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Abstract

The paper compares two models of evolution in symmetric two-
player games with incomplete information. One model postulates that
the type of a player is fixed, and evolution works within types. In
the other model type-contingent strategies evolve. In the case of two
types and two strategies it is shown that the stability properties of
stationary states are the same under the two dynamics when payoffs
do not depend on the type of the other player, but may differ when
they do.
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1 Introduction

The idea of the paper is to compare two models of evolution in symmetric
incomplete information games. In a Bayesian game, the type of a player
can either be determined once (like genetically programmed preferences) or
be drawn randomly each time the player is called to play the game (think
of a series of auctions where values for a given buyer are determined by the
object sold and so appear random to the outside observer who does not know
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the preferences of the buyer). If change in strategies can be modeled as a
learning process, or as an evolutionary process, is the outcome different in
the two situations?
It is well known that in terms of equilibria the two models are equivalent

(this follows from the correspondence between mixed and behavior strategies
in Kuhn, 1953). Following Harsanyi (1967-68), incomplete information about
types of players can be modeled as imperfect information. Nature determines
types of players and then the game is played. This game can be converted into
a normal form, on which evolution can be analyzed by standard methods.
This corresponds to the second model described above (types determined
randomly each period, and type-contingent strategies evolve). The difference
between models may come from the fact that when the type of a player is
determined once and for all, he cannot switch between certain strategies in
the normal form representation of the extensive form game with imperfect
information. But is it important, i.e. does it lead to significant differences?
A literal interpretation of evolutionary models is usually one of a large

population of individuals, each playing a pure strategy. Individuals are ran-
domly matched to play a given game. We consider simultaneous move games
where individuals know own type but not the type of the other player.
In the first model the population is divided into subpopulations corre-

sponding to types. In each subpopulation there is an evolutionary process,
but the fitness of a strategy depends also on what strategies other types are
playing. The subpopulations may be of different sizes, which are given by
the distribution of types in the population, but each individual is matched
every time, either with a player of own type or with players of other types.
The speed of evolution is the same in all subpopulations.
In the second model, each period players are divided into types according

to the given distribution. If a player is more likely to be of a certain type, the
type-contingent strategy for this type evolves faster than for other types. It
turns out that the relative speed of evolution for type-contingent strategies
does matter in some games.
Though the paper concerns mostly economic examples, in biological terms

the difference between models may be seen as following. Being of different
types is like having different genomes; if genomes are independent, the first
model is more appropriate. If more sophisticated genes are considered, like
genes for conditional behavior, the second model is more appropriate.
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2 Models of Evolution in Symmetric Games

with Incomplete Information

The underlying situation to be analyzed is as follows. Individuals in a large
population are randomly matched to interact. The individuals can be of
several types, which can be interpreted as having different preferences. The
individuals know their own type but not the type of other players. They take
decisions simultaneously and payoffs are realized.
One example of such a situation in economics is a sealed-bid auction.

Bidders know their valuation, but not the valuation of other bidders. They
submit bids simultaneously, and the rules of the auction determine who gets
the object and how much each bidder pays. Further examples in economics
are oligopoly with cost uncertainty, or bargaining with incomplete informa-
tion.
Some situations in biology can be described by this model. Individuals in

a species may be ”strong” or ”weak” but this is not shown by any external
features. In an encounter, an individual has to choose certain action without
knowing the type of the other individual.
We consider two-player games. We assume that the game is symmetric,

i.e. both players in an interaction face the same situation. Let the finite
set of types for each player be T = {t1, . . . , tn}, and let µ = {µ1, . . . , µn}
be a probability distribution on the set of types, with µi > 0,

Pn
i=1 µi = 1.

Thus µi is the probability (or the belief) that the other player is of type
ti. We assume that the set of available strategies does not depend on the
type of the player. Let this common set of strategies be S = {s1, . . . , sm}.
If player 1 is of type ti and chooses strategy sk, and player 2 is of type tj
and chooses strategy sl, the payoffs are uti,tj(sk, sl), utj ,ti(sl, sk). In the most
general case the payoffs depend on own type, the type of the other player,
and on strategies of the players. In most of economic examples, like the
auction example, the payoffs do not depend on the valuation (i.e. type) of
the other player, only on own valuation, and on strategies of both players.
In the biological example, the payoffs may depend on the type (”strong” or
”weak”) of the other player, as well as on strategies of both players.
As mentioned in the introduction, the type of an individual can be either

determined once before a series of interactions, or before each interaction.
Correspondingly, one can formulate two models of evolution.

