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1 Introduction

Utility functions over monetary outcomes are essential to decision analysis, because they
are often a necessary condition to guide or describe choices among risky gambles. In ap-
plications, the task of working with utility functions is usually made more manageable by
restricting attention to a few convenient parametric families.

Under the expected utility paradigm, the dominant approach to constrain the set of
admissible parameterizations goes through the assumption of risk aversion and leads to
concave utility functions. The best known example is constant absolute (or relative) risk
aversion, which limits the choice to linear and exponential (or power and logarithmic) func-
tions. Other examples include proper risk aversion (Pratt and Zeckhauser, 1987), standard
risk aversion (Kimball, 1993), and constant risk exchange (Farquhar and Nakamura, 1987).
In a well-received proposal, Bell (1988) shows how the one-switch rule — increasing wealth
cannot switch preferences among two risky gambles more than once — implies four func-
tional forms for the utility function. Bell and Fishburn (2000) carries over and generalizes
this argument to three non-expected utility models.

This approach does not work for the parameterization of the utility functions in prospect
theory. An obstacle stems from the differential treatment of the assumption of asset inte-
gration. Expected utility maintains that the argument of the utility function u(w) is total
wealth. Prospect theory contends that the “carriers of value are changes in wealth” and
that the value is a function of two arguments: “the asset that serves as reference point,
and the magnitude of the change”; see Kahneman and Tversky (1979, p. 277). Inspired
by Markowitz (1952), they advocate a value function v(x;m) where x denotes increments
in wealth and m is the reference point. In practice, prospect theory holds that preferences
are not much affected by “small or even moderate variations” in the reference point and
hence assumes that the value function depends only on the wealth increments x, writing it
as v(x).

The fundamental difficulty, of course, is that expected utility and prospect theory make
conflicting assumptions about the risk attitude of an agent. According to prospect theory,
the failure of asset integration engenders a reflection effect and loss aversion. The first
one yields risk aversion over gains and risk propensity over losses. The second one induces
a steeper slope of the utility function over losses. The two effects imply that v(x) is S-
shaped with a steeper slope below the reference point. A third problem is that a complete
parameterization of prospect theory requires to deal also with the probability weighting
function, increasing the difficulty of calibrating a model.

It is not surprising, therefore, that the existing parameterizations of prospect theory are
not satisfactory. Neilson and Stowe (2002) makes a compelling argument that the proposed
parameterizations may “fit the experimental data well, [but] they have poor out-of-sample
performance” and concludes that “alternative functional forms are needed” (p. 44). The
purpose of this paper is to describe a parameterization for utility and value functions that
works across expected utility and prospect theory. In a nutshell, we work out a direct
parameterization of the risk aversion functions — turn to Equation (5) below for a preview
— and then recover from this the associated utility (or value) functions. As a byproduct of
this technique, all the functions in our family are twice differentiable.
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The most important advantages of the proposed parameterization are the following.
First, it embeds all the HARA utility functions, which include the most commonly used
functional forms in expected utility. Second, there are only four possible shapes for the func-
tional forms: convex, concave, S-shaped and reverse S-shaped. Third, the parameterization
requires at most four parameters; moreover, one of these can be directly interpreted as the
reference point assumed by prospect theory. Fourth, the parametric family is the analog
of a well-known parameterization for probability distribution functions; in particular, this
suggests an estimation procedure which is easier to implement than the mean residual error
technique typically used for utility assessment and calibration.

On the downside, our parameterization includes utility (or value) functions which have
no closed-form representation. However, since their first derivatives always admit an explicit
representation, they can be easily recovered by numerical integration. In a world where
decision analysis is usually carried out by means of interactive computer software, we see
this as an acceptable shortcoming. We also note that preference functionals like expected
utility can still be analytically computed by means of a trivial integration by parts. The
paper also discusses an alternative interpretation of expected utility that makes working
with first derivatives very natural.

Finally, a word of caution: the arguments we provide to support the mathematical
interest of the proposed parametric family have a theoretical bias. The acid test for a
parameterization must come from empirical work comparing the performance of alternative
families over tasks such as utility assessment and calibration. Since we lack a proper training
as experimentalists, these important tests are better left where the comparative advantage
lies.

The plan of the paper is the following. Section 2 presents a parameterization of the risk
aversion function which is closely linked to the Pearson system of probability distributions.
Section 3 provides a general description of the utility functions associated with this param-
eterization. Section 4 discusses the target-based interpretation of expected utility as a tool
for the construction of preferences and demonstrates how to use simple statistics associated
with the utility function to derive tests or describe psychological properties. Section 5 de-
scribes an estimation procedure for the parameters, which is known in the literature as the
method of moments. Section 6 offers some concluding remarks, including a suggestion to
extend the parameterization to probability weighting functions.

