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Abstract

In a Bayesian game players play an unknown game. Before the
game starts some players may receive a signal regarding the specific
game actually played. Typically, information structures that deter-
mine different signals, induce different equilibrium payoffs. In zero-
sum games the equilibrium payoff measures the value of the partic-
ular information structure which induces it. We pose a question as
to what restrictions do Bayesian games impose on the value of infor-
mation. We provide answers in two kinds of information structures:
symmetric, where both players are equally informed, and one-sided
where only one player is informed.
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1 Introduction

Markets or strategic interactions are typically not observable in full detail

to the outside observer, may it be an econometrician or an analyst. Either

the utilities of the agents or the actions available to them are unobservable.

Frequently, only the outcome of the interaction is observable, if at all. The

question arises as to what conditions the observable data should satisfy in

order to be consistent with an underlying theoretical model. Stated differ-

ently, what restrictions on the outcomes of an interaction does the underlying

model impose?

Afriat (1967) examined a situation where only finitely many observations

of prices and consumption-bundles of an agent are available. Afriat’s theorem

(see also Varian, 1984) states that these observations may constitute a finite

sample from a demand function induced by a continuous, concave and mono-

tonic utility, if and only if a certain revealed preference condition is satisfied.

Sonnenschein (1973), Debreu (1974) and Mantel (1974) examined functions

that map prices to bundles. They questioned under what conditions such

functions might convey the excess demand of a market with utility maxi-

mizing agents. It turns out that any function can be derived from rational

individuals who maximize their utility.

This paper refers to strategic interactions and poses questions of a similar

spirit. The exact specifications of the game played are unobservable to the

outside observer. Only the payoffs received by the agents are knowable. In

this case, what conditions should these payoffs satisfy in order to be consistent

with the equilibrium paradigm of interactive models?

More specifically, consider a Bayesian game in which agents might receive

information regarding the actual game played. As in Aumann (1974), we
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model the information structure in a Bayesian game by a partition of the

state-space into disjoint cells: a player is informed of the cell containing the

realized state. The information structure of the game obviously affects the

behavior of the agents; it determines the equilibrium payoffs. Thus, in a

given Bayesian game, any set of state-space partitions, one for each player, is

associated with equilibrium payoffs of the induced (incomplete information)

game. However, while all the details of the game, including the agents’ action

sets and the payoffs associated with any combination of agents’ actions, are

usually unobservable to the economist, the outcomes of the game frequently

are.

The data available to the economist about the game includes all possible

information structures and the payoffs associated with them. As in Afriat

(1967) we look for conditions that data should satisfy in order to be consistent

with a rational behavior of the agents in Bayesian games.

Another purpose of the paper is to study those properties essential to the

functions that measures the value of information, as well as the role of infor-

mation in Bayesian games and its effect on equilibrium payoffs. When the

information structure changes typically the equilibrium payoffs also change.

Specially interesting questions are: what is the extent to which information

affects the outcome of the interaction; are there limitations on the way in-

formation affects the outcome; and whether the contribution of additional

information should be related in any particular way to the information al-

ready available?

As a first step in studying the aforementioned questions, we restrict our-

selves to zero-sum games. The main advantage of these games is that they

have a unique equilibrium payoff − the value. This implies that any infor-

mation structure is associated with a unique equilibrium payoff rather than

with multiple equilibrium payoffs. Furthermore, in zero-sum games the effect

of getting more information is always positive: the equilibrium payoff cannot

decrease as a result of receiving more information.
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A Bayesian zero-sum game can be also perceived as a one-player decision

problem under uncertainty when the decision-maker has a prior over her own

payoff functions while she has no prior over the states nature may choose.

Consider a decision-maker who takes a decision and then receives a payoff

which depends also on the state nature chooses. Neither the payoff function

nor the state of nature is known.

The payoff function reflects the decision-maker’s own preferences, and

therefore, she might have a prior over the possible payoff functions that

may be relevant at the time the payoff is given. The state of nature, how-

ever, might be subject to complete ignorance: the decision-maker might have

no assessment or hypothesis regarding the distribution of the states nature

chooses. In such a situation a worst case analysis of nature’s choice suggests

that nature is malicious and it tries to minimize the decision-maker’s payoff.