Evolution within types In the first model, the model of evolution within
types, the population is divided into n subpopulations, one for each type.
Within each subpopulation, there is an evolutionary process on strategies,
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and these processes are interdependent because payoff to a strategy for a
given type depends on the strategies of other types. Let xik be the proportion
of individuals of type ti that play strategy sk. The expected payoff of such
individuals is uti(sk) =

Pn
j=1 µj

Pm
l=1 x

j
luti,tj(sk, sl). In a payoff monotone

evolutionary dynamic (Weibull, 1995, Ch.4), the proportion of players of
type ti using strategy sk grows relative to the proportion of players of type
ti using strategy sl if uti(sk) > uti(sl). We will work with one particular
monotone dynamic, the replicator dynamic

ẋik = x
i
k(uti(sk)− uti) (1)

where uti = xik
Pm

k=1 uti(sk) is the average payoff in the subpopulation of
type ti.
In the economic context, this model of evolution corresponds to a situa-

tion when the type of a player is determined before a series of interactions,
for example, the cost structure of a duopolist before engaging in competition
with other firms in several markets, or the type of a bargainer before several
bargaining situations. The replicator dynamic can then be interpreted as the
reduced form of a learning process given the type (e.g. the preferences) of
an individual, as in Weibull (1995, Ch.4).
In the biological context, the model can be interpreted as follows. One

gene determines the type of an individual, but not external features. The
proportion of individuals with a given allele of this gene is fixed (it is possible
to model the evolution of types also but this will not be pursued here).
Another gene determines individual’s strategy, and it is the proportions of
alleles of this gene that evolve.

Evolution of type-contingent strategies The second model of evolution
assumes that the type of an individual is determined randomly (according
to distribution µ) before each interaction, and so each individual has type-
contingent strategies ”play sk if type ti”. Let xk1...kn be the proportion of
players that use type-contingent strategy ”play sk1 if type t1, ... , play skn
if type tn”. The expected payoff of such an individual is u(sk1 . . . skn) =Pn

i=1 µiuti(ski), where uti(skl) is the expected payoff when type ti as given
in the previous subsection, with xjl =

P
kj=l

xk1...kn being the proportion of
players that have ”..., play skl if type tj, ...” in their strategy. Again, in
a payoff monotone selection dynamic, the proportion of players using one
strategy grows relative to the proportion of players using another strategy if
u(sk1 . . . skn) > u(sl1 . . . sln). The replicator dynamic in this case is

ẋk1...kn = xk1...kn(u(sk1 . . . skn)− u) (2)
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where u =
P(sn...sn)

(s1...s1)
xk1...knu(sk1 . . . skn) is the average payoff in the popula-

tion.
This model of evolution, in the economic context, corresponds to a situ-

ation where the type of a player represents private information (rather than
his preferences) that can change from interaction to interaction. Auction is
a good example, since valuations can change from one auction to the next.
In biological context type-contingent strategies correspond to the genes

that encode complicated instructions of playing conditional strategies. There
is one population of individuals, and in each interaction an individual finds
itself in a certain role, like ”owner” or ”intruder”. The identification of roles,
however, is imperfect, and so the individual does not know the role of the
other player. Since each individual may find itself in each role, genes that
encode conditional strategies evolve.

Basic differences and similarities The situation under the dynamic
within types is described by n distributions on m strategies for each type, or
by n(m − 1) independent variables. This description is equivalent to speci-
fying a behavior strategy (Kuhn, 1953) for the game. Under the dynamic on
type-contingent strategies the sutiation is given by one distribution on mn

strategies, i.e. by mn − 1 variables. This description is equivalent to mixed
strategies for the normal form of the game. For each mixed strategy there is
a realization-equivalent behavior strategy, and for each fully mixed behavior
strategy there are many realization-equivalent mixed strategies.
Equilibria of the game can be found by looking at either of the descrip-

tions. It is usually easier to find equilibria through behavior strategies.
Equilibria are stationary under either of the dynamics, but each equilibrium
in fully mixed behavior strategies corresponds to a hyperplane of equilibria
in mixed strategies. The stability properties of an equilibrium in behavior
strategies can be compared with the stability properties of the corresponding
set of equilibria in mixed strategies.