2 The Pearson equation

We begin with expected utility. Consider a von Neumann-Morgenstern utility function u(w)
defined over monetary outcomes, that we interpret as final wealth positions. The support
of u(w) is the (possibly unbounded) interval (w1, w2) of its points of increase. We assume
that over its support u(w) is bounded, strictly increasing and twice differentiable, with
u′(w) > 0. Since u(w) is unique up to a strictly increasing affine transformation (that is, it
is defined on an interval scale), we normalize its range so that inf u(w) = 0 and supu(w) = 1.
When necessary, we extend the domain of u by continuity, taking u(w) = 0 for w ≤ w1 and
u(w) = 1 for w ≥ w2.
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Under our assumptions, the (local and absolute) risk aversion function

r(w) = −u′′(w)
u′(w)

is properly defined over the same support as u. The interpretation of r(w) is well-known.
It equals twice the risk premium per unit of variance for an infinitesimal zero-mean risk at
a given level of wealth w. The risk aversion function was first studied in deFinetti (1952)
and independently rediscovered by Arrow (1971) and Pratt (1964).

Even if its definition is local, the risk aversion function characterizes preferences in a
global sense as well. As Pratt (1964, p. 126) puts it, “the local risk aversion function r
associated with any utility function u contains all essential information about u”. More
precisely, we can recover u(w) from r(w). Integrating −r(w) and exponentiating gives
ecu′(w). This can be integrated again to derive ecu(w)+d, where c and d are two immaterial
constants of integration. Consistent with our normalization, we choose the version of u′ such
that ∫ w2

w1

u′(w) dw = 1 (1)

so that c = d = 0.
The one-to-one relationship between risk aversion functions and (normalized) utility

functions makes it possible to advance a direct parameterization of the risk aversion function
and derive from this a class of utility functions. The best known example for this approach
is the class of HARA utility functions. They inherit this name from being associated with
an hyperbolic risk aversion function, which (up to irrelevant constants) can be written as

r(w) =
1

α + βw
(2)

The HARA utility functions include as special cases the utility functions with constant
absolute risk aversion for β = 0 (in particular, risk neutrality obtains for α → ∞) and
those with constant relative risk aversion for α = 0. They are often invoked as sufficient
(and sometimes) necessary conditions in several theoretical results, ranging from linear risk
sharing rules (Cass and Stiglitz, 1970) to the optimality of myopic policies in dynamic
portfolio selection (Merton, 1969). Therefore, we require that our parametric family should
embed the HARA functions as a special case.

Let us now turn to prospect theory. We assume that the support of v(x) is a (possibly
unbounded) interval over which v(x) is bounded, strictly increasing and twice differentiable,
with v′(x) > 0. Consistent with common practice and the axiomatization in Wakker and
Tversky (1993), we also assume that v(0) = 0 and that v(x) is defined on a ratio scale.

Since expected utility deals with functions over total wealth and prospect theory deals
with functions over wealth increments, we need to bridge the gap between utility functions
and value functions. This requires to specify how to carry out asset integration. We assume
that the effects of the reference point and of the wealth increments are additively separable.
Hence, given the value function v(x) over wealth increments and a reference level m, the
utility function u(w) over the total wealth w = m + x can be recovered as

u(m + x) = u(m) + v(x). (3)
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Note that, although this assumption implies that a lottery maximizes the expected value of
u(m + x) if and only if it maximizes the expected value of v(x), the two theories may not
generate the same preferences under risk. Prospect theory allows for probability distortions
and therefore we cannot presume that the expected value is computed using the stated
probabilities. Consequently, we do not claim equivalence of choice behavior under the two
theories.

Define r̂(x) = −v′′(x)/v′(x) as a formal equivalent of the risk aversion function for v(x).
The function r̂(x) cannot be interpreted as a risk aversion function, because probability dis-
tortions may occur under prospect theory. However, after our normalization, Equation (3)
implies u′(m + x) = v′(x). This has two important consequences. First, the recovery of
ecv(x) + d from r̂(x) is analogous; in particular, we choose the version of v′ such that∫ w2−m

w1−m
v′(x) dx = 1

so that c = d = 0.
Second, we can unify the treatment of the two paradigms by dealing with the function

r(m + x), where m is a reference level and w = m + x is the final wealth position. Within
the expected utility paradigm, the function r(m+x) = r(w) is interpreted as a risk aversion
function from which we can recover the utility function u(w). Within the prospect theory
paradigm, r(m+x) = r̂(x) is no more than the formal equivalent of a risk aversion function,
from which we can identify the utility function u(m + x) by carrying out asset integration
under (3). For convenience, regardless of the paradigm, from now on we call r a risk aversion
function.

