps and pb.29 Find the last node along the play path of �00

such that there is an improving deviation for the agent choosing at that node. Find a best

response for that agent at that node.30 The new play path must lead to trade at some price

since it is improving for that agent and both agents weakly prefer p to no trade. The new

strategy combination is now a Nash equilibrium in all subgames from this node on (and all

subgames o� the current play path). Iterate this logic up the nodes of the play path. This

results in a subgame perfect equilibrium which has an outcome of trade at some price, which

is a contradiction.

With the lemma in hand, we can conclude the proof of necessity in the theorem.

De�ne bpt to be the equilibrium price of �(
t) as a function of (ps; pb). By the lemma, this

is a well de�ned function on the domain IR(Pt).

Let ( eA; ep) denote an allocation rule corresponding to some equilibrium. By the de�nition

of implementability, it is equivalent to (A; p). De�ne pt relative the equilibrium strategies

leading to ( eA; ep).
We �rst verify (1). We show that voluntary trade holds relative to ( eA; ep), for the bpt and

Pt de�ned above.

(V1) and (V3) follow directly from the lemma.

(V2) follows from the lemma and the fact that agents will never accept a price that is not

individually rational in an equilibrium of the mechanism.

(V4) A sketch of the proof of this case was given in the text for increasing buyer's reser-

vation values. The case of an increase in seller's reservation values is analagous, except the

type of improving deviations is to have no-trade replace trade at some price.31

(V5) By (V4) we know that ps0 < ps Suppose the contrary of (V5). Then for all p 2 Pt,

either p � ps and p � ps0, or p < ps and p < ps0. This implies that the set of equilibria is ex-

29Notice that in�nite stage mechanisms can be admitted and this proof still works, since �0 (and thus �00)
must result in trade after some �nite number of stages.

30We know that there exists a best response at that node, since the other actions at that node yield the
same outcomes that they would under �, and there is a best response there under �.

31Rubinstein and Wolinsky (1991) [Appendix II of the working paper version] o�er a proof of a similar
property.
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actly the same for the two agents when either is matched with pb. This implies nonuniqueness

of the equilibrium outcome, a contradiction.

Next, let us verify (2).

Consider an (A0; p0) which is not equivalent to (A; p). Consider the bpt and Pt de�ned for

each t as above. Notice that (V4) and (V5) are satis�ed, as they are independent of the

allocation rule. We must show that one of (V1), (V2), and (V3) fail for (A0; p0) relative to

the bpt and Pt de�ned above.

By the lemma, for each t and (s; b) there is a unique subgame perfect equilibrium outcome

of �(
t) relative to the reservation values (pst(s;A
0; p0); pbt(b;A

0; p0)). Select a subgame perfect

equilibrium pair of strategies for each t and (s; b). By the implementation of (A; p), these

strategies cannot result in (A0; p0). Thus, there exists t and (s; b) such that either

Case 1: (s; b) =2 A0
t and the outcome is trade at some price p, or

Case 2: (s; b) 2 A0
t and the outcome is trade at some price p 6= p0(s; b), or

Case 3: (s; b) 2 A0
t and the outcome is no trade.

In case 1, it follows from lemma that (pst(s;A
0; p0); pbt(b;A

0; p0)) 2 IR(Pt), which means

that (V3) fails.

In case 2, it follows from the de�nition of bpt that p0t(s; b) 6= bpt(pst (s;A0; p0); pbt(b;A
0; p0)),

which means that (V1) fails.

In case 3, it follows from lemma that (pst(s;A
0; p0); pbt(b;A

0; p0)) =2 IR(Pt), which means

that (V2) fails.

Su�ciency is established by constructing a mechanism that will implement any (A; p)

satisfying the voluntary trade condition. The mechanism 
t at time t is the one described in

Section 5:

Stage 1. The seller announces ps. Proceed to stage 2.

Stage 2. The buyer announces ps0; pb. Proceed to stage 3.

Stage 3. The seller announces pb
0
.