3 The Case of Two Types and Two Strategies

3.1 General Case

We restrict ourselves to the situations where there are only two types and
two strategies that players can choose. Let the space of types be T = {t1, t2},
and the distribution is given by one parameter 0 < µ < 1, the probability of
being type t1 (thus the probability of being type t2 is 1− µ). Furthermore,
let the set of strategies be S = {s1, s2}. The payoffs can be described by four
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matrices:

ut1,t1 :
s1 s2

s1 a11 a12
s2 a21 a22

, ut1,t2 :
s1 s2

s1 c11 c12
s2 c21 c22

ut2,t1 :
s1 s2

s1 d11 d12
s2 d21 d22

, ut2,t2 :
s1 s2

s1 b11 b12
s2 b21 b22

i.e. matrix A = (aij) gives the payoffs when player of type t1 meet another
player of type t1, B is the payoff matrix when two players of type t2 meet,
C is the payoff matrix when type t1 meets type t2, and D is when type t2
meets t1.

Dynamic within types and equilibria Let x1 be the distribution of

strategies in the subpopulation of type t1, x
1 =

·
x11

1− x11

¸
, and x2 =·

x21
1− x21

¸
is the distribution of strategies for type t2. Let ei ∈ R2 be the unit

vector with 1 on the i-th coordinate. Then the replicator dynamic within
types is given by

ẋ11 = x11((e1 − x1) · (µAx1 + (1− µ)Cx2)) (3)

ẋ21 = x21((e1 − x2) · (µDx1 + (1− µ)Bx2)) (4)

Opening up the matrices leads to equations

ẋ11 = x11(1− x11)(µ(a1 − a2)x11 + (1− µ)(c1 − c2)x21 + µa2 + (1− µ)c2)(5)
ẋ21 = x21(1− x21)(µ(d1 − d2)x11 + (1− µ)(b1 − b2)x21 + µd2 + (1− µ)b2)(6)

where a1 = a11−a21, a2 = a12−a22 and bi, ci, di are defined analogously. The
corner states, or the states on the boundary (where at least one xi1 = 0 or 1)
may be stationary under the dynamic because new strategies cannot appear,
but not all of them are equilibria. For such a state to be an equilibrium, the
last terms in the equations should not be pointing inside the state space of
the dynamic, the unit square.
It can be seen that apart from corner pure equilibria and boundary

partially mixed equilibria, there can be a fully mixed interior equilibrium
where lines µ(a1 − a2)x11 + (1 − µ)(c1 − c2)x21 + µa2 + (1 − µ)c2 = 0 and
µ(d1 − d2)x11 + (1− µ)(b1 − b2)x21 + µd2 + (1− µ)b2 = 0 intersect, and in the
non-generic case when these lines coincide there is a line of interior equilibria.

6



Depending on the payoffs there may be several situations involving pure,
partially mixed, and fully mixed equilibria, several of which are illustrated
on the examples below.

Example 1 Hawk-dove game with incomplete information.

Suppose individuals can be of two types, ”strong” (s) and ”weak” (w). In
an interaction, they can either escalate (e) or retreat (r). In an interaction of
individuals of the same type the game is the usual hawk-dove one. A strong
type always wins a fight against a weak type when the conflict escalates,
otherwise payoffs are as in the hawk-dove game:

same type :

e r

e
1

2
Vi − Ci Vi

r 0
1

2
Vi

strong vs. weak :
e r

e Vs − Cs,−Cw Vs, 0
r 0, Vw

1
2
Vs,

1
2
Vw

where Vs, Vw are the values of the contested resource for corresponding types,
and Cs, Cw are the costs of the fight. We assume that

1
2
Vi − Ci < 0, i = s, w

and Cs < Cw. Let µ be the proportion of the strong type.
The change in x11 vanishes when µ(−Cs)x11+(1−µ)(12Vs−Cs)x21+ 1

2
Vs = 0

and the change in x21 vanishes when µ(−Cw−1
2
Vw)x

1
1+(1−µ)(−Cw)x21+1

2
Vw =

0. These two lines either coincide (in non-generic case 2Cs
Vs
= 2Cw+Vw

Vw
), or in-

tersect outside the unit square. Thus there is no isolated interior equilibrium,
and generically all equilibria are on the boundary. Figure 1 shows some pos-
sibilities. Note that it is possible to have equilibrium in which the weak type
escalates and the strong one retreats, if the value of the resource is too low
for the strong type.

Example 2 Game with isolated interior equilibrium.