Under prospect theory, the most representative property of the value function is its
S-shape, which is usually justified as a consequence of diminishing sensitivity. Since v(x)
is concave if and only if r(m + x) is positive, a parameterization for r consistent with an
S-shape for v must allow for a case in which the sign of r(m + x) is equal to the sign of x.
We assume linearity and require that our parameterization embeds the equation

r(m + x) =
x

γ
(4)

Note that γ → +∞ corresponds to the linear case. Moreover, γ < 0 would generate a
reverse S-shape. In light of the controversial case raised in its favor by Levy and Levy
(2002), we prefer not to impose γ > 0.

Equations (2) and (4) represent the two special cases that we want to embed in our pa-
rameterization of the risk aversion function. They correspond respectively to an hyperbolic
and to a linear functional form. Taking reciprocals, these would respectively be transformed
into a linear and a hyperbolic function. Therefore, it only seems natural to attempt com-
bining them through an arithmetic or an harmonic mean. We choose the latter because
it yields a rich parameterization that is also widely studied in statistics. After renaming
constants, the harmonic mean of r(w) = 1/(α + βw) from (2) and r(w) = (w −m)/γ from
(4) can be written as

r(w) =
w −m

aw2 + bw + c
. (5)
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This is the parametric family of risk aversion functions discussed in this paper. Section 3
presents the main utility functions associated with this family. (From now, we subsume the
value functions under the heading of utility functions for simplicity.) We discuss here the
relationship of (5) with a well-known parameterization used in statistics.

Between 1890 and 1895, Pearson (1895; see also 1901, 1916) worked out a system of
probability distributions in which every member has a density function f(x) which satisfies
the differential equation

d log f(x)
dx

= − x−m

ax2 + bx + c
. (6)

His purpose was to offer a four-parameter family of distributions from which one could
select a member to approximate empirical distributions. The similarity with the problem of
designing a parametric family for utility assessment and calibration runs deeper than one
might suspect by comparing (5) and (6).

Under our assumptions, u(w) is a bounded, strictly increasing and twice differentiable
function defined over R and normalized between 0 and 1. Moreover, u′(w) integrates to 1.
Hence, u(w) is formally equivalent to a probability distribution function and u′(w) to a
probability density function. This observation recurs in the literature. Borch (1968) uses it
to study the probability of ruin. Berhold (1973) exploits it to propose a family of natural-
conjugate utility functions inspired by results in Bayesian statistics. Castagnoli and LiCalzi
(1996) shows that this formal equivalence can be given meaning by interpreting expected
utility as the probability of meeting a target which is imperfectly known. Bordley and
LiCalzi (2000) builds on this to propose a target-based paradigm which preserves the results
of the expected utility model by giving up the notion of a utility function; see Section 4, or
Bordley (2002) for a more extensive discussion.

When u(w) is interpreted as a probability distribution function, u′(w) turns out to be
its density function. Since r(w) = −d log u′(w)/dw, (5) and (6) are formally equivalent.
For this reason, we refer to them respectively as the Pearson equation for risk aversion
functions and the Pearson equation for densities. The estimation technique for assessing
utility functions suggested in this paper is the adaptation of Pearson’s method of moments
for the selection of distribution functions. This technique is described in Section 5.

3 The Pearson system of utility functions

The solutions to (6) are often nicknamed Pearson densities. By analogy, we call Pearson
utility functions those associated with the risk aversion functions described by (5). The
purpose of this section is to provide an appreciation of the main properties and of the
diversity of the set P of Pearson utility functions, which includes as special cases almost
all the most important examples commonly used in the literature — the biggest exception
being some of the one-switch functions proposed in Bell (1988).

A convenient way to approach the study of the Pearson system of utility functions is to
rewrite (5) as

u′′(w) = −
[

(w −m)
aw2 + bw + c

]
u′(w) (7)
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and to work out the properties of u by studying the solutions u′ of (7). Note that we are
only interested in those solutions where u′(w) ≥ 0 over the support of u — corresponding
to an increasing utility function. Hence, formal solutions of (7) may be restricted to an
interval (w1, w2) where u′(w) ≥ 0, assigning the value u′(w) = 0 outside of the interval.

A few properties follow immediately. First, since u′(w) cannot be strictly negative, a
Pearson utility function can have at most one inflexion point at m. This implies that the
risk attitude can switch at most once. Hence, a Pearson utility function has only one of
four shapes: concave, convex, S-shaped and reverse S-shaped. These are exactly the typical
cases considered in most of the literature. Note also that the risk attitude switches if and
only if the reference point m belongs to the interval (w1, w2). Therefore, any technique
which selects a “best fit” among the utility functions associated with (7) provides a simple
method for deriving m endogenously. Contrast this with prospect theory, which bypasses
the issue of estimating the reference point by assuming m = 0; this choice reduces the
number of free parameters in (7) to three.