Thus, in effect, the decision-maker plays a Bayesian zero-sum game against

nature.

The value-of-information function of a Bayesian zero-sum game maps

each possible information structure to the corresponding equilibrium pay-

off. We characterize those real-valued functions defined over the information

structures that can be realized by an underlying Bayesian game, as value-of-

information functions. That is, we specify the properties of functions over

the state-space partitions that are necessary and sufficient for being value-

of-information functions.

The issue of measuring the value of information has been previously ad-

dressed in the case of one decision-maker by Gilboa and Lehrer (1991). They

characterized those functions that measure the value of information in op-

timization problems, where the decision-maker gets to know an equivalent

class of states, rather than the realized state itself. In this paper we extend

the model of Gilboa and Lehrer (1991) to zero-sum games and determine

what kind of functions (of information) might measure the value of informa-

3



tion. We answer this question in two polar cases: symmetric information in

which the partitions of both players coincide and thus both obtain the same

information about the state of nature; and one-sided information in which

one player gets some information about the state of nature while the other

does not.

In the case of symmetric information both players are equally informed,

and after being informed they actually play another Bayesian game which

is restricted to the states within the informed cell. Therefore, the value

of the original Bayesian game is the expected value of the Bayesian game

played aposteriori. In other words, the value of the Bayesian game is a

weighted sum of the values of the restricted Bayesian games played after

the players have been informed. This implies, in particular, that a value-of-

information function of a symmetric information game should be additively

separable. It turns out that this very condition characterizes all possible

value-of-information functions: any additively separable function over parti-

tions is a value-of-information function.

When the information is one-sided, refining the partition of the informed

player increases her equilibrium payoff. Thus, any value-of-information func-

tion must be monotonic (with respect to refinement). Our conclusion con-

cerning one-sided information states that, unlike the case of one-player de-

cision problems, no further condition beyond monotonicity is required to

characterize the value-of-information functions.

To summarize, in both types of information structures − the symmetric

and the one-sided − the obvious necessary conditions (i.e., additivity in the

symmetric case and monotonicity in the one-sided case) are also sufficient to

guarantee consistency with the equilibrium paradigm of Bayesian games.

The paper is organized as follows. In Section 2 we present the model and

the main issues treated by the paper. In Sections 3 and 4 we present the

two main results: the characterizing of the value-of-information functions in

symmetric and one-sided information structures. In Section 5 we prove these
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results. Section 6 reviews related literature and Section 7 is devoted to final

comments.

2 The model

In this section we give a more formal content to the question asked in the in-

troduction. We first define information structures and then model a bayesian

game for each possible information structure. Given this game we define the

notion of value of information and then characterize the functions that are

value of information for some bayesian game.

2.1 Information structures

We consider an incomplete information game preceded by a phase in which

the players may obtain some partial information about the exact game to be

played. Before the game starts, a state of nature k is drawn from a finite

set K according to a known probability p. None of the players is directly

informed of the realized state k. The players receive signals that depends

on k through an information structure. This information structure is the

main subject of this study and is to be distinguished from the uncertainty

embedded in p and k.

Let P1 and P2 be two partitions of the state space K. The signal player

i receives about k in the atom of Pi that contains k. Formally,

Definition 1 A partitional information structure I = (P1,P2) consists of

two partitions of K: Si for player i, i = 1, 2.

An information structure in general is a device that associates (random)

private signals (provided to the players) with the payoff-relevant information.

In the model discussed here, the payoff-relevant information is the state. It is

clear that partitional information structures are a specific class of information
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structures. On the other hand, it can be shown that that any information

structure can be modelled as a partitional information structure with a new

set of parameters (see for instance, Lehrer and Rosenberg, 2003).

In this paper we focus on two specific kinds of information structures:

symmetric information in which both players receive the same signal and

one-sided information in which only one player receives information while

the other does not.