Suppose there are two types. One type (c) wants to match the strategy of
the opponent, while the other type (n) wants to play an action different from
that of the opponent. Suppose that the payoffs are given by the following
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Figure 1: Phase diagram for Hawk-Dove game with µ = 3
4
, Vw = 1, Cs =

3
4
, Cw = 1. In (a) Vs = 1, in (b) Vs =

1
4
.

matrices.

un,n :
s1 s2

s1 0 4
s2 4 0

, un,c :
s1 s2

s1 0 3
s2 3 0

uc,n :
s1 s2

s1 3 0
s2 0 3

, uc,c :
s1 s2

s1 1 0
s2 0 1

The dynamic is given by

ẋ11 = x11(1− x11)(−8µx11 − 6(1− µ)x21 + 4µ+ 3(1− µ)) (7)

ẋ21 = x21(1− x21)(6µx11 + 2(1− µ)x21 − 3µ− (1− µ)) (8)

The point x11 =
1
2
, x21 =

1
2
is an equilibrium for any µ. The dynamic rotates

around this point, as illustrated in Figure 2.

The Jacobian of the dynamic at equilibrium is J =

· −2µ −3
2
(1− µ)

3
2
µ 1

2
(1− µ)

¸
with detJ = µ(1−µ)5

4
> 0 and trJ = 1

2
− 5

2
µ. The equilibrium is asymptot-

ically stable for µ > 1
5
, is a center surrounded by periodic orbits for µ = 1

5
,

and unstable for µ < 1
5
.

Dynamic of type-contingent strategies The normal form of the game
with 2 types and 2 strategies is a 4×4 matrixM . The elements ofM can be
computed explicitly from matrices A,B,C,D and µ, but for the dynamic it
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Figure 2: Phase diagram for the game in Example 2 with µ = 1
4
.

is sufficient to specify the expected payoff of a mixed strategy x ∈ ∆4 against
another strategy y. In our case it is given by

x ·My = µ(x1 · (µAy1 + (1− µ)Cy2)) + (1− µ)(x2 · (µDy1 + (1− µ)By2))

where x1, y1 are behavior strategies of type t1 derived from mixed strategies
x, y (and correspondingly x2, y2 are behavior strategies of type t2). If xsisj is

denoted for brevity as xij, then x
1 =

·
x11 + x12
x21 + x22

¸
and x2 =

·
x11 + x21
x12 + x22

¸
.

The replicator dynamic of type-contingent strategies is

ẋij = xij[(fij − x) ·Mx] (9)

where fij is the 4-dimensional unit vector with 1 on the place corresponding
to xij and 0 on other places.
For each interior equilibrium (x11, x

2
1) of the dynamic within types there is

a set of equilibria (x11, x
1
1− x11, x21− x11, 1+ x11− x11− x21), parametrized by

x11 ∈ (max{0, x11 + x21 − 1},min{x11, x21}), of the dynamic of type-contingent
strategies.
Following Gaunersdorfer et al. (1991), in the dynamic on the normal

form
³
xik
xil

´·
= xik

xil
((fik − fil) ·Mx) = xik

xil
[(ek − el) · (µDx1 + (1− µ)Bx2)].

Then
³
xik
xil

xjl
xjk

´·
= xik

xil

xjl
xjk
[(ek − el) · (µDx1 + (1− µ)Bx2)] + xik

xil

xjl
xjk
[(el − ek) ·

(µDx1 + (1 − µ)Bx2)] = 0, i.e. xik
xil

xjl
xjk

is invariant. Manifolds WK = {x :
x11x22 = Kx12x21} are invariant for any K > 0, i.e. trajectories that start
on a given manifold stay on this manifold.
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Since x11 + x12 + x21 + x22 = 1 and x11x22 = Kx12x21, for given K there
are only two independent variables. The dynamic foliates into a set of 2-
dimensional dynamics, one for each invariant manifold. All manifolds have
the same borders x11 = 0, x11 = 1, x21 = 0, x21 = 1. For an interior equi-
librium (x11, x

2
1) each invariant manifold contains exactly one corresponding

equilibrium in the normal form space.
On each manifold the dynamic of behavior strategies x11, x

2
1 can be ana-

lyzed. Since x11 = x11+x12, x
2
1 = x11+x21 the dynamic of behavior strategies

induced by the dynamic of mixed strategies in the normal form is

ẋ11 = (x11(f11 − x) + x12(f12 − x)) ·Mx (10)

ẋ21 = (x11(f11 − x) + x21(f21 − x)) ·Mx (11)

Opening up these equations leads to

ẋ11 = µ[x11(1− x11)(µax11 + (1− µ)cx21 + µa2 + (1− µ)c2)] +
(1− µ)[(x11x22 − x12x21)(µdx11 + (1− µ)bx21 + µd2 + (1− µ)b2)]

ẋ21 = µ[(x11x22 − x12x21)(µax11 + (1− µ)cx21 + µa2 + (1− µ)c2)] +
(1− µ)[x21(1− x21)(µdx11 + (1− µ)bx21 + µd2 + (1− µ)b2)]

where a = a1 − a2 and analogously for b, c, d.
When x11x22 = x12x21 the equations reduce to