Second, if u is a Pearson utility function over an interval S, it is also a Pearson utility
function over any subinterval S′ ⊂ S. To avoid ambiguities, we always assume the largest
possible support. However, in applications where only a few values for the utility function
have been elicited, this property allows one to estimate or calibrate a Pearson utility function
over a smaller interval and then consistently extend it — if necessary — to a larger support.
As we see below, the maximal support for a Pearson utility function may range from a
bounded interval to R, depending on the combination of the parameters.

A third useful property is that the set P of Pearson utility functions is invariant to
shift and rescaling of the x-units: if u1(x) belong to P, so does u2(x) = u1(αx + β) with
α > 0. This condition is the equivalent for utility functions of the location-scale conditions
for random variables in Meyer (1987). Moreover, P is also invariant under an order reversal:
that is, if u1(x) is in P, so does u2(x) = u1(αx+β) for any α 6= 0. This last property makes
it possible to describe P by partitioning it in equivalence classes, each of which is closed
under shifts, rescaling and order reversal.

Pearson himself organized the solution to his equation in a system of twelve classes iden-
tified by a number. His numbering criterion has no systematic basis, but it has nonetheless
become customary to use it and thus we retain it. Since some of the original Pearson’s
classes can be retrieved as limiting cases of other classes, we follow Johnson et alii (1994)
and explicitly discuss only the major cases. See Kendall (1948) for a more detailed expo-
sition. To circumvent the nonexistence of closed-form solutions for some classes of utility
functions, we list u′(w) as representative element. Recall the interpretation of u′ as the ana-
log of the density function of a distribution function. When possible, we use this analogy
to suggest a nickname for each class.

The form of the solution to (7) depends on the nature of the zeros of the denominator
(aw2 + bw + c) on the right-hand side. In the special case a = b = 0, we obtain

u′(w) = K exp
[
−(w −m)2

2c

]
for x∈R, (8)

where K = (
√

2πc)−1 is a constant chosen to normalize the integral of u′(w) to 1. The
exact value of K > 0 is irrelevant for decision analytic purposes, so we omit its specification
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in the following. The resulting normal utility function is not assigned to any class and can
be viewed as a limiting case. Except for III, assume a 6= 0 in the following discussion.

I. (Beta) Suppose ∆ := b2 − 4ac > 0 and assume that the two real roots r1 < r2 of
(aw2 + bw + c) = 0 lie on opposite sides of the support of u. Then the representative
element is

u′(w) = K(w − r1)k1(r2 − w)k2 for w∈(r1, r2),

with k1 = (r1 −m)/[a(r2 − r1)] > −1 and k2 = (m − r2)/[a(r2 − r1)] > −1. (We leave it
understood that u′(w) = 0 elsewhere.)

The shape of the corresponding utility function u depends on the signs of k1 and k2: if
k1 · k2 < 0, it is concave when k1 < 0 and convex when k1 > 0; if k1 · k2 > 0, it is S-shaped
when k1 > 0 and reverse S-shaped when k1 < 0. The symmetric case with k1 = k2 6= 0 is
known as Class II. The risk-neutral utility function u(w) = w is the limiting case associated
with k1 = k2 → 0.

III. (Gamma) Suppose a = 0 and b 6= 0. For c > 0, the representative element is

u′(w) = K(c + bw)k exp
(
−w

b

)
for w > −c

b
,

with k = (c/b2) + (m/b). The corresponding utility functions are S-shaped if k > 0 and
concave if k < 0. For c < 0, the support becomes w < −(c/b) and the corresponding utility
functions are reverse S-shaped for k > 0 and convex for k < 0. The case k = 0 gives
Class X, which is formed by the exponential utility functions.

IV. Suppose ∆ < 0. Then the representative element is

u′(w) = K
[
C + a(w + B)2

]− 1
2a exp

[
m + B√

aC
arc tan

w + B√
(C/a)

]
for w∈R,

where B = b/(2a) and C = c− [b2/(4a)] = c−B2. The corresponding utility functions are
S-shaped.

V. (Inverse gamma) Suppose ∆ = 0 and let r be the only root of (aw2 + bw + c) = 0.
When (m− r)/a > 0, the representative element is

u′(w) = K(w − r)−
1
a exp

(
− m− r

a(w − r)

)
for w > r.