Definition 2 A partitional information structure I = (P1,P2) is symmetric

if both partitions are equal. That is, P1 = P2.

Definition 3 A partitional information structure I = (P1,P2) is one-sided

if only player 1 receives information. That is, if the partition P2 is trivial

(i.e., contains only one set, K).

2.2 The game

The bayesian game is defined by a finite state space K; a probability distri-

bution over K, p; a finite actions set for each player, A1 and A2; and finally,

a payoff function, gk, defined on A1 × A2 for each k ∈ K.

The game associated with the information structure I = (P1,P2) is played

as follows. Before the game starts a state of nature k ∈ K is drawn according

to the distribution p. None of the players observe k. However, player i

observes the cell of the partition Pi to which k belongs. Then both players

simultaneously choose an action ai ∈ Ai and get the payoff gk(a1, a2). Player

1 tries to maximizes the expected payoff while player 2 tries to minimize it.

This game can be put in a normal form. A pure strategy of player i

is a function, τi, that associates an action in Ai to each cell B ∈ Pi. For

each Bi ∈ Pi and each ai ∈ Ai, τiBi
(ai) denotes the probability that player

i plays action ai if he is informed of Bi. Let Bi(k) denote the cell of Pi

that contains k. The payoff corresponding to a pair of strategies τ1, τ2 is
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∑
k∈K p(k)

∑
a1∈A1

∑
a2∈A2

τ1B1(k)(a1)τ2B2(k)(a2)gk(a1, a2). This game is a fi-

nite game and therefore has a value denoted by vP1,P2(p, (gk)k∈K).

2.3 Measuring the contribution of information

We now define the value of information in a bayesian game. Consider game

with a state space K, payoff functions (gk)k∈K and a distribution p over K.

The value-of-information function of this game is V (I) = vI(p, (gk)k∈K). The

main issue of this paper is to characterize the value-of-information functions.

Formally, let V (I) be a function over partitional information structures I.

The question arises as to when this function is a value-of-information function

of some game. If the properties of the functions that are values of information

for some bayesian game are restrictive, it means that the bayesian model

imposes restrictions on the way information is valued when it varies.

In the case of one decision maker this problem has been analyzed by

Gilboa and Lehrer (1991). They characterize the functions of partitions

defined on the set of partitions that are the value of information of finite

games.

Definition 4 Let V be a function defined over all the partitions of a finite

set K. V is separately additive if there is a function v, defined over subsets

of K, such that for any partition P, V (P) =
∑

B∈P v(B).

Notation 1 If ∅ 6= T ⊆ B ⊆ K and (xi)i∈B is a vector, then x(T ) denotes∑
i∈T xi, and x(∅) = 0.

Definition 5 For B ⊆ K, the B-anti-core of v is non empty if there is a

vector (xi)i∈B, such that x(T ) ≤ v(T ) for every T ⊆ B.

Gilboa and Lehrer (1991) showed that a function V defined over all the

partitions of a finite set K is a value-of-information function of a one-player

decision making problem with state space K if and only if it has the following

two properties.
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(i) V is separately additive: V (P) =
∑

B∈P v(B); and

(ii) for any B ⊂ K, the B-anti-core of v is non empty.

Moreover, the underlying probability distribution over K can be any, as

long as the support is the entire K (i.e., any k ∈ K is assigned a positive

probability).

Condition (i) is clearly necessary in a one-player decision problem for the fol-

lowing reason. Let P be a partition and B ∈ P . Define v(B) as maxa∈A1

∑
k∈B p(k)gk(a).

The value of the decision problem V (P) has to be
∑

B∈P v(B). This require-

ment will be extended to the case of two-player zero-sum games with sym-

metric information.

In Sections 3 and 4 we study analogous questions in zero-sum games with

symmetric and one-sided partitional information. Note that the one-player

case is a particular case of a zero-sum game (player 2 has only one action).