ẋ11 = µ[x11(1− x11)(µ(a1 − a2)x11 + (1− µ)(c1 − c2)x21 + µa2 + (1− µ)c2)]
ẋ21 = (1− µ)[x21(1− x21)(µ(d1 − d2)x11 + (1− µ)(b1 − b2)x21 + µd2 + (1− µ)b2)]
The difference of these equations from the equations of the dynamic within
types is only in the multiplicative terms µ and 1 − µ. When the dynamic
within types involves a fully mixed equilibrium, the stability properties of this
equilibrium may change depending on these multiplicative terms. If µ 6= 1

2
,

the fully mixed equilibrium can have different stability properties even in the
dynamic within types and the dynamic on manifold W1.

Example 3 Example 2 continued.

With the multiplicative terms, the Jacobian of the dynamic in the ex-

ample is J 0 =
· −2µ2 −3

2
µ(1− µ)

3
2
µ(1− µ) 1

2
(1− µ)2

¸
. Then det J 0 = µ2(1 − µ)2 5

4
> 0,

and trJ 0 = −2µ2 + 1
2
(1 − µ)2 = 1

2
(−3µ2 − 2µ + 1). It holds that trJ 0 > 0

when µ < 1
3
, trJ 0 = 0 when µ = 1

3
and trJ 0 < 0 when µ > 1

3
. Therefore, for

µ ∈ ¡1
5
, 1
3

¢
the equilibrium

¡
1
2
, 1
2

¢
is asymptotically stable under the dynamic

within types but unstable under the dynamic on the normal form on W1.
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Claim 1 With two types and two strategies, it is possible that the equilibria
of the game have different stability properties under the dynamic within types
and under the dynamic of type-contingent strategies.

Intuitively, even on manifold W1 the change in stability comes from the
fact that with type-contingent strategies, strategy for the more frequent type
evolves faster than for the less frequent type, while in the dynamic within
types the speed of evolution is the same for both types. For the orbits that
spiral around the fully mixed equilibrium, this change in the relative speed
is important.
If other manifolds WK ,K 6= 1 are taken into account, the set of interior

equilibria is less likely to be stable, as every equilibrium in it has to be stable
on the corresponding manifold.
On the first sight it seems to be more diffucult to have stability of inte-

rior equilibria (as a set) in the dynamic on the normal form, since equilibria
have to be stable on every manifold. However, the following example demon-
strates that a set of equilibria can be stable in the dynamic of type-contingent
strategies while unstable in the dynamic within types.

Example 4 Stability in type-contingent strategies and instability in the dy-
namic within types.

Consider the game given by the following matrices.

un,n :
s1 s2

s1 0 1
s2 1 0

, un,c :
s1 s2

s1 0 3
s2 3 0

uc,n :
s1 s2

s1 3 0
s2 0 3

, uc,c :
s1 s2

s1 4 0
s2 0 4

and µ = 3
4
. The dynamic within types is

ẋ11 = x11(1− x11)(−
3

2
x11 −

3

2
x21 +

3

2
) (12)

ẋ21 = x21(1− x21)(
9

2
x11 + 2x

2
1 −

13

4
) (13)

The Jacobian of the dynamic at equilibrium
¡
1
2
, 1
2

¢
is J =

· −3
8
−3
8

9
16

1
2

¸
. Since

det J = 3
128
> 0 and trJ = 1

8
> 0, the equilibrium is unstable.
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The dynamic of type-contingent strategies in the interior foliates into
two-dimensional dynamics

ẋ11 =
3

4
x11(1− x11)(−

3

2
x11 −

3

2
x21 +

3

2
) +

1

4
(x11 − x11x21)(

9

2
x11 + 2x

2
1 −

13

4
)

ẋ21 =
3

4
(x11 − x11x21)(−

3

2
x11 −

3

2
x21 +

3

2
) +

1

4
x21(1− x21)(

9

2
x11 + 2x

2
1 −

13

4
)

on the invariant manifolds. Since x11 = x11 + x12, x
2
1 = x11 + x21, x11 + x12 +

x21 + x22 = 1 and x11x22 = Kx12x21, x11 can be found from the equation
(1 − K)x211 + [1 − (1 − K)(x11 + x21)]x11 − Kx11x21 = 0. The point

¡
1
2
, 1
2

¢
is

equilibrium on every manifold, and at it x11 =
√
K

2(
√
K+1)

. The Jacobian of

the dynamic at equilibrium is J 0 = 1
32(
√
K+1)

· −18 −5√K − 13
18 −5√K + 13

¸
. Since

det J 0 =
³

1
32(
√
K+1)

´2
· 180√K > 0 and trJ 0 = 1

32(
√
K+1)

(−5− 5√K) < 0 for
any K, the equilibria are asymptotically stable on all manifolds WK. They
are also stable on the boundary.