The corresponding utility functions are S-shaped for a > 0 and concave for a < 0. When
(m − r)/a < 0, the representation is similar but the support is w < r. Moreover, the
corresponding utility functions are reverse S-shaped for a > 0 and convex for a < 0. Utility
functions with constant relative risk aversion belong to this class for m = r = 0. Moreover,
when m = r, and |a| < 1, we have the special case u′(w) = K(w−r)−1/a. This is respectively
known as Class VIII and Class IX for a > 0 and a < 0.
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VI. (Inverse beta) Suppose ∆ > 0 and assume that the two real roots r1 < r2 of
(aw2 + bw + c) = 0 lie on the same side of the support of u. Assuming a support on the
right of r2, the representative element is

u′(w) = K(w − r1)k1(w − r2)k2 for w > r2,

with k2 < −1 and k1 + k2 < 0. The corresponding utility functions are concave. A similar
representation holds when the support lies on the left of r1, but in this case the utility
functions are convex. This class bears a relationship with Class I analogous to the one
between III and V.

VII. Suppose m = b = 0, a > 0 and c > 0. Then the representative element is

u′(w) = K(c + aw2)−(1/2a) for w∈R.

The corresponding utility functions are S-shaped.

The representative element for each of these classes is the derivative of the utility function
u. This looks unusual, and possibly hard to interpret. We have two comments in this
respect. The first one is that there is no loss of generality (except for the assumption of
differentiability itself) or computational ability. A simple integration by parts shows that
knowledge of the functional form of u′ can replace knowledge of the functional form of u in
the computation of the expected utility of a risky lottery X. (The proof is in the appendix.)

Proposition 1 Let u be differentiable. Given a random variable X with distribution func-
tion F , suppose that E|u(X)| < ∞. Then

Eu(X) = u(0)−
∫ 0

−∞
u′(x)F (x) dx +

∫ +∞

0
u′(x)[1− F (x)] dx.

A similar argument applies to several (even if not all) the different versions of prospect
theory. For instance, consider the cumulative prospect theory of Tversky and Kahneman
(1992) when the two nonadditive measures w+ and w− over gains and losses can be written
as two (possibly different) distortions g+(·) and g−(·) of the underlying probability measure.
In this case (recall that v(0) = 0), the preference functional is∫ 0

−∞
v(x) d(g− ◦ F )(x)−

∫ +∞

0
v(x) d[g+ ◦ (1− F )](x)

which, upon integration by parts, becomes

−
∫ 0

−∞
v′(x)(g− ◦ F )(x) dx +

∫ +∞

0
v′(x)[g+ ◦ (1− F (x))] dx.

The second — and, in our eyes, more important — comment is that there exists a
plausible point of view which actually makes working with u′ the natural option for assessing
and calibrating a preference functional under risk. We turn to illustrate it in the next
section.
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4 Targets and simple statistics

Let us start with an example. Suppose that the agent is trying to decide which of several
risky investments he should commit to in view of saving for his retirement. The agent does
not know which investment he likes best and therefore must think his way about the best
choice. Here is one possible route. Suppose that the agent can pinpoint the target wealth
t that he would like to achieve by the time of his retirement. In this ideal situation, he
should pick an investment which delivers a final wealth X that maximizes the probability
P (X ≥ t) of meeting his target.

However, at the moment of making his choice, the agent generally lacks crucial infor-
mation about the exact amount of the target he should seek. In other words, the target is
not perfectly known. We can model this by means of a random variable T = t + ε, where ε
is a zero-mean error term that is stochastically independent of the risky options available
to the agent. The natural extension of the previous criterion is to pick an investment that,
at the moment of making the choice, maximizes the probability P (X ≥ T ) of meeting the
imperfectly known target.

Suppose that the (stochastically independent) target T has distribution function u(x)
and that the final wealth X associated with an investment has distribution function F (x).
Then

P (X ≥ T ) =
∫

P (x ≥ T ) dF (x) =
∫

u(x) dF (x).

Since the mathematical representation of the functional is the same, an agent trying to
maximize the probability of meeting a target with distribution function u(x) would make
exactly the same choices as another agent trying to maximize the expected value of a
utility function u. In other words, target-based decisions and expected utility decisions
are observationally equivalent. Therefore, these two competing viewpoints have the same
explanatory power, and it is a matter of taste (or convenience) which one to adopt.

Under the target-based perspective, the function u(w) is the cumulative distribution
function of an imperfectly known target. Therefore, working with u′(w) is equivalent to
dealing with its probability density function. Entrenched usage favors a value-based lan-
guage and therefore suggests to assess a utility function u. The target-based perspective
brings to the fore a probability-based language and ends up dealing with the density func-
tion u′ of the target. There are advantages in exploring this alternative point of view. See
also Bordley and LiCalzi (2000).