However, since the number of actions available to each player is not specified

in the condition, there are more zero-sum games than one player decision

problems and therefore more functions of partitions that can be a value of

information of zero-sum game than of one-player decision problems. Thus,

the conditions that characterize value-of-information functions of zero-sum

games are weaker than those characterizing value-of-information functions of

one-player decision problems.

3 The value of symmetric partitional infor-

mation

In this section we focus on zero-sum games with symmetric partitional infor-

mation.

Definition 6 A function V defined over all the partitions of K is a value-

of-information function of a partitional symmetric information game if there
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is a distribution p over K and payoff functions (gk)k∈K such that for any

partition P of K, V (P) = vP,P(p, (gk)k∈K).

Example 1 Let K be {1, 2}. The payoff functions g1 and g2 are given by

the matrices. (
1 0
0 0

)
and

(
1 0
0 1

)
respectively.

Suppose that the probability of state k = 1 is p. If no player is informed of

the state selected, the players actually play the game whose matrix is(
1 0
0 1− p

)
.

The value of this game is 1−p
2−p

. On the other hand, if the players are informed

of the game selected, then with probability p the value of the game played is

0 and with probability 1 − p the value of the game played is 1
2
. Thus, the

average of the Bayesian game is 1−p
2

.

To sum up, there are two possible partitional symmetric information struc-

ture: the trivial, T , where no information about the state selected is being

in given to the players, and the perfect one (that corresponds to the discrete

partition), D, where both players are fully informed of the state selected. The

value-of-information function in this case is therefore given by , V (T ) = 1−p
2−p

and V (D) = 1−p
2

. One can see that the additional information given by D is

harmful for player 1.

We are now ready to characterize the functions over partitions that are values

of information of zero sum games with symmetric information.

Theorem 1 Let V be a function defined over all the partitions of K then V is

the value of information of a game with symmetric partitional information if

and only if V is separately additive. Moreover, if V is separately additive then

for any probability distribution on K with full support there are payoff func-

tions (gk)k∈K such that for any partition P over K, V (P) = vP,P(p, (gk)k∈K).
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Note that as in the case of one decision maker it is easy to prove that

additivity is a necessary condition. Indeed, for a fixed partition P , there

is one different mixed action for each player for each atom of the partition.

Therefore V (P) can be written as the sum for all atoms B of the partitions

of functions v(B) where v(B) is the value of the matrix game with action

sets A1 and A2 and payoff functions
∑

k∈B p(k)gk(·, ·).
Therefore, the main contribution of this theorem is to state that no fur-

ther condition beyond additivity is needed for a function to be the value of

information of a zero-sum game with symmetric information. This means

that in a games with symmetric information the impact of information can

be literally unlimited (as long as additivity is preserved). Information may

have a positive or a negative contribution, and it may alternate arbitrarily

between having positive and negative effects, as the information increases.

Furthermore, the marginal contribution of additional information may be ar-

bitrarily small or large. In other words imposing a bayesian model does not

impose additional restrictions on the impact of information on the outcome

of an interaction. This means that if information is symmetric, bayesianism

cannot be rejected as a model on the grounds of the impact of additional

information on the value of a zero sum game.

The proof of Theorem 1 is postponed to section 5.

4 One-sided information structures

In this section we discuss the case where one player, typically the maximizer,

receives some information about the state selected, while the other player

receives no information. Formally, player 1 will be informed of the cell of

partition P , while the other player will be informed of the trivial partition,

T .

Definition 7 A function V defined over all the partitions of K is a value-

of-information function of a game with partitional one-sided information if

10



there is a distribution p over K and payoff functions (gk)k∈K such that for

any partition P over K, V (P) = vP,T (p, (gk)k∈K).

Definition 8 A function V from the set of partitions of a finite set K to

the real numbers is said to be monotonic if for two partitions P and P ′ such

that P is a refinement of P ′ (i.e., any B′ ∈ P ′ is a union of atoms B ∈ P),

then V (P) ≥ V (P ′).

Example 2 Recall Example 1 and consider one-sided partitional informa-

tion. When the information is trivial, then the value, as in Example 1 is
1−p
2−p

. However, when player 1 is fully informed of the state and player 2

obtains no information, then the game actually played is
1 0
p 1− p

1− p 0
0 1− p

 .