The Outcome Function:

If pb
0 � pb and ps0 � ps and (ps0; pb

0
) 2 IR(Pt), then the outcome is bpt(ps0; pb0);

If pb
0 � pb and ps0 < ps and (ps0; pb) 2 IR(Pt), then the outcome is inffp 2 Ptjp � ps0g.

If pb
0
> pb and (ps; pb

0
) 2 IR(Pt), then the outcome is supfp 2 Ptjp � pb

0g.
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Otherwise, the outcome is no-trade.

We now prove su�ciency. Assume that (1) and (2) hold. Consider the implementing mech-

anism, (
1; :::; 
T), described above. The remainder of the proof consists of verifying three

claims.

Claim 1: Consider t and a subgame perfect equilibrium of the augmented version of the

mechanism described above under part (ii) of the de�nition of equilibrium, when reservation

values are (ps; pb). The outcome is unique, and:

(a) if (ps; pb) 2 IR(Pt) then the outcome is trade at bpt(ps; pb).
(b) if (ps; pb) =2 IR(Pt) then the outcome is no trade.

Proof of Claim 1: The set of possible outcomes from the above mechanism is Pt. Thus (b)

follows by the same logic as the lemma, noting that in this case a subgame perfect equilibrium

exists because no price is ever approved by both agents. Similarly, if (ps; pb) 2 IR(Pt) then the

unique subgame perfect equilibrium outcome is trade at some price, provided an equilibrium

exists. We need to show that a subgame perfect equilibrium exists and it is trade at bpt(pb; ps).
Consider the following strategies which result in bpt(pb; ps). It is easily checked that given

these expectations, these form a subgame perfect equilibrium.

On the equilibrium path behavior: The seller announces ps = ps. The buyer announces

(ps0; pb) = (ps; pb). The seller announces pb
0
= pb. Both approve this.

O� the equilibrium path behavior:

Each player approves any price that is indivdually rational, and vetos others.

If the seller announces ps < ps, then the buyer announces (ps0; pb) = (ps; pb).

If the seller announces ps > ps, then the buyer announces (ps0; pb) = (ps; pb).

If the buyer announces pb < pb, then the seller announces pb
0
= pb.

To see that this is an equilibrium, notice �rst that if the seller announces a price in excess

of his reservation price, the buyer can correct the announcement and win all the surplus, and

(by (V 5)) end up paying a lower price. If the seller announces a price below his reservation

price, he is directly conceding some surplus to the buyer. If the seller tells the truth, then

the buyer cannot claim the seller has a lower reservation price, or this will lead to no trade.

Similarly, the buyer cannot gain from understating his reservation price, since the seller could

then correct this announcement to the true buyer reservation value, and win all the surplus.

Claim 2: There exists an equilibrium which results in eAt; ept.
Proof of Claim 2: If we �x the reservation prices of the buyers and sellers, then there is

a unique subgame perfect equilibrium outcome for any matched pair for a speci�c stage. So

�x the reservation prices at those generated by the allocation rule, eAt; ept. We will verify that
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the subgame perfect equilibrium outcome in this case results in eAt; ept.
If (s; b) =2 eAt, then no trade is the only subgame perfect outcome of the augmented

mechanism. This follows from (V3) and Claim 1.

If (s; b) 2 eAt, then from Claim 1 and (V1) and (V2) it follows that the outcome is trade

at bpt(pst(s;A; p); pbt(b;A; p)).
Claim 3: If (A0; p0) not equivalent to (A; p), then (A0; p0) is not the result of any equilibrium

of the mechanism.

Proof of Claim 3: Suppose to the contrary that there is an equilibrium that results in

(A0; p0).

Consider (s; b) =2 A0
t. It must be that the outcome of �(
t) is no trade. From Claim 1, it

then follows that (V3) holds relative to bpt and Pt.

Consider (s; b) 2 A0
t. It must be that the outcome of �(
t) is trade at p

0
t(s; b). It then

follows from Claim 1 that (V1) and (V2) hold relative to bpt and Pt.

This contradicts (2), which implies that (A0; p0) fails to satisfy (V1), (V2), or (V3) relative

to bpt and Pt.