3.2 Payoffs Do Not Depend on the Type of the Other
Player

Let us return to our economic examples. In an auction the payoff of a player
depends on own valuation but not on the valuation of the other player (but,
of course, it depends on the bids of both players). In duopoly, profit depends
on own cost but not on the cost of the other firm. Thus, payoffs to a player
do not depend on the type of the other player. In terms of the previous
section, matrices A and C are the same, as well as matrices B and D.

Dynamic within types Equations (5) and (6) reduce to

ẋ11 = x11(1− x11)((µx11 + (1− µ)x21)(a1 − a2) + a2) (14)

ẋ21 = x21(1− x21)((µx11 + (1− µ)x21)(b1 − b2) + b2) (15)

The lines where ẋ11 = 0 and ẋ21 = 0 have the same slope − µ
1−µ , therefore

they either do not intersect or coincide. In the case when the lines do not
intersect there is no interior equilibrium. All equilibria are either pure or
partially mixed. In the case when the lines coincide there is a continuum
(a line) of fully mixed equilibria. In either case there is no isolated interior
equilibrium, so the dynamic cannot rotate around a point.

Proposition 1 When payoffs do not depend on the type of the other player
there is no isolated interior equilibrium.
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Dynamic of type-contingent strategies The reduction of the dynamic
of type-contingent strategies to the 2-dimensional space in this case leads to

ẋ11 = µx11(1− x11)[(µx11 + (1− µ)x21)(a1 − a2) + a2] +
(1− µ)(x11x22 − x12x21)[(µx11 + (1− µ)x21)(b1 − b2) + b2]

ẋ21 = µ(x11x22 − x12x21)[(µx11 + (1− µ)x21)(a1 − a2) + a2] +
(1− µ)x21(1− x21)[(µx11 + (1− µ)x21)(b1 − b2) + b2]

Again, the reduction of the dynamic to manifold W1 = {x : x11x22 = x12x21}
differs from the dynamic within types only by the multiplicative terms µ and
1− µ. In the generic case, when there is no interior equilibrium, the term is
not important as the dynamic cannot cycle or spiral. In the non-generic case
of the line of equilibria in the interior it may be important, as a Lyapunov
stable point on a line may become unstable (or the other way round) after
the relative speed of changes in variables alter.

Example 5 Relative speed matters in non-generic case.

Suppose that the payoffs are given by matrices

un :
s1 s2

s1 0 4
s2 4 0

, uc :
s1 s2

s1 1 0
s2 0 1

where un gives the payoff of type n independently of the type of the other
player, and similarly for type uc. Suppose µ =

1
4
. Then the dynamic within

types is

ẋ11 = x11(1− x11)(−4)(
1

2
(x11 + 3x

2
1)− 1)

ẋ21 = x21(1− x21)(
1

2
(x11 + 3x

2
1)− 1)

The line of equilibria for the dynamic is x11 + 3x
2
1 = 2. Multiplying the first

equation by 1
4x11(1−x11) , the second by

1
x21(1−x21) , and adding them up, we obtain

ẋ11
1

4x11(1−x11) + ẋ
2
1

1
x21(1−x21) = 0. It follows that

d
dt

µ
ln

µ³
x11
1−x11

´1/4
x21
1−x21

¶¶
= 0,

or that
³

x11
1−x11

´1/4
x21
1−x21 is invariant in the dynamic. Figure 3(a) shows the

isoscales. Since the slope of them is less than the slope of the equilibrium
line, some equilibria in the middle of the interval are Lyapunov stable.
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Figure 3: Line of equilibria and isoscales

The dynamic of type-contingent strategies on W1 is

ẋ11 = x11(1− x11)(−1)(
1

2
(x11 + 3x

2
1)− 1)

ẋ21 = x21(1− x21)
3

4
(
1

2
(x11 + 3x

2
1)− 1)

Multiplying the first equation by 3
4x11(1−x11) , the second equation by

1
x21(1−x21) ,

and adding them up, we obtain ẋ11
3

4x11(1−x11) + ẋ
2
1

1
x21(1−x21) = 0. It follows that

d
dt

µ
ln

µ³
x11
1−x11

´3/4
x21
1−x21

¶¶
= 0, or that

³
x11
1−x11

´3/4
x21
1−x21 is invariant in the

dynamic. Drawing the isoscales of this expression gives the picture in Figure
3(b). All equilibria on the line are unstable.
The dynamic of type-contingent strategies on W1 is equivalent to the

dynamic within types in the sense that both ẋ11 and ẋ
2
1 always have the same

sign under both dynamics. On other invariant manifolds WK , K 6= 1 the
directions of the dynamics may differ as ẋi1 can have different signs under the
two dynamics. However, in the generic case all equilibria are on the boundary,
and it can be shown that the stability properties of them are preserved.