The value of this game is 1
2

if p ≤ 1
2

and 1−p if p > 1
2
. Note that this game is

the one-sided partitional information corresponding to the discrete partition

D.

We conclude by writing the value-of-information function of this one-

sided partitional information: V (T ) = 1−p
2−p

and V (D) = 1
2

if p ≤ 1
2

and

V (D) = 1 − p if p > 1
2
. Note that V is monotonic, since D refines T and

indeed, 1
2
≥ 1−p

2−p
for p ≤ 1

2
and 1− p ≥ 1−p

2−p
for p > 1

2
.

It is clear that in zero-sum games when only one player receives additional

information, the value increases. Thus, the value-of-information functions of

games with one-sided partitional information must be monotonic. It turns

out, as the following theorem states, that monotonicity is not only necessary

but also sufficient for being a value-of -information function of a game with

one-sided partitional information. As in the symmetric case, there is no

restriction (as long as monotonicity is preserved) on the possible impacts of
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information on the outcome of an interaction for different payoff functions,

and the study of the impact of information on the value cannot help in

accepting or rejecting the bayesian model as an explanatory model..

Theorem 2 A function V from the set of partitions of a finite set K is

value-of-information function of a partitional one-sided information game if

and only if it is monotonic.

The proof of this theorem will be given in the next section.

5 Proofs of the theorems

5.1 The proof of Theorem 1.

We first prove that if V is a value of information function of a zero-sum game

with symmetric information then it has to be additive. Recall that since each

player knows the set of the partition P to which k belongs, the strategies τ1

and τ2 of player 1 and player 2 are functions from the sets of the partition

to probabilities over A1 and A2 respectively. We will denote for B ∈ P , τ1B

(resp. τ2B) the mixed action corresponding to the information B. Therefore

V (P ,P) = vP,P(p, (gk)k∈K)

= max
(τ1B)B∈P

min
(τ2B)B∈P

∑
B∈P

∑
k∈B

p(k)

 ∑
a1∈A1
a2∈A2

τ1B(a1)τ2B(a2)gk(a1, a2)


=

∑
B∈P

h(B),

where h(B) = maxτ1B
minτ2B

∑
k∈B p(k)

(∑
a1∈A1
a2∈A2

τ1B(a1)τ2B(a2)gk(a1, a2)

)
.

Thus, V is additive.

Assume now that V is an additive function on partition, we want to prove

that it is a value of information function. In order to prove this result we
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will use the following proposition (theorem ???) from Lehrer and Rosenberg

(2003).

Proposition 1 Let f be any polynomial from the set of probability distribu-

tions over K to the reals. There exist two finite sets A1 and A2, and a func-

tion gk from A1 ×A2 to the reals, for each k ∈ K, such that the value of the

game with the action sets A1 and A2 and the payoff function
∑

k∈K pkgk(·, ·)
is f(p), for any p. This game is called a game with no information.

Take p any probability distribution with full support on K. For any subset

B of K we denote by pB the conditional probability on B namely pB(k) =

p(k)/p(B) if k ∈ B (and 0 otherwise).

Let f be a polynomial defined on ∆(K) such that for any subset B of K,

f(pB) = h(B)/p(B). Such a polynomial exists (note that for B different from

B′, pB is different from pB′). Now Proposition 1 implies that there are payoff

functions (gk)k∈K such that the value u of the game with no information and

payoffs (gk)k∈K satisfies u = f.

For these payoffs we therefore have proven that

V (P ,P) =
∑
B∈P

h(B) =
∑
B∈P

f(pB)p(B) =
∑
B∈P

u(pB)p(B)

=
∑
B∈P

p(B) max
τ1B

min
τ2B

∑
k∈B

pB(k)

 ∑
a1∈A1
a2∈A2

τ1B(a1)τ2B(a2)gk(a1, a2)



=
∑
B∈P

max
τ1B

min
τ2B

∑
k∈B

p(k)

 ∑
a1∈A1
a2∈A2

τ1B(a1)τ2B(a2)gk(a1, a2)

 ,

which is the desired result.