For instance, consider the reflection effect of prospect theory. Arguing from a value-
based perspective, it is defined by the requirement that the value function v(x) is S-shaped.
This mathematical characterization is sufficient if prospect theory has only the modest goal
of accounting for what people actually do. However, a more compelling approach should also
explain how people construct their preferences whenever they do not happen to know them
already. In this respect, the target-based viewpoint suggests that, if people are trying to
“beat” some implicitly defined target, the reflection effect is the consequence of estimating
a density function u′(m + x) which is unimodal around the reference point m.

Given the scope of this paper, this is not the place for an exhaustive comparison of
the two viewpoints. We have chosen to couch the presentation in the language of utility,
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because this is the established convention in the profession. The short discussion above
in this section is meant to suggest that an alternative and perhaps more natural route
would be to turn the problem of providing a parameterization for u into the problem of
parameterizing the density u′ of an imperfectly known target.1

There are at least two other advantages in viewing u as a probability distribution func-
tion. First, this may help to devise new experimental tests. The key point is to compute
and make use of simple statistics such as the mode or the median or the moments associated
with u. Note that working with these statistics is (consistent with but) independent of the
target-based interpretation. For instance, while the target-based interpretation provides an
argument to define the reference point m as the mode of the imperfectly known target, the
definition may stand on its own. For simplicity, we equate the reference point and the mode
associated with u in the following example.

An important tenet of prospect theory is the notion of loss aversion, which substanti-
ates the idea that losses matter more than gains: an agent usually turns down fair gambles
around his reference point. The common rendition formalizes this property by the assump-
tion that u′(m + x) ≤ u′(m− x) for x > 0. However, as Kahneman and Tversky (1979) is
careful to show, a slightly weaker assumption suffice:

u(m)− u(m− x) ≥ u(m + x)− u(m) for all x > 0. (9)

In words, the increment in utility from reducing a loss by x is greater than (or equal to)
the increment in utility from making a gain of equal amount. (See Neilson (2002) for an
alternative and stronger definition of loss aversion.)

If we think of u as a distribution function and let x → +∞ in (9), we obtain u(m) ≥
1 − u(m); that is, u(m) ≥ 1/2. Therefore, a necessary condition for u to exhibit loss
aversion is that the median associated with u should not be greater than its mode. This
is a simple and general property that can be tested using elicited utility functions. Under
the additional assumption that u is a Pearson utility function, we can derive a second test.
Sato (1997) has shown that unimodal Pearson densities with finite mean always satisfy
the mean-median-mode inequality, which states that the median is always contained in the
(possibly, degenerate) interval delimited by the mean and the mode. Therefore, a necessary
condition for S-shaped utility functions to exhibit loss aversion is that their (finite) first
moment should not be greater than the mode.

The second type of advantage is that we can use the statistics associated with u to
provide simple but effective indicators for psychological patterns regarding preferences under
risk. Here is an example. Consider the normal utility function given in Equation (8). The
two parameters m and c describe respectively the position of the reference point and the
intensity of the diminishing sensitivity effect. The greater m, the larger the reference point;
analogously, the smaller c, the sharper the changes in utility associated with increments in
wealth from the reference point. On the other hand, m and c are easily recognized as the
mean and the variance associated with u. Hence, at least for this type of utility functions, the
second (central) moment can be used to measure the strength of the diminishing sensitivity

1 A bit of reverse engineering also shows how much this paper has borrowed from Pearson’s approach
about fitting theoretical density functions to empirical distributions.
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effect. The next section builds on the moments associated with u to derive a procedure to
fit Pearson utility functions to elicited utilities.

5 The method of moments

In general, the assessment of utility functions over money is carried out in three stages:
first, one elicits a few values for the utility function; second, one selects a parametric class
of utility functions; third, one estimates the parameters by searching for the best fit with
the data. This section presents a method to handle the third stage for the Pearson family of
utility functions. As we discuss below, this method of moments can be used in alternative
or in conjunction with the standard approach that estimates parameters by minimizing the
sum of squared errors or some analogous measure.

As for the first stage, under the expected utility paradigm there exist several methods
for the elicitation of utilities; see Farquhar (1984) for a survey. However, the most reli-
able among these techniques require the assumption that the agent does not distort the
probabilities of the risky outcomes. This assumption is untenable, as the successful chal-
lenge of prospect theory to the descriptive validity of expected utility has made clear. In a
laudable effort to make utility elicitation independent of the paradigm, Wakker and Den-
effe (1996) have thus developed the tradeoff method, which is not affected by probability
distortions. This advantage has been promptly recognized and endorsed by the advocates
of prospect theory; see for instance Abdellaoui (2000), Bleichrodt and Pinto (2000), and
Fennema and van Assen (1999). Hence, utility elicitation is by now essentially unified across
the paradigms of expected utility and prospect theory.