Proposition 2 Generically, stability properties of equilibria do not differ
under the two dynamics in the case of two types and two strategies when
payoffs do not depend on the type of the other player.

Proof. See Appendix.
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4 Relationship to the Literature and Conclu-

sion

The games in this paper are a special case of population games as asymmetric
animal conflicts described in Selten (1980). The formulation of Selten’s model
is more general as it allows players to receive correlated signals, and so meet
only own type, or only other types (though Selten himself analyses only
the latter case). As a way of generalization, the probability of meeting a
particular type may be made dependent on own type of the player.
In the literature, explicit dynamic evolutionary models were analyzed for

population games with perfectly correlated signals. The case with two strate-
gies and two types when only players of the same type meet is considered in
Cressman et al. (2000). It is shown that the two dynamics have the same
dynamic stability properties, because rotating around an interior equilibrium
is not possible with only two strategies. However, with more than two strate-
gies this does not hold anymore, as shown in Chamberland and Cressman
(2000), where an example with three strategies is given, with an equilibrium
that is asymptotically stable in the dynamic within types but not in the
dynamic on the normal form.
The opposite case when only players of different types meet is analyzed

in Gaunersdorfer et al. (1991). Even with two types and two strategies
stability properties of stationary states may differ under the two dynamics.
An equilibrium that is Lyapunov stable in the dynamic within types may
correspond to a set of equilibria on the normal form that is unstable because
equilibria on someWK ,K 6= 1 are unstable. In the present paper the opposite
may also happen: an equilibrium that is unstable in the dynamic within types
can be stable in the dynamic on the normal form as Example 4 shows.
In the other papers there was no need to distinguish whether payoffs de-

pend on the type of the other player or not, as a type could meet only one
other type (itself or the other type). This paper makes the distinction, show-
ing that it is important as the dynamics generically have the same stability
properties if payoffs do not depend on the type of the other player, but can
have different properties if the payoffs do depend on the type of the other
player. The relative speed of evolution for the two types matters when there
is an interior stationary state and the dynamics rotate around it.
The other papers consider mostly biological applications. If one takes

the view that economic situations are described by incomplete information
games, and learning can be modeled by the replicator dynamic, this paper
provides a basis for analysis of possible outcomes in economic situations.
It shows that it is important to specify how exactly learning is modeled in
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the case when payoffs depend on the type of the other player, but it is not
important when payoffs are independent of that type.
As we have shown, even with just two strategies the dynamics can have

quite different properties in the case when payoffs depend also on the type
of the other player. With more than two strategies, even in the case when
payoffs do not depend on that type, it seems generically possible to have an
equilibrium partially mixed for both types. We conjecture that its stability
properties may then differ between the two dynamics.

A Proof of Proposition 2

The dynamic within types is given by

ẋ11 = x11(1− x11)((µx11 + (1− µ)x21)(a1 − a2) + a2) = f1(x11, x21)
ẋ21 = x21(1− x21)((µx11 + (1− µ)x21)(b1 − b2) + b2) = f2(x11, x21)

and the dynamic on the normal form by

ẋ11 = x11[µ(1− x11)[(µx11 + (1− µ)x21)(a1 − a2) + a2] +
(1− µ)(1− x21)[(µx11 + (1− µ)x21)(b1 − b2) + b2]] = g11(x11, x12, x21)

ẋ12 = x12[µ(1− x11)[(µx11 + (1− µ)x21)(a1 − a2) + a2] +
(1− µ)(−x21)[(µx11 + (1− µ)x21)(b1 − b2) + b2]] = g12(x11, x12, x21)

ẋ21 = x21[µ(−x11)[(µx11 + (1− µ)x21)(a1 − a2) + a2] +
(1− µ)(1− x21)[(µx11 + (1− µ)x21)(b1 − b2) + b2]] = g21(x11, x12, x21)

or by

ẋ11 = µx11(1− x11)[(µx11 + (1− µ)x21)(a1 − a2) + a2] +
(1− µ)(x11x22 − x12x21)[(µx11 + (1− µ)x21)(b1 − b2) + b2]