5.2 Proof of Theorem 2

The proof of Theorem 2 makes use of the following proposition.
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Refer to the probabilities of the various one-player decision

problems in the proof.

Proposition 2 A function V from the set of partitions of a finite set K is

value-of-information function of a partitional one-sided information game if

and only if it is a minimum of finitely many value-of-information functions

of one-player decision making problems.

Proof. Let V be the value-of-information function of the game G with K

being its state space. We prove that it is the minimum of finitely many value

of information functions for one player decision making problems. Consider

the following auxiliary multi-stage game, Ḡ. At the beginning player 2 an-

nounces a mixed strategy, then a state is chosen with respect to the prior

distribution p and player 1 is informed of the cell of the appropriate partition

that contains this state. Finally, player 1 takes an action and an action of

player 2 is selected according to the mixed strategy previously announced.

Obviously the values of Ḡ and G coincide. Moreover, the optimal strate-

gies in both games also coincide. Denote by yP an optimal strategy of player

2 in the one-sided information game induced by the partition P .

Consider a fixed partition P . In Ḡ, after player 2 announces yP , player 1

actually faces a one-player decision problem, denoted DP . DP is defined by

the state space K and some payoff functions. Denote by DQ
P the one-player

decision problem DP when the partitional information is induced by Q. The

value of this problem is denoted by UQ
P . Note that V (P) coincides with UP

P .

Since yP is an optimal strategy of player 2 in the game with one-sided

information induced by the partition P , UP
P ≤ UQ

P for any partition Q. Thus,

for any P , V (P) = minQUQ
P , which completes the proof of necessity.

As for sufficiency, suppose that V is the minimum of finitely many val-

ues of one-player decision making problems: D1, .., Dn. That is, if Ui(P)

denotes the value of Di when the information is induces by P , then V (P) =

min1≤i≤n Ui(P). We need to show a zero-sum game whose value is V .
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Consider the following multi-stage game, G. Player 2 chooses a whole

number from 1, ..., n ,say r, then a state k is chosen, player 1 is informed of

the cell containing this state, and finally player 1 takes an action, say a. The

payoff of player 1 is the payoff that corresponds to the action a and the state

k in the decision problem Dr.

Note that for any partition P , the value of G when the information is

induced by P is min1≤i≤n Ui(P). Thus, the value of information of G coincides

with V , as desired.

Definition 9 Let F be an algebra of subsets of K. That is, F consists

of subsets of K and it is closed under unions and intersections. Let v be

a real function defined over F . We say that the anti-core of (v,F) is not

empty, if for every A ∈ F there is a vector xA such that xA(A) = v(A) and

xA(B) ≤ v(B) for every B ⊆ A such that B ∈ F .

Remark 1 Suppose that F is the set of all subsets of K. The anti-core of

(v,F) is not empty implies that the B-anti-core of v is not empty for every

B ⊆ K.

Lemma 1 Let F1 and F2 be two algebras of subsets of K such that F1 ⊆ F2.

Assume that the anti-core of (v,F1) is not empty. Then, for every constants

cB, B ∈ F2 \ F1 there is u defined on F2 which coincides with v on F1 and

satisfies u(S) ≥ cS for every S ∈ F2 \ F1, such that the anti-core of (u,F2)

is not empty.

Proof. Suppose that the algebra G2 refines the algebra G1. We say that G2

is generated from G1 by splitting an atom of G1 into two subsets, if there is

an atom A of G1, and a partition of A into two subsets B and B′ that belong

to G2, such that any set C ∈ G2 can be written as C = C1 ∪C2 with C1 ∈ G1

and C2 ∈ {B, B′, ∅}.
Without loss of generality we can assume that F2 is generated from F1 by

splitting an atom of F1 into two subsets. This is so because when F2 refines
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F1, any cell of F1 is a union of cells of F2. Thus, by finitely many successive

splits of sets into two subsets one can generate F2 from F1. Therefore, if the

lemma is proven for any two algebras such that the first is generated from

the second by splitting an atom in the second into two sets, one can apply

it successively and obtain the desired result for any two algebras that one

refines the other.