After Theorem 4, we claimed that 1 would be necessary even if one only considers attainability,

and also if one drops the requirement of a closed mechanism. This is the same as the

above proof of the necessity of (1), except that lemma is only stated for (ps; pb) relative to

which equilibrium exists. Then one needs to extend bpt to satisfy (V2), (V4), and (V5), for

(ps; pb) 2 IR(Pt) relative to which there does not exist an equilibrium. For such a (ps; pb),

de�ne bpt(ps; pb) by setting it equal to the max of ps and the sup of bpt over (ps0; pb0) 2 IR(Pt)

such that ps0 � ps, pb
0 � pb, and for which there exists an equilibrium. This construction

satis�es (V2), (V4), and (V5).

Proof of Theorem 2: This follows directly from Theorem 4 and the proof above.

Proof of Theorem 3: It follows from Theorem 4 (and the proof above and the continuity

so that if any equivalent allocation rule satis�es strong individual rationality and has nonde-

creasing prices, then (A; p) does as well) that the conditions are necessary. To see that they

are su�cient we show that condition (�) of Theorem 4 is satis�ed relative to (A; p). Then

the result follows from Claims 1 and 2 in the proof of Theorem 4.

Under the assumptions of Theorem 3, reservation prices are continuous and non-decreasing

functions of s and b. Given the continuity of p and A it follows that individual rationality

must hold with exact equality for cuto� pairs.32 Thus, if b = �t(s) (where �t is the cuto�

de�ned by the cuto� rule At), then pt(b) = pt(s) = pt(s; b). To see this, consider a cuto�

32Given the continuity, all claims that were \almost every," no longer have that quali�er.
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pair s; b. By individual rationality pt(b) � pt(s; b) � pt(b). For any b0 < b we know that

either pt(b
0) < pt(s; b) or pt(s) > pt(s; b). We know that the second cannot hold, so it must

be that pt(b
0) < pt(s; b). Then by continuity, pt(b) = pt(s; b): Similar reasoning establishes

pt(s) = pt(s; b):

Let st be the minfsj(s; b) 2 At for some bg, and st be the maxfsj(s; b) 2 At for some

bg. Similarly de�ne bt and bt. Next, notice that pt(st) = pt(bt) = pt(st; bt) and similarly,

pt(st) = pt(bt) = pt(st; bt). Given the assumptions on At and pt, the range of pt over pairs

in At is [pt(st; bt); pt(st; bt)], since (st; bt) 2 At and (st; bt) 2 At given that At is a cuto� rule

and cuto�s are non-decreasing in value.

So, let Pt = [pt(st; bt); pt(st; bt)]. For p
s; pb 2 IR(Pt) de�ne bpt(ps; pb) through pt(s; b) by

setting bpt(ps; pb) = pt(s
0; b0)

where s0 = min fsjpst (s) � maxfps; pst(st)gg and b0 = max fbjpst(b) � minfpb; pbt(bt)gg. Using
this, we verify that condition (�) is satis�ed relative to (A; p). (V 1) holds since if s; b 2
At, then s0 = s and b0 = b in our de�nition above. (V 2) holds by the construction of bpt
and the individual rationality assumed in Theorem 3. (V 3) holds by the strong individual

rationality assumed in Theorem 3. (V 4) holds by the construction of bpt. To see (V 5), notice

that for bpt(ps0; pb) < bpt(ps; pb), it must be that min fsjpst (s) � maxfps0; pst (st)gg < min

fsjpst(s) � maxfps; pst (st)gg. Thus, from the de�nition of bp, there exists s0 < s and b withbpt(ps0; pb) = pt(s
0; b) and bpt(ps; pb) = pt(s; b). Given the individual rationality in Theorem 3,

we know that (s0; b) 2 At and (s; b) 2 At. By continuity of p, we can �nd s00; b 2 At with

pt(s
0; b) < pt(s

00; b) < pt(s; b). Then (V 5) is satis�ed with p = pt(s
00; b). The same can be

done for the other part of the condition concerning buyer values.

Proof of Proposition 1: Consider distributions such as those described after Proposition 1.