In general, the method of moments is a statistical technique to estimate probability
distributions by equating their theoretical moments with the moments of the empirical
distributions. When applied to the estimate of Pearson distributions, it consists in choosing
the four parameters in (6) to make sure that the theoretical moments of the associated
distribution function match the empirical moments. We present the method with reference
to the Pearson equation (6) for the density function and then show how to apply it to the
estimate of the coefficients of the Pearson equation (5) for the risk aversion function.

Given a density function f(x) that satisfies the Pearson equation (6), suppose that the
first four moments µk =

∫
xkf(x) dx for k = 1, . . . , 4 exist and are finite. Using (6), a bit of

manipulation — see Johnson et alii (1994, p. 22) — leads to the system of linear equations

m + 2µ1a + b = µ1

µ1m + 3µ2a + 2µ1b + c = µ2

µ2m + 4µ3a + 3µ2b + 2µ1c = µ3

µ3m + 5µ4a + 4µ3b + 3µ2c = µ4

, (10)

from which we obtain the four parameters m,a, b, and c as a function of the first four
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moments:

m =
9µ1µ

3
2 + 8µ1µ

2
3 + 12µ3

1µ4 + 3µ2
2µ3 + µ3µ4 − 20µ2

1µ2µ3 − 13µ1µ2µ4

18µ3
2 + 12µ2

3 − 6µ2
1µ

2
2 + 8µ3

1µ3 + 10µ2
1µ4 − 10µ2µ4 − 32µ1µ2µ3

a =
6µ3

2 + 3µ2
3 − 3µ2

1µ
2
2 + 4µ3

1µ3 + 2µ2
1µ4 − 2µ2µ4 − 10µ1µ2µ3

18µ3
2 + 12µ2

3 − 6µ2
1µ

2
2 + 8µ3

1µ3 + 10µ2
1µ4 − 10µ2µ4 − 32µ1µ2µ3

b =
−3µ1µ

3
2 − 2µ1µ

2
3 − 6µ3

1µ4 − 3µ2
2µ3 − µ3µ4 + 8µ2

1µ2µ3 + 7µ1µ2µ4

18µ3
2 + 12µ2

3 − 6µ2
1µ

2
2 + 8µ3

1µ3 + 10µ2
1µ4 − 10µ2µ4 − 32µ1µ2µ3

c =
−4µ2

1µ
2
3 + 3µ2µ

2
3 − 4µ2

2µ4 + 3µ2
1µ2µ4 + µ1µ

2
2µ3 + µ1µ3µ4

18µ3
2 + 12µ2

3 − 6µ2
1µ

2
2 + 8µ3

1µ3 + 10µ2
1µ4 − 10µ2µ4 − 32µ1µ2µ3

(11)

We warn that statisticians are used to assume µ1 = 0 and solve for the parameters
as a function of the central moments or other statistics. Therefore, formulas taken from
handbooks in statistics will in general look different (and probably nicer). Here is an
example, with µ1 possibly different from 0. Let X be a random variable with density
f(x). Let µ and σ denote the mean and the standard deviation of X and denote the two
coefficients of skewness and kurtosis for X by

β1 =
E(X − µ)3

σ3
and β2 =

E(X − µ)4

σ4
− 3.

Then the solution in (11) can be rewritten as

m = µ +
σβ1(β2 + 6)

12β2
1 − 10β2 − 12

a =
3β2

1 − 2β2

12β2
1 − 10β2 − 12

b = −σβ1(β2 + 6) + 2µ(3β2
1 − 2β2)

12β2
1 − 10β2 − 12

c =
µ2(3β2

1 − 2β2) + µσβ1(β2 + 6) + σ2(3β2
1 − 4β2 − 12)

12β2
1 − 10β2 − 12

(12)

In particular, given m and a, the values of b and c can be obtained as

b = µ(1− 2a)−m

c = µ2a + (m− µ)
[
µ− 2σ

β1

] (13)

We now turn to the estimate of the risk aversion function in (5). Let there be a set of
elicited utilities; formally, for some w1 < w2 < . . . < wn, we are given the corresponding

12



values of the utility function u(w1) ≤ u(w2) ≤ . . . ≤ u(wn) . To rule out the trivial case of
a constant utility function, we assume that at least one strict inequality holds. Apply the
standard normalization and rescale utilities so that u(w1) = 0 and u(wn) = 1. Alternatively,
one may specify one or two additional points w0 < w1 and wn+1 > wn and let u(w0) = 0
and u(wn+1) = 1.