Let B ∈ F2 \ F1 be a set that does not contain any set from F1. That

is, B is a proper subset of A ∈ F1 (i.e., B is a result of splitting A into two

subsets). Thus, the sets of F2 are of the type D∪E, where D ∈ {B, A\B, ∅}
and E ∈ F1.

Since the anti-core of (v,F1) is not empty, for every A ∈ F1 there is a

vector xA that satisfies the conditions described in Definition 9. For D =

B, A \ B, set dD = maxA; D⊆A and A∈F1 xA(D) and let bD > dD. Define u as

follows: u coincides with v on F1; u(D) = bD for D = B, A \ B and finally,

for D ∪ E, where D = B, A \B and E ∈ F1, u(D ∪ E) = u(D) + u(E).

Note that if bD, D = B, A \B are large enough, then u(S) ≥ cS for every

S ∈ F2 \ F1, as desired. It remains to show that the anti-core of (v,F2) is

not empty.

Fix A ∈ F1. If C ⊆ A and C 6∈ F1, then by the definition of dC and

since bC > dC , u(C) > xA(C). If however C ⊆ A and C ∈ F1, then

u(C) = v(C) ≥ xA(C).

Now fix A ∈ F2 \ F1. A = D ∪ E, where D = B, A \ B and E ∈ F1.

Define xA as follows. On the set E, xA coincides with xE, while on D the

restriction of xA is an arbitrary vector whose sum is u(D). Let D ∪ C ⊆ A,

where C ⊆ E is in F1. Then1, xA(D∪C) = xA(D)+xA(C) ≥ u(D)+v(C) =

u(D) + u(C) = u(D ∪ C) which completes the proof that the anti-core of

(u,F2) is not empty.

Notation 2 Denote by A(P) the algebra generated by P.

1Recall Notation 1.
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Proof of Theorem 2. Let V be a monotonic function defined over the

set of partitions of a set K. We prove that it is a value of information. By

Proposition 2 of Gilboa and Lehrer (1991) it is sufficient to show: (i) there

are v1, ..., vn where vi is such that for any B ⊂ K, the B-anti-core of vi is

non empty; and (ii) for any partition P , V (P) = mini

∑
A∈P vi(A).

For any partition P we will find vP whose B-anti-core is non empty for

every B ⊆ K, V (P) =
∑

A∈P vP(A) and
∑

A∈P vP(A) ≤
∑

A∈P vQ(A) for

any partition Q. This will imply the result.

Fix a partition P and define vP(A) for A ∈ P so that
∑

A∈P vP(A) =

V (P). Extend the definition of vP to A(P) in a linear fashion. Note that

this can be done in a unique way since any element of A(P) can be written

in a unique way as a union of cells of P . Moreover, if P refines Q, then

V (P) =
∑

A∈P vP(A) =
∑

A∈Q vP(A) ≥ V (Q). The last inequality is by

monotonicity of V .

Since vP is linear on A(P), the anti-core of (vP ,A(P)) is not empty.

This is so for the following reason. Fix A ∈ P and let xA be any |K|
dimensional vector with two properties. First, the support of xA is A (i.e.,

all the coordinates out of A are zeros); and second, xA(A) = vP(A). Define

x =
∑

A∈P xA. Note that for any B ∈ A(P), x(B) =
∑

k∈B

∑
A∈P xA(k) =∑

A∈P xA(A ∩ B) =
∑

A∈P and A⊆B xA(A) (because P is a partition of K).

Therefore, x(B) =
∑

A∈P and A⊆B vP(A) = vP(B) (the last equality is due to

the linearity of vP on A(P)). Thus, for B ∈ A(P), x satisfies x(B) = vP(B)

and the anti-core of (vP ,A(P)) is not empty.