From Theorem 1, the cuto� rule for the e�cient allocation for the seller with s = 033

satis�es

�1(0) = E2(b) +E2(max[�1(0)� s; 0])�E2(max[b� s; 0]):

As � becomes small, E2(b) converges to B2(1)�B2(:5)
B2(1)

, E2(max[�1(0) � s; 0]) converges to
�1(0)S2(:5)

S2(1)
and E2(max[b � s; 0]) converges to (B2(1)�B2(:5))S2(:5)

S2(1)B2(1)
. So at the limit (as � be-

comes small),

�1(0) =
B2(1)� B2(:5)

B2(1)
+
�1(0)S2(:5)

S2(1)
� (B2(1)�B2(:5))S2(:5)

S2(1)B2(1)

Solving for �1(0)

�1(0) =
B2(1)�B2(:5)

B2(1)
:

33Since the e�cient solution is only de�ned up to sets of measure 0, one can �nd s close to 0 and work with
that.
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This means that �1(0) is at most 1
2 , since none of the b = 0's are cleared in the �rst period.

So, as � goes to zero, it must be that B2(:5) =
1
2 and B2(1) =

3
4 . Thus, �1(0) converges to

1
3

as � goes to zero.34 Similarly, the cuto� for buyers with a valuation of 1, �1(1), converges to
2
3 as � goes to zero.

Let A be equivalent to the e�cient trading rule and consider any price rule p. We show

that for small enough � the necessary conditions for voluntary attainability cannot be satsi�ed

for (A; p). Suppose to the contrary that they are for all small �. Pick some small 
 > 0,

and apply strong individual rationality to b0 = �1(0) � 
 and s0 = 0. Since we know that

individual rationality is satis�ed for s close to 0 and some b close to �1(0), it follows that

that for some small enough 
 35 �1(0)� 
 should not trade in period 1 so that

�1(0)� 
 � p1(0; �1(0)) <
S2(:5)

S2(1)
(�1(0)� 
 � p2(
; �1(0)� 
)) + 2�

where the right hand side bounds the expected value to rematching: there is a probability of

at most S2(:5)
S2(1)

that the buyer is matched with someone with a value between 
 and 1
2 , and

the best price they can get is then p2(
; �1(0)� 
)). For 
 small enough, there is at most 2�

chance that they are matched with a seller with value smaller than 
.

A similar argument for s0 = 
 and b0 = �1(0) leads to

p1(0; �1(0))� 
 <
B2(1)�B2(:5)

B2(1)
(p2(
; 1� 
)� 
) + 2�:

Given the symmetry of the distributions and thus the e�cient solution, S2(:5)
S2(1)

= B2(1)�B2(:5)
B2(1)

.

Summing the two previous inequalities and simplifying leads to

(�1(0)� 2
)(1� S2(:5)

S2(1)
) <

S2(:5)

S2(1)
(p2(
; 1� 
)� p2(
; �1(0)� 
)) + 4�

We can follow the same arguments in a neighborhood of the buyer with value 1 and that

buyer's cuto� seller, �1(1), to �nd that

(1� �1(1)� 2
)(1� S2(:5)

S2(1)
) <

S2(:5)

S2(1)
(p2(�1(1) + 
; 1� 
)� p2(
; 1� 
))4�

Summing these two inequalities, for small � and 
 this is approximately

(�1(0) + 1� �1(1))(1� S2(:5)

S2(1)
) <

S2(:5)

S2(1)
(p2(�1(1) + 
; 1� 
)� p2(
; �1(0)� 
))

or
4

9
<

1

3
(p2(�1(1) + 
; 1� 
)� p2(
; �1(0)� 
)):

which is impossible to satisfy since the right hand side is at most 1
3 .

34Uniqueness of the e�cient solution and continuity of the welfare function in changes in distribution of
buyer and sellers' values imply continuity of the e�cient solution in the distribution of buyer and sellers'
values.

35We proceed as if this satis�ed for for s = 0 and b = �1(0), while for any trading rule equivalent to the
e�cient one this can be rede�ned for some s; b arbitrarily close to these.
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