ẋ21 = µ(x11x22 − x12x21)[(µx11 + (1− µ)x21)(a1 − a2) + a2] +
(1− µ)x21(1− x21)[(µx11 + (1− µ)x21)(b1 − b2) + b2]

where x11 = x11 + x12, x
2
1 = x11 + x21, x11 + x12 + x21 + x22 = 1, and x11x22 =

Kx12x21 in the interior of the state space.
Interior stationary states in the dynamic within types exist only in the

non-generic case b1a2 = a1b2. Let (µx
1
1+(1−µ)x21)(a1−a2)+ a2 = a, (µx11+

(1− µ)x21)(b1 − b2) + b2 = b, generically a 6= b. In the normal form dynamic

ẋ11 = 0⇒ µx11(1− x11)a = −(1− µ)(x11x22− x12x21)b⇒ ẋ21 =
(1−µ)b
x11(1−x11)(x

2
1(1−

x21)x
1
1(1− x11) − (x11x22 − x12x21)2). Since x21(1− x21)x11(1 − x11) − (x11x22 −
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x12x21)
2 = (1−x11)x12x11+x11x21x22, in the interior of the normal form space

it is non-zero. It may be zero in the interior of x11, x
2
1 space when x11, x22 = 0

or x12, x21 = 0. Analogously, ẋ21 = 0 implies ẋ11 6= 0 in the interior of the
normal form space. Therefore, there are no interior stationary states for the
normal form dynamic in the generic case either.
On the boundary of x11, x

2
1 space either x

i
1 = 0 or xi1 = 1. In either

case x11x22 − x12x21 = 0, and the directions of the dynamics coincide. In
particular, a boundary state that is stationary in the dynamic within types
is stationary in the normal form dynamic.
The second dynamic can have more stationary states than the first one

(e.g. when a1 = 2, a2 = −1, b1 = 1, b2 = −2, µ = 1
2
, x11 = x22 =

1
2
, x12 =

x21 = 0 then x
1
1 = x

2
1 =

1
2
is a stationary state, while in the first dynamic it is

not stationary). Each such state is boundary in the dynamic on the normal
form but interior in the space x11, x

2
1.

Stationary states that are not equilibria are unstable. Such states are
stationary because the best response strategy for at least one of the types is
absent. If this strategy appears, its proportion will grow, so such states are
not stable in the dynamic within types. They are also not stable on W1 since
signs of ẋ11 and ẋ

2
1 are preserved there. Therefore they are not stable in the

dynamic on the normal form. States that are stationary in the normal form
dynamic but not in the dynamic within types are unstable by this argument
as they are not equilibria.
If a stationary state is a strict equilibrium, then it is asymptotically stable

in both dynamics, since the equilibrium strategy is the unique best response
to all small perturbations of itself.
Consider then a boundary stationary state that is an equilibrium, which

may be pure or partially mixed, and which is not strict. In the generic case,
such an equilibrium is partially mixed, and only one of the two types is
indifferent in equilibrium. Let the equilibrium be on x11 = 0, let s2 be the
unique best response for type t1, and let type t2 be indifferent in equilibrium
(the reasoning for an equilibrium on other boundaries is analogous). This
implies that ẋ11 < 0 in a neighborhood of equilibrium, or that (µx11 + (1 −
µ)x21)(a1−a2)+a2 < 0. Also, (µx11+(1−µ)x21)(b1−b2)+b2 = 0 at equilibrium.
The eigenvalues of the Jacobian of the dynamic within types are (µx11 +

(1 − µ)x21)(a1 − a2) + a2 < 0 and x21(1 − x21)(1 − µ)(b1 − b2). Thus in the
generic case the equilibrium is stable iff b1−b2 < 0 and unstable iff b1−b2 > 0.
(b1 − b2 = 0 is not a generic case).
The eigenvalues of the Jacobian of the dynamic on the normal form at

equilibrium are µ[(µx11+(1−µ)x21)(a1−a2)+a2] < 0, µ[(µx11+(1−µ)x21)(a1−
a2) + a2] < 0, and x21(1 − x21)(1 − µ)2(b1 − b2). If b1 − b2 < 0 they are all
negative, and the equilibrium is stable, while if b1 − b2 > 0, the equilibrium
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is unstable. This is the same condition as for the stability of equilibrium in
the dynamic within types, thus stability properties of equilibria in these two
dynamics coincide.
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