We extend vP to the set of all the subsets of K. On every partition Q,

vP should satisfy the linear inequality
∑

A∈Q vP(A) ≥ V (Q). Consider the

following set of linear inequalities with the variables cA, A ⊆ K.
∑

A∈Q cA ≥
V (Q), for every partition Q; cA = vP(A) if A ∈ A(P). This set of inequalities

can be written as a set of inequalities with the set of variables cA, A ⊆
K and A 6∈ A(P), where all the inequalities are of the type ”greater than or

equal to” and the coefficients are either 0 or 1. Such a system has a solution.
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Moreover, if (cA)A⊆K and A6∈A(P) is a solution then, (cA + fA)A⊆K and A6∈A(P),

is also a solution, whenever fA ≥ 0.

Now fix a solution (cA) and use the previous lemma with F1 = A(P)

and F2 be the set of all subsets of K. We obtain vP that coincides with vP

on P . Moreover, it satisfies vP(A) ≥ cA and therefore, it satisfies the set

of the inequalities defined in the previous paragraph. Thus,
∑

A∈Q vP(A) ≥
V (Q) =

∑
A∈Q vQ(A) for every Q. Finally, the anti-core of (vP ,F2) is non-

empty. Thus, by Remark 1 it completes the proof that a monotonic function

is a value-of-information function.

We prove now the inverse direction: if V is a value of information it has

to be monotonic. Note that if P is a refinement of Q, then in a one-sided

information game induced by P player 1 has more strategies than in the game

with information induced by Q. Indeed, for any strategy τ of player 1 in the

game with information structure Q denote by τB the action prescribed by

τ when the state chosen is in the cell B ∈ P . Define the following strategy

of player 1 in the game with the information structure P . When the state

chosen is in C ∈ P , where C ⊆ B ∈ P , play according to τB.

Since the set of strategies of player 2 is the same under both information

structures, the value is higher in the game with information structure P than

in the game with information structure Q. This proves monotonicity.

6 Related Literature

Most of the existing literature that relates to the role of information in in-

teractive models compares different information structures. Blackwell (1951,

1953) initiated this trend when he characterized in the context of one-player

decision problems when one information structure always provides at least

as high payoff as another information structure. Gossner and Mertens (2001)

compared different information structures in zero-sum games and Lehrer and

Rosenberg (2003) did it in long-run repeated zero-sum games. Gossner (2000)
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compared the sets of correlated equilibrium distributions induced by different

information structures. Gossner (2003) showed that the case where a player

has in one game more strategies that in another can be interpreted as having

more information.

Hirshleifer (1971) noted that in economic situations additional informa-

tion does not necessarily imply greater payoffs for the agent. When the game

is non-zero-sum, players might prefer dropping payoff-relevant information.

This might happen when the equilibrium payoffs of the better informed player

are lower than her equilibrium payoffs before receiving the additional infor-

mation. This phenomenon is exemplified in Kamien et al. (1990). Bassan et

al. (1999) introduced conditions that guarantee that getting more informa-

tion always improves all players’ payoffs. Neyman (1991) pointed out that

a player might prefer not receiving information because other players would

know that he was receiving this information.

7 Final Remarks

7.1 Non zero-sum games

In this paper we characterize the functions that are value of information

functions for zero sum games. In the non zero sum case one could define for

a game the value of information correspondence that associates to each in-

formation structure the set of corresponding Nash equilibrium payoffs. Then

characterizing the set of Nash equilibrium correspondences even for symmet-

ric or one sided information is an open problem.

7.2 Games with two-sided information

In this work we focused on the two polar cases of symmetric and one sided

information. It would be interesting to characterize the functions V of pair

of partitions (P1,P2) for which there is a p and sets of actions and payoff

functions (gk)k∈K such that V (P1,P2) = vP1,P2(p, (gk)k∈K).
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7.3 General information structures

In this paper we restricted ourselves to games in which the information struc-

ture is defined by a pair of partitions. One could more generally define the

value of information as a function of general information structures (namely

functions from K to probability distributions over a finite set of signals) and

ask which functions are value of information functions.
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