We need to compute the “moments” associated with this utility function. Recall that
u(w) shares the formal properties of a distribution function but at this stage we only know
a few points on its curve. Thus, we approximate it by the piecewise linear function û(w)
joining (wi, u(wi)) to (wi+1, u(wi+1)) for all i = 1, 2, . . . , n − 1. Using the corresponding
piecewise constant “density”

û′(w) =
û(wi+1)− û(wi)

wi+1 − wi
for w in (wi, wi+1),

we obtain the four moments by computing

µk =
∫ wn

w1

xkû′(w) dw for i = 1, 2, 3, 4.

These moments are substituted in (11) — or, equivalently, in (12) — to derive the four
parameters m,a, b, c and, possibly, other statistics such as σ or β1. Once the values of
the parameters have been obtained, a glance to the list of the major classes of Pearson
utilities in Section 5 suffices to identify the functional form for u′(w). In general, then,
numerical integration is necessary to reconstruct u from u′ because some of the Pearson
utility functions have no closed-form representation.

As described above, the method of moments simultaneously selects a functional form
and its exact parametric specification. This provides an elementary way to estimate the
utility function. On the other hand, the method has little theoretical appeal except for its
simplicity. (Since the Thirties, for instance, it has been replaced as the method of choice for
the estimate of density functions in statistics by the maximum likelihood method suggested
by Fisher.) An alternative possibility is to use it only to select a functional form from the
classes in Section 5 and then apply standard techniques such as the minimization of mean
square errors for the choice of the exact values of the parameters.

6 Closing remarks

Prospect theory (and its variants) presume the existence of a probability weighting function
g. Recent formulations require that g is an increasing and continuous function that maps
from [0, 1] onto [0, 1]. For instance, the two best known parameterizations for g are g(p) =
(pk)/[pk + (1 − p)k]1/k in Tversky and Kahneman (1992) and g(p) = exp[−(− ln p)k] in
Prelec (1998). Both of these functions are reverse S-shaped to fit the empirical evidence.

By analogy with the treatment of utility functions, one is naturally led to consider
probability weighting functions that satisfy the Pearson equation. Given the additional
constraint that the support of g is [0, 1], this implies that the only possible choice belongs
to Class I (Beta) and therefore suggests to look into a probability weighting function g
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such that g′(p) = [1/B(α, β)]xα(1 − x)β. Adding the constraint of reverse S-shapedness
imposes α < 0 and β < 0. This derivation of a possible parameterization is purely formal,
and at this stage we are unable to offer a probabilistic interpretation for g(p) similar to
the target-based interpretation of u. On the other hand, it adds plausibility to our modest
claim that the Pearson equation is a natural source of alternative parameterizations.

Finally, we wish to point out that the limited number of parameters characterizing
Pearson utility functions simplifies the identification of specific conditions over preferences.
For instance, consider standard risk aversion by Kimball (1993). It is well known that
a sufficient condition for a utility function u to exhibit standard risk aversion is that its
coefficient of risk tolerance (i.e., the reciprocal of the risk aversion function) is increasing
and concave — see Gollier (2001, p. 166). Imposing these two conditions on the reciprocal
of the risk aversion function in (5), we obtain that a > 0 and am2 − bm − c ≤ 0 imply
that the utility function u(m + x) exhibits standard risk aversion over positive increments
x above the reference point. In particular, if we assume m = 0 as in prospect theory, a > 0
and c ≤ 0 suffice to ensure that the value function exhibits standard risk aversion over
gains.

A Proofs

Proof of Proposition 1. By integration by parts,∫ b

0
u(x) dF (x) = u(0)[1− F (0)]− u(b)[1− F (b)] +

∫ b

0
u′(x)[1− F (x)] dx (14)

Since E|u(X)| < ∞,

E|u(X)| =
+∞∑
k=0

∫ k+1

k
|u(x)|dF (x) < ∞

implies
+∞∑
k=b

∫ k+1

k
|u(x)|dF (x) → 0

as b ↑ ∞. Thus, as b ↑ ∞,

0 ≤ u(b)[1− F (b)] ≤ |u(b)|P (|X| ≥ b) ≤
+∞∑
k=b

∫ k+1

k
|u(x)|dF (x) → 0

Going to the limit in (14),∫ +∞

0
u(x)dF (x) = u(0)[1− F (0)] +

∫ +∞

0
u′(x)[1− F (x)] dx

By a similar argument,∫ 0

−∞
u(x) dF (x) = u(0)F (0)−

∫ 0

−∞
u′(x)F (x) dx

from which the result follows. 